|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Test the model module."""
- import numpy as np
- import pandas as pd
- import pytest
-
- from mindinsight.optimizer.common.exceptions import SamplesNotEnoughError, CorrelationNanError
- from mindinsight.optimizer.utils.importances import calc_hyper_param_importance
- from mindinsight.optimizer.utils.utils import is_simple_numpy_number, calc_histogram
-
-
- def test_is_simple_numpy_number():
- assert is_simple_numpy_number(np.int8)
- assert is_simple_numpy_number(np.int16)
- assert is_simple_numpy_number(np.float)
- assert not is_simple_numpy_number(str)
-
-
- def test_calc_histogram():
- """Test calc_histogram function"""
- data = np.array([2, 2, 3, 4, 5])
- output = calc_histogram(data)
- assert output[0][1] == pytest.approx(0.6, 1e-6)
- assert output[1][1] == pytest.approx(0.6, 1e-6)
- assert output[0][2] == pytest.approx(2.0, 1e-6)
-
-
- def test_calc_hyper_param_importance_exception_1():
- """Test calc_hyper_param_importance function when number of samples is less or equal than 2"""
- flattened_lineage = {'epoch': [10, 10], 'accuracy': [32, 32]}
- with pytest.raises(SamplesNotEnoughError) as info:
- calc_hyper_param_importance(pd.DataFrame(flattened_lineage), 'epoch', 'accuracy')
- assert "Number of samples is less or equal than 2." in str(info.value)
-
-
- def test_calc_hyper_param_importance_exception_2():
- """Test calc_hyper_param_importance function when correlation equals to NaN"""
- flattened_lineage = {'epoch': [10, 10, 10], 'accuracy': [0.6432, 0.6281, 0.6692]}
- with pytest.raises(CorrelationNanError) as info:
- calc_hyper_param_importance(pd.DataFrame(flattened_lineage), 'epoch', 'accuracy')
- assert "Correlation is nan!" in str(info.value)
-
-
- def test_calc_hyper_param_importance():
- """Test calc_hyper_param_importance function"""
- flattened_lineage = {'epoch': [10, 20, 30], 'accuracy': [30, 40, 50]}
- result = calc_hyper_param_importance(pd.DataFrame(flattened_lineage), 'epoch', 'accuracy')
- assert result == pytest.approx(1.0, 1e-6)
|