|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Saliency map encapsulator."""
-
- import copy
-
- from mindinsight.utils.exceptions import ParamValueError
- from mindinsight.explainer.encapsulator.explain_data_encap import ExplainDataEncap
- from mindinsight.datavisual.common.exceptions import TrainJobNotExistError
-
-
- def _sort_key_min_confidence(sample):
- """Samples sort key by the min. confidence."""
- min_confidence = float("+inf")
- for inference in sample["inferences"]:
- if inference["confidence"] < min_confidence:
- min_confidence = inference["confidence"]
- return min_confidence
-
-
- def _sort_key_max_confidence(sample):
- """Samples sort key by the max. confidence."""
- max_confidence = float("-inf")
- for inference in sample["inferences"]:
- if inference["confidence"] > max_confidence:
- max_confidence = inference["confidence"]
- return max_confidence
-
-
- def _sort_key_min_confidence_sd(sample):
- """Samples sort key by the min. confidence_sd."""
- min_confidence_sd = float("+inf")
- for inference in sample["inferences"]:
- confidence_sd = inference.get("confidence_sd", float("+inf"))
- if confidence_sd < min_confidence_sd:
- min_confidence_sd = confidence_sd
- return min_confidence_sd
-
-
- def _sort_key_max_confidence_sd(sample):
- """Samples sort key by the max. confidence_sd."""
- max_confidence_sd = float("-inf")
- for inference in sample["inferences"]:
- confidence_sd = inference.get("confidence_sd", float("-inf"))
- if confidence_sd > max_confidence_sd:
- max_confidence_sd = confidence_sd
- return max_confidence_sd
-
-
- class SaliencyEncap(ExplainDataEncap):
- """Saliency map encapsulator."""
-
- def __init__(self, image_url_formatter, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self._image_url_formatter = image_url_formatter
-
- def query_saliency_maps(self,
- train_id,
- labels,
- explainers,
- limit,
- offset,
- sorted_name,
- sorted_type):
- """
- Query saliency maps.
- Args:
- train_id (str): Job ID.
- labels (list[str]): Label filter.
- explainers (list[str]): Explainers of saliency maps to be shown.
- limit (int): Max. no. of items to be returned.
- offset (int): Page offset.
- sorted_name (str): Field to be sorted.
- sorted_type (str): Sorting order, 'ascending' or 'descending'.
-
- Returns:
- tuple[int, list[dict]], total no. of samples after filtering and
- list of sample result.
- """
- job = self.job_manager.get_job(train_id)
- if job is None:
- raise TrainJobNotExistError(train_id)
-
- samples = copy.deepcopy(job.get_all_samples())
- if labels:
- filtered = []
- for sample in samples:
- infer_labels = [inference["label"] for inference in sample["inferences"]]
- for infer_label in infer_labels:
- if infer_label in labels:
- filtered.append(sample)
- break
- samples = filtered
-
- reverse = sorted_type == "descending"
- if sorted_name == "confidence":
- if reverse:
- samples.sort(key=_sort_key_max_confidence, reverse=reverse)
- else:
- samples.sort(key=_sort_key_min_confidence, reverse=reverse)
- elif sorted_name == "uncertainty":
- if not job.uncertainty_enabled:
- raise ParamValueError("Uncertainty is not enabled, sorted_name cannot be 'uncertainty'")
- if reverse:
- samples.sort(key=_sort_key_max_confidence_sd, reverse=reverse)
- else:
- samples.sort(key=_sort_key_min_confidence_sd, reverse=reverse)
- elif sorted_name != "":
- raise ParamValueError("sorted_name")
-
- sample_infos = []
- obj_offset = offset*limit
- count = len(samples)
- end = count
- if obj_offset + limit < end:
- end = obj_offset + limit
- for i in range(obj_offset, end):
- sample = samples[i]
- sample_infos.append(self._touch_sample(sample, job, explainers))
-
- return count, sample_infos
-
- def _touch_sample(self, sample, job, explainers):
- """
- Final editing the sample info.
- Args:
- sample (dict): Sample info.
- job (ExplainJob): Explain job.
- explainers (list[str]): Explainer names.
- Returns:
- dict, the edited sample info.
- """
- sample["image"] = self._get_image_url(job.train_id, sample['image'], "original")
- for inference in sample["inferences"]:
- new_list = []
- for saliency_map in inference["saliency_maps"]:
- if explainers and saliency_map["explainer"] not in explainers:
- continue
- saliency_map["overlay"] = self._get_image_url(job.train_id, saliency_map['overlay'], "overlay")
- new_list.append(saliency_map)
- inference["saliency_maps"] = new_list
- return sample
-
- def _get_image_url(self, train_id, image_path, image_type):
- """Returns image's url."""
- if self._image_url_formatter is None:
- return image_path
- return self._image_url_formatter(train_id, image_path, image_type)
|