|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Utils for calculate importance."""
- import numpy as np
-
- from mindinsight.optimizer.common.exceptions import SamplesNotEnoughError, CorrelationNanError
- from mindinsight.optimizer.common.log import logger
-
-
- def calc_hyper_param_importance(df, hyper_param, target):
- """Calc hyper param importance relative to given target."""
- logger.debug("Calculating importance for hyper_param %s, target is %s.", hyper_param, target)
-
- new_df = df[[hyper_param, target]]
- no_missing_value_df = new_df.dropna()
-
- # Can not calc pearson correlation coefficient when number of samples is less or equal than 2
- if len(no_missing_value_df) <= 2:
- raise SamplesNotEnoughError("Number of samples is less or equal than 2.")
-
- correlation = no_missing_value_df[target].corr(no_missing_value_df[hyper_param])
- if np.isnan(correlation):
- logger.warning("Correlation is nan!")
- raise CorrelationNanError("Correlation is nan!")
- return abs(correlation)
|