Are you sure you want to delete this task? Once this task is deleted, it cannot be recovered.
|
|
5 years ago | |
|---|---|---|
| .. | ||
| common | 5 years ago | |
| README.md | 5 years ago | |
| __init__.py | 5 years ago | |
| cli.py | 5 years ago | |
| config.py | 5 years ago | |
| converter.py | 5 years ago | |
| enums.py | 5 years ago | |
| f_list.json | 5 years ago | |
| forward_call.py | 5 years ago | |
| nn_list.json | 5 years ago | |
| tensor_dot_list.json | 5 years ago | |
| torch_dot_list.json | 5 years ago | |
MindConverter is a tool that converting PyTorch scripts to MindSpore scripts. With minial manual editing and the guidance from conversion reports, users may easily migrate their model from PyTorch framework to MindSpore.
This tool is part of MindInsight and accessible to users after installing MindInsight, no extra installation is needed.
Set the model scripts directory as the PYTHONPATH environment variable first:
export PYTHONPATH=<model scripts dir>
mindconverter commandline usage:
mindconverter [-h] [--version] --in_file IN_FILE [--output OUTPUT]
[--report REPORT]
MindConverter CLI entry point (version: 0.2.0)
optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
--in_file IN_FILE Specify path for script file.
--output OUTPUT Specify path for converted script file directory. Default
is output directory in the current working directory.
--report REPORT Specify report directory. Default is the current working
directorys
Usage example:
export PYTHONPATH=~/my_pt_proj/models
mindconverter --in_file lenet.py
Since the conversion is not 100% flawless, we encourage users to checkout the reports when fixing issues of the converted scripts.
Classes and functions that can't be converted:
Subclassing from the subclasses of nn.Module
e.g. (code snip from torchvision,models.mobilenet)
from torch import nn
class ConvBNReLU(nn.Sequential):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_planes),
nn.ReLU6(inplace=True)
)
Unconventional import naming
e.g.
import torch.nn as mm
MindInsight为MindSpore提供了简单易用的调优调试能力。在训练过程中,可以将标量、张量、图像、计算图、模型超参、训练耗时等数据记录到文件中,通过MindInsight可视化页面进行查看及分析。
SVG Text Python Vue CSV other