|
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Saliency map encapsulator."""
-
- from mindinsight.datavisual.common.exceptions import TrainJobNotExistError
- from mindinsight.explainer.common.enums import ExplanationKeys, ImageQueryTypes
- from mindinsight.explainer.encapsulator.explain_data_encap import ExplanationEncap
-
-
- class SaliencyEncap(ExplanationEncap):
- """Saliency map encapsulator."""
-
- def query_saliency_maps(self,
- train_id,
- labels,
- explainers,
- limit,
- offset,
- sorted_name,
- sorted_type,
- prediction_types=None):
- """
- Query saliency maps.
-
- Args:
- train_id (str): Job ID.
- labels (list[str]): Label filter.
- explainers (list[str]): Explainers of saliency maps to be shown.
- limit (int): Maximum number of items to be returned.
- offset (int): Page offset.
- sorted_name (str): Field to be sorted.
- sorted_type (str): Sorting order, 'ascending' or 'descending'.
- prediction_types (list[str]): Prediction types filter. Default: None.
-
- Returns:
- tuple[int, list[dict]], total number of samples after filtering and list of sample result.
- """
- job = self.job_manager.get_job(train_id)
- if job is None:
- raise TrainJobNotExistError(train_id)
-
- samples = self._query_samples(job, labels, sorted_name, sorted_type, prediction_types)
-
- sample_infos = []
- obj_offset = offset * limit
- count = len(samples)
- end = count
- if obj_offset + limit < end:
- end = obj_offset + limit
- for i in range(obj_offset, end):
- sample = samples[i]
- sample_infos.append(self._touch_sample(sample, job, explainers))
-
- return count, sample_infos
-
- def _touch_sample(self, sample, job, explainers):
- """
- Final edit on single sample info.
-
- Args:
- sample (dict): Sample info.
- job (ExplainJob): Explain job.
- explainers (list[str]): Explainer names.
-
- Returns:
- dict, the edited sample info.
- """
- original = ImageQueryTypes.ORIGINAL.value
- overlay = ImageQueryTypes.OVERLAY.value
-
- sample_cp = sample.copy()
- sample_cp["image"] = self._get_image_url(job.train_id, sample['image'], original)
- for inference in sample_cp["inferences"]:
- new_list = []
- for saliency_map in inference[ExplanationKeys.SALIENCY.value]:
- if explainers and saliency_map["explainer"] not in explainers:
- continue
- saliency_map[overlay] = self._get_image_url(job.train_id, saliency_map[overlay], overlay)
- new_list.append(saliency_map)
- inference[ExplanationKeys.SALIENCY.value] = new_list
- return sample_cp
|