|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Hierarchical Occlusion encapsulator."""
-
- from mindinsight.datavisual.common.exceptions import TrainJobNotExistError
- from mindinsight.explainer.common.enums import ExplanationKeys, ImageQueryTypes
- from mindinsight.explainer.encapsulator.explain_data_encap import ExplanationEncap
-
-
- class HierarchicalOcclusionEncap(ExplanationEncap):
- """Hierarchical occlusion encapsulator."""
-
- def query_hierarchical_occlusion(self,
- train_id,
- labels,
- limit,
- offset,
- sorted_name,
- sorted_type,
- prediction_types=None,
- drop_empty=True,
- ):
- """
- Query hierarchical occlusion results.
-
- Args:
- train_id (str): Job ID.
- labels (list[str]): Label filter.
- limit (int): Maximum number of items to be returned.
- offset (int): Page offset.
- sorted_name (str): Field to be sorted.
- sorted_type (str): Sorting order, 'ascending' or 'descending'.
- prediction_types (list[str]): Prediction types filter.
- drop_empty (bool): Whether to drop out the data without hoc data. Default: True.
-
- Returns:
- tuple[int, list[dict]], total number of samples after filtering and list of sample results.
- """
- job = self.job_manager.get_job(train_id)
- if job is None:
- raise TrainJobNotExistError(train_id)
-
- if drop_empty:
- samples = self._query_samples(job, labels, sorted_name, sorted_type, prediction_types,
- drop_type=ExplanationKeys.HOC.value)
- else:
- samples = self._query_samples(job, labels, sorted_name, sorted_type, prediction_types)
-
- sample_infos = []
- obj_offset = offset * limit
- count = len(samples)
- end = count
- if obj_offset + limit < end:
- end = obj_offset + limit
- for i in range(obj_offset, end):
- sample = samples[i]
- sample_infos.append(self._touch_sample(sample, job, drop_empty))
-
- return count, sample_infos
-
- def _touch_sample(self, sample, job, drop_empty):
- """
- Final edit on single sample info.
-
- Args:
- sample (dict): Sample info.
- job (ExplainManager): Explain job.
- drop_empty (bool): Whether to drop out inferences without HOC explanations.
-
- Returns:
- dict, the edited sample info.
- """
- original = ImageQueryTypes.ORIGINAL.value
- outcome = ImageQueryTypes.OUTCOME.value
-
- sample["image"] = self._get_image_url(job.train_id, sample["image"], original)
- inferences = sample["inferences"]
- i = 0 # init index for while loop
- while i < len(inferences):
- inference_item = inferences[i]
- if drop_empty and not inference_item[ExplanationKeys.HOC.value]:
- inferences.pop(i)
- continue
- new_list = []
- for idx, hoc_layer in enumerate(inference_item[ExplanationKeys.HOC.value]):
- hoc_layer[outcome] = self._get_image_url(job.train_id,
- f"{sample['id']}_{inference_item['label']}_{idx}.jpg",
- outcome)
- new_list.append(hoc_layer)
- inference_item[ExplanationKeys.HOC.value] = new_list
- i += 1
- return sample
|