|
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Common explain data encapsulator base class."""
-
- import copy
-
- from mindinsight.explainer.common.enums import ExplanationKeys
- from mindinsight.utils.exceptions import ParamValueError
-
-
- def _sort_key_min_confidence(sample, labels):
- """Samples sort key by the minimum confidence."""
- min_confidence = float("+inf")
- for inference in sample["inferences"]:
- if labels and inference["label"] not in labels:
- continue
- if inference["confidence"] < min_confidence:
- min_confidence = inference["confidence"]
- return min_confidence
-
-
- def _sort_key_max_confidence(sample, labels):
- """Samples sort key by the maximum confidence."""
- max_confidence = float("-inf")
- for inference in sample["inferences"]:
- if labels and inference["label"] not in labels:
- continue
- if inference["confidence"] > max_confidence:
- max_confidence = inference["confidence"]
- return max_confidence
-
-
- def _sort_key_min_confidence_sd(sample, labels):
- """Samples sort key by the minimum confidence_sd."""
- min_confidence_sd = float("+inf")
- for inference in sample["inferences"]:
- if labels and inference["label"] not in labels:
- continue
- confidence_sd = inference.get("confidence_sd", float("+inf"))
- if confidence_sd < min_confidence_sd:
- min_confidence_sd = confidence_sd
- return min_confidence_sd
-
-
- def _sort_key_max_confidence_sd(sample, labels):
- """Samples sort key by the maximum confidence_sd."""
- max_confidence_sd = float("-inf")
- for inference in sample["inferences"]:
- if labels and inference["label"] not in labels:
- continue
- confidence_sd = inference.get("confidence_sd", float("-inf"))
- if confidence_sd > max_confidence_sd:
- max_confidence_sd = confidence_sd
- return max_confidence_sd
-
-
- class ExplainDataEncap:
- """Explain data encapsulator base class."""
-
- def __init__(self, job_manager):
- self._job_manager = job_manager
-
- @property
- def job_manager(self):
- return self._job_manager
-
-
- class ExplanationEncap(ExplainDataEncap):
- """Base encapsulator for explanation queries."""
-
- def __init__(self, image_url_formatter, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self._image_url_formatter = image_url_formatter
-
- def _query_samples(self,
- job,
- labels,
- sorted_name,
- sorted_type,
- prediction_types=None,
- drop_type=None):
- """
- Query samples.
-
- Args:
- job (ExplainManager): Explain job to be query from.
- labels (list[str]): Label filter.
- sorted_name (str): Field to be sorted.
- sorted_type (str): Sorting order, 'ascending' or 'descending'.
- prediction_types (list[str]): Prediction type filter.
- drop_type (str, None): When it is None, all data will be kept. When it is 'hoc_layers', samples without
- hoc explanations will be drop out. When it is 'saliency_maps', samples without saliency explanations
- will be drop out.
-
- Returns:
- list[dict], samples to be queried.
- """
-
- samples = copy.deepcopy(job.get_all_samples())
- if drop_type not in (None, ExplanationKeys.SALIENCY.value, ExplanationKeys.HOC.value):
- raise ParamValueError(
- f"Argument drop_type valid options: None, {ExplanationKeys.SALIENCY.value}, "
- f"{ExplanationKeys.HOC.value}, but got {drop_type}.")
-
- if drop_type is not None:
- samples = [sample for sample in samples if any(infer[drop_type] for infer in sample['inferences'])]
- if labels:
- filtered = []
- for sample in samples:
- infer_labels = [inference["label"] for inference in sample["inferences"]]
- for infer_label in infer_labels:
- if infer_label in labels:
- filtered.append(sample)
- break
- samples = filtered
-
- if prediction_types and len(prediction_types) < 3:
- filtered = []
- for sample in samples:
- infer_types = [inference["prediction_type"] for inference in sample["inferences"]]
- for infer_type in infer_types:
- if infer_type in prediction_types:
- filtered.append(sample)
- break
- samples = filtered
-
- reverse = sorted_type == "descending"
- if sorted_name == "confidence":
- if reverse:
- samples.sort(key=lambda x: _sort_key_max_confidence(x, labels), reverse=reverse)
- else:
- samples.sort(key=lambda x: _sort_key_min_confidence(x, labels), reverse=reverse)
- elif sorted_name == "uncertainty":
- if not job.uncertainty_enabled:
- raise ParamValueError("Uncertainty is not enabled, sorted_name cannot be 'uncertainty'")
- if reverse:
- samples.sort(key=lambda x: _sort_key_max_confidence_sd(x, labels), reverse=reverse)
- else:
- samples.sort(key=lambda x: _sort_key_min_confidence_sd(x, labels), reverse=reverse)
- elif sorted_name != "":
- raise ParamValueError("sorted_name")
- return samples
-
- def _get_image_url(self, train_id, image_path, image_type):
- """Returns image's url."""
- if self._image_url_formatter is None:
- return image_path
- return self._image_url_formatter(train_id, image_path, image_type)
|