|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- This file is to process `data_transform.data_manager` to handle graph,
- and the status of graph will be checked before calling `Graph` object.
- """
-
- from mindinsight.datavisual.common import exceptions
- from mindinsight.datavisual.common.enums import PluginNameEnum
- from mindinsight.datavisual.common.validation import Validation
- from mindinsight.datavisual.processors.base_processor import BaseProcessor
- from mindinsight.datavisual.common.exceptions import NodeNotInGraphError
-
-
- class GraphProcessor(BaseProcessor):
- """
- This object is to handle `DataManager` object, and process graph object.
-
- Args:
- train_id (str): To get train job data by this given id.
- data_manager (DataManager): A `DataManager` object.
- tag (str): The tag of graph, if tag is None, will load the first graph.
- """
- def __init__(self, train_id, data_manager, tag=None):
- Validation.check_param_empty(train_id=train_id)
- super(GraphProcessor, self).__init__(data_manager)
-
- train_job = self._data_manager.get_train_job_by_plugin(train_id, PluginNameEnum.GRAPH.value)
- if train_job is None:
- raise exceptions.TrainJobNotExistError()
- if not train_job['tags'] or (tag is not None and tag not in train_job['tags']):
- raise exceptions.GraphNotExistError()
-
- if tag is None:
- tag = train_job['tags'][0]
-
- tensors = self._data_manager.list_tensors(train_id, tag=tag)
- self._graph = tensors[0].value
-
- def list_nodes(self, scope):
- """
- Get the nodes of every layer in graph.
-
- Args:
- scope (str): The name of a scope.
-
- Returns:
- TypedDict('Nodes', {'nodes': list[Node]}), format is {'nodes': [<Node object>]}.
- example:
- {
- "nodes" : [
- {
- "attr" :
- {
- "index" : "i: 0\n"
- },
- "input" : {},
- "name" : "input_tensor",
- "output" :
- {
- "Default/TensorAdd-op17" :
- {
- "edge_type" : "data",
- "scope" : "name_scope",
- "shape" : [1, 16, 128, 128]
- }
- },
- "output_i" : -1,
- "proxy_input" : {},
- "proxy_output" : {},
- "independent_layout" : False,
- "subnode_count" : 0,
- "type" : "Data"
- }
- ]
- }
- """
- if scope and not self._graph.exist_node(scope):
- raise NodeNotInGraphError(node_name=scope)
-
- nodes = self._graph.list_node_by_scope(scope=scope)
- return {'nodes': nodes}
-
- def search_node_names(self, search_content, offset, limit):
- """
- Search node names by search content.
-
- Args:
- search_content (Any): This content can be the key content of the node to search.
- offset (int): An offset for page. Ex, offset is 0, mean current page is 1.
- limit (int): The max data items for per page.
-
- Returns:
- Dict, the searched nodes.
- """
- offset = Validation.check_offset(offset=offset)
- limit = Validation.check_limit(limit, min_value=1, max_value=1000)
- nodes = self._graph.search_nodes_by_pattern(search_content)
- real_offset = offset * limit
- search_nodes = self._graph.get_nodes(nodes[real_offset:real_offset + limit])
-
- return {"nodes": search_nodes}
-
- def search_single_node(self, name):
- """
- Search node by node name.
-
- Args:
- name (str): The name of node.
-
- Returns:
- dict, format is:
- item_object = {'nodes': [<Node object>],
- 'scope_name': '',
- 'children': {<item_object>}}
- """
- Validation.check_param_empty(name=name)
-
- nodes = self._graph.search_single_node(name)
- return nodes
|