# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Image Processor APIs.""" from mindinsight.datavisual.utils.tools import to_int from mindinsight.utils.exceptions import ParamValueError from mindinsight.datavisual.common.validation import Validation from mindinsight.datavisual.common.exceptions import ImageNotExistError from mindinsight.datavisual.processors.base_processor import BaseProcessor class ImageProcessor(BaseProcessor): """Image Processor.""" def get_metadata_list(self, train_id, tag): """ Builds a JSON-serializable object with information about images. Args: train_id (str): The ID of the events data. tag (str): The name of the tag the images all belong to. Returns: list[dict], a list of dictionaries containing the `wall_time`, `step`, `width`, and `height` for each image. [ { "wall_time": ****, "step": ****, "width": ****, "height": ****, }, {...} ] """ Validation.check_param_empty(train_id=train_id, tag=tag) result = [] try: tensors = self._data_manager.list_tensors(train_id, tag) except ParamValueError as ex: raise ImageNotExistError(ex.message) for tensor in tensors: # no tensor_proto in TensorEvent (width, height) = (tensor.value.width, tensor.value.height) result.append({ 'wall_time': tensor.wall_time, 'step': tensor.step, 'width': int(width), 'height': int(height), }) return dict(metadatas=result) def get_single_image(self, train_id, tag, step): """ Returns the actual image bytes for a given image. Args: train_id (str): The ID of the events data the image belongs to. tag (str): The name of the tag the images belongs to. step (int): The step of the image in the current reservoir. Returns: bytes, a byte string of the raw image bytes. """ Validation.check_param_empty(train_id=train_id, tag=tag, step=step) step = to_int(step, "step") try: tensors = self._data_manager.list_tensors(train_id, tag) except ParamValueError as ex: raise ImageNotExistError(ex.message) image = None for tensor in tensors: if tensor.step == step: # Default value for bytes field is empty byte string normally, # see also "Optional Fields And Default Values" in protobuf # documentation. image = tensor.value.encoded_image break if image is None: raise ImageNotExistError("Can not find the step with given train job id and tag.") return image