# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Scalar Processor APIs.""" from urllib.parse import unquote from mindinsight.utils.exceptions import ParamValueError, UrlDecodeError from mindinsight.datavisual.common.log import logger from mindinsight.datavisual.utils.tools import if_nan_inf_to_none from mindinsight.datavisual.common.exceptions import ScalarNotExistError from mindinsight.datavisual.common.exceptions import TrainJobNotExistError from mindinsight.datavisual.common.validation import Validation from mindinsight.datavisual.processors.base_processor import BaseProcessor class ScalarsProcessor(BaseProcessor): """Scalar Processor.""" def get_metadata_list(self, train_id, tag): """ Builds a JSON-serializable object with information about scalars. Args: train_id (str): The ID of the events data. tag (str): The name of the tag the scalars all belonging to. Returns: list[dict], a list of dictionaries containing the `wall_time`, `step`, `value` for each scalar. """ Validation.check_param_empty(train_id=train_id, tag=tag) job_response = [] try: tensors = self._data_manager.list_tensors(train_id, tag) except ParamValueError as ex: raise ScalarNotExistError(ex.message) for tensor in tensors: job_response.append({ 'wall_time': tensor.wall_time, 'step': tensor.step, 'value': tensor.value}) return dict(metadatas=job_response) def get_scalars(self, train_ids, tags): """ Get scalar data for given train_ids and tags. Args: train_ids (list): Specify list of train job ID. tags (list): Specify list of tags. Returns: list[dict], a list of dictionaries containing the `wall_time`, `step`, `value` for each scalar. """ for index, train_id in enumerate(train_ids): try: train_id = unquote(train_id, errors='strict') except UnicodeDecodeError: raise UrlDecodeError('Unquote train id error with strict mode') else: train_ids[index] = train_id scalars = [] for train_id in train_ids: scalars += self._get_train_scalars(train_id, tags) return scalars def _get_train_scalars(self, train_id, tags): """ Get scalar data for given train_id and tags. Args: train_id (str): Specify train job ID. tags (list): Specify list of tags. Returns: list[dict], a list of dictionaries containing the `wall_time`, `step`, `value` for each scalar. """ scalars = [] for tag in tags: try: tensors = self._data_manager.list_tensors(train_id, tag) except ParamValueError: continue except TrainJobNotExistError: logger.warning('Can not find the given train job in cache.') return [] scalar = { 'train_id': train_id, 'tag': tag, 'values': [], } for tensor in tensors: scalar['values'].append({ 'wall_time': tensor.wall_time, 'step': tensor.step, 'value': if_nan_inf_to_none('scalar_value', tensor.value), }) scalars.append(scalar) return scalars