| @@ -1,3 +1,3 @@ | |||
| [submodule "third_party/securec"] | |||
| path = third_party/securec | |||
| url = https://gitee.com/openeuler/bounds_checking_function.git | |||
| url = https://gitee.com/openeuler/libboundscheck.git | |||
| @@ -105,11 +105,11 @@ See [Install MindInsight](https://www.mindspore.cn/install/en). | |||
| # QuickStart | |||
| See [guidance](https://www.mindspore.cn/tutorial/en/0.1.0-alpha/advanced_use/visualization_tutorials.html) | |||
| See [guidance](https://www.mindspore.cn/tutorial/en/r0.6/advanced_use/visualization_tutorials.html) | |||
| # Docs | |||
| See [API Reference](https://www.mindspore.cn/api/en/master/index.html) | |||
| See [API Reference](https://www.mindspore.cn/api/en/r0.6/index.html) | |||
| # Community | |||
| @@ -1,5 +1,25 @@ | |||
| ## MindInsight | |||
| # Release 0.6.0-beta | |||
| ## Major Features and Improvements | |||
| * Provide monitoring capabilities for each of Ascend AI processor and other hardware resources, including CPU and memory. | |||
| * Visualization of weight, gradient and other tensor data in model training. | |||
| * Provide tabular from presentation of tensor data. | |||
| * Provide histogram to show the distribution of tensor data and its change over time. | |||
| ## Bugfixes | |||
| * UI fix for the error message display mode of the tensor during real-time training. ([!465](https://gitee.com/mindspore/mindinsight/pulls/465)) | |||
| * The summary file size is larger than max_file_size. ([!3481](https://gitee.com/mindspore/dashboard/projects/mindspore/mindspore/pulls/3481)) | |||
| * Fix real-time training error when disk is full. ([!3058](https://gitee.com/mindspore/mindspore/pulls/3058)) | |||
| ## Thanks to our Contributors | |||
| Thanks goes to these wonderful people: | |||
| Congli Gao, Weifeng Huang, Zhenzhong Kou, Hongzhang Li, Longfei Li, Yongxiong Liang, Chongming Liu, Pengting Luo, Yanming Miao, Gongchang Ou, Yongxiu Qu, Hui Pan, Luyu Qiu, Junyan Qin, Kai Wen, Weining Wang, Yue Wang, Zhuanke Wu, Yifan Xia, Lihua Ye, Weibiao Yu, Ximiao Yu, Yunshu Zhang, Ting Zhao, Jianfeng Zhu, Ning Ma, Yihui Zhang, Shuide Wang. | |||
| Contributions of any kind are welcome! | |||
| # Release 0.5.0-beta | |||
| ## Major Features and Improvements | |||
| @@ -14,4 +14,4 @@ | |||
| # ============================================================================ | |||
| """Mindinsight version module.""" | |||
| VERSION = '0.5.0' | |||
| VERSION = '0.6.0' | |||
| @@ -111,6 +111,7 @@ def create_app(): | |||
| static_folder_path = os.path.realpath(os.path.join(os.path.dirname(__file__), os.pardir, 'ui', 'dist', 'static')) | |||
| app = Flask(__name__, static_url_path=static_url_path, static_folder=static_folder_path) | |||
| app.config['JSON_SORT_KEYS'] = False | |||
| if settings.ENABLE_CORS: | |||
| CORS(app, supports_credentials=True) | |||
| @@ -17,6 +17,7 @@ | |||
| from mindinsight.backend.datavisual.static_resource_api import init_module as static_init_module | |||
| from mindinsight.backend.datavisual.task_manager_api import init_module as task_init_module | |||
| from mindinsight.backend.datavisual.train_visual_api import init_module as train_init_module | |||
| from mindinsight.backend.datavisual.sysmetric_api import init_module as sysmetric_init_module | |||
| def init_module(app): | |||
| @@ -30,3 +31,4 @@ def init_module(app): | |||
| static_init_module(app) | |||
| task_init_module(app) | |||
| train_init_module(app) | |||
| sysmetric_init_module(app) | |||
| @@ -0,0 +1,39 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """System metrics API.""" | |||
| from flask import Blueprint, jsonify | |||
| from mindinsight.conf import settings | |||
| from mindinsight.sysmetric.collector import get_metrics | |||
| BLUEPRINT = Blueprint("sysmetric", __name__, url_prefix=settings.URL_PATH_PREFIX + settings.API_PREFIX) | |||
| @BLUEPRINT.route("/sysmetric/current", methods=["GET"]) | |||
| def query_sysmetric(): | |||
| """Query the system metrics.""" | |||
| return jsonify(get_metrics()) | |||
| def init_module(app): | |||
| """ | |||
| Init module entry. | |||
| Args: | |||
| app: the application obj. | |||
| """ | |||
| app.register_blueprint(BLUEPRINT) | |||
| @@ -66,12 +66,13 @@ def query_train_jobs(): | |||
| """Query train jobs.""" | |||
| offset = request.args.get("offset", default=0) | |||
| limit = request.args.get("limit", default=10) | |||
| train_id = get_train_id(request) | |||
| offset = Validation.check_offset(offset=offset) | |||
| limit = Validation.check_limit(limit, min_value=1, max_value=SummaryWatcher.MAX_SUMMARY_DIR_COUNT) | |||
| processor = TrainTaskManager(DATA_MANAGER) | |||
| total, train_jobs = processor.query_train_jobs(offset, limit) | |||
| total, train_jobs = processor.query_train_jobs(offset, limit, train_id) | |||
| return jsonify({ | |||
| 'name': os.path.basename(os.path.realpath(settings.SUMMARY_BASE_DIR)), | |||
| @@ -25,6 +25,7 @@ from mindinsight.conf import settings | |||
| from mindinsight.datavisual.utils.tools import get_train_id | |||
| from mindinsight.datavisual.utils.tools import if_nan_inf_to_none | |||
| from mindinsight.datavisual.processors.histogram_processor import HistogramProcessor | |||
| from mindinsight.datavisual.processors.tensor_processor import TensorProcessor | |||
| from mindinsight.datavisual.processors.images_processor import ImageProcessor | |||
| from mindinsight.datavisual.processors.scalars_processor import ScalarsProcessor | |||
| from mindinsight.datavisual.processors.graph_processor import GraphProcessor | |||
| @@ -173,6 +174,25 @@ def get_scalars(): | |||
| return jsonify({'scalars': scalars}) | |||
| @BLUEPRINT.route("/datavisual/tensors", methods=["GET"]) | |||
| def get_tensors(): | |||
| """ | |||
| Interface to obtain tensor data. | |||
| Returns: | |||
| Response, which contains a JSON object. | |||
| """ | |||
| train_ids = request.args.getlist('train_id') | |||
| tags = request.args.getlist('tag') | |||
| step = request.args.get("step", default=None) | |||
| dims = request.args.get("dims", default=None) | |||
| detail = request.args.get("detail", default=None) | |||
| processor = TensorProcessor(DATA_MANAGER) | |||
| response = processor.get_tensors(train_ids, tags, step, dims, detail) | |||
| return jsonify(response) | |||
| def init_module(app): | |||
| """ | |||
| Init module entry. | |||
| @@ -236,9 +236,10 @@ def start(): | |||
| process = subprocess.Popen( | |||
| shlex.split(cmd), | |||
| shell=False, | |||
| stdin=subprocess.PIPE, | |||
| stdout=subprocess.PIPE, | |||
| stderr=subprocess.PIPE | |||
| # Change stdout to DEVNULL to prevent broken pipe error when creating new processes. | |||
| stdin=subprocess.DEVNULL, | |||
| stdout=subprocess.DEVNULL, | |||
| stderr=subprocess.STDOUT | |||
| ) | |||
| # sleep 1 second for gunicorn appplication to load modules | |||
| @@ -246,9 +247,7 @@ def start(): | |||
| # check if gunicorn application is running | |||
| if process.poll() is not None: | |||
| _, stderr = process.communicate() | |||
| for line in stderr.decode().split('\n'): | |||
| console.error(line) | |||
| console.error("Start MindInsight failed. See log for details.") | |||
| else: | |||
| state_result = _check_server_start_stat(errorlog_abspath, log_size) | |||
| # print gunicorn start state to stdout | |||
| @@ -14,6 +14,36 @@ | |||
| # ============================================================================ | |||
| """Constants module for mindinsight settings.""" | |||
| import logging | |||
| import math | |||
| import os | |||
| _DEFAULT_MAX_THREADS_COUNT = 15 | |||
| def _calc_default_max_processes_cnt(): | |||
| """Calc default processes count.""" | |||
| # We need to make sure every summary directory has a process to load data. | |||
| min_cnt = _DEFAULT_MAX_THREADS_COUNT | |||
| # Do not use too many processes to avoid system problems (eg. out of memory). | |||
| max_cnt = 45 | |||
| used_cpu_ratio = 0.75 | |||
| cpu_count = os.cpu_count() | |||
| if cpu_count is None: | |||
| return min_cnt | |||
| processes_cnt = math.floor(cpu_count * used_cpu_ratio) | |||
| if processes_cnt < min_cnt: | |||
| return min_cnt | |||
| if processes_cnt > max_cnt: | |||
| return max_cnt | |||
| return processes_cnt | |||
| #################################### | |||
| # Global default settings. | |||
| @@ -47,13 +77,17 @@ API_PREFIX = '/v1/mindinsight' | |||
| #################################### | |||
| # Datavisual default settings. | |||
| #################################### | |||
| MAX_THREADS_COUNT = 15 | |||
| MAX_THREADS_COUNT = _DEFAULT_MAX_THREADS_COUNT | |||
| MAX_PROCESSES_COUNT = _calc_default_max_processes_cnt() | |||
| MAX_TAG_SIZE_PER_EVENTS_DATA = 300 | |||
| DEFAULT_STEP_SIZES_PER_TAG = 500 | |||
| MAX_GRAPH_TAG_SIZE = 10 | |||
| MAX_TENSOR_TAG_SIZE = 6 | |||
| MAX_IMAGE_STEP_SIZE_PER_TAG = 10 | |||
| MAX_SCALAR_STEP_SIZE_PER_TAG = 1000 | |||
| MAX_GRAPH_STEP_SIZE_PER_TAG = 1 | |||
| MAX_HISTOGRAM_STEP_SIZE_PER_TAG = 50 | |||
| MAX_TENSOR_STEP_SIZE_PER_TAG = 20 | |||
| MAX_TENSOR_RESPONSE_DATA_SIZE = 100000 | |||
| @@ -32,12 +32,20 @@ class DataManagerStatus(BaseEnum): | |||
| INVALID = 'INVALID' | |||
| class DetailCacheManagerStatus(BaseEnum): | |||
| """Data manager status.""" | |||
| INIT = 'INIT' | |||
| LOADING = 'LOADING' | |||
| DONE = 'DONE' | |||
| class PluginNameEnum(BaseEnum): | |||
| """Plugin Name Enum.""" | |||
| IMAGE = 'image' | |||
| SCALAR = 'scalar' | |||
| GRAPH = 'graph' | |||
| HISTOGRAM = 'histogram' | |||
| TENSOR = 'tensor' | |||
| @enum.unique | |||
| @@ -161,6 +161,33 @@ class HistogramNotExistError(MindInsightException): | |||
| http_code=400) | |||
| class TensorNotExistError(MindInsightException): | |||
| """Unable to get tensor values based on a given condition.""" | |||
| def __init__(self, error_detail): | |||
| error_msg = f'Tensor value is not exist. Detail: {error_detail}' | |||
| super(TensorNotExistError, self).__init__(DataVisualErrors.TENSOR_NOT_EXIST, | |||
| error_msg, | |||
| http_code=400) | |||
| class StepTensorDataNotInCacheError(MindInsightException): | |||
| """Tensor data with specific step does not in cache.""" | |||
| def __init__(self, error_detail): | |||
| error_msg = f'Tensor data not in cache. Detail: {error_detail}' | |||
| super(StepTensorDataNotInCacheError, self).__init__(DataVisualErrors.STEP_TENSOR_DATA_NOT_IN_CACHE, | |||
| error_msg, | |||
| http_code=400) | |||
| class ResponseDataExceedMaxValueError(MindInsightException): | |||
| """Response data exceed max value based on a given condition.""" | |||
| def __init__(self, error_detail): | |||
| error_msg = f'Response data exceed max value. Detail: {error_detail}' | |||
| super(ResponseDataExceedMaxValueError, self).__init__(DataVisualErrors.MAX_RESPONSE_DATA_EXCEEDED_ERROR, | |||
| error_msg, | |||
| http_code=400) | |||
| class TrainJobDetailNotInCacheError(MindInsightException): | |||
| """Detail info of given train job is not in cache.""" | |||
| def __init__(self, error_detail="no detail provided."): | |||
| @@ -34,8 +34,13 @@ class DataLoader: | |||
| self._summary_dir = summary_dir | |||
| self._loader = None | |||
| def load(self): | |||
| """Load the data when loader is exist.""" | |||
| def load(self, computing_resource_mgr): | |||
| """Load the data when loader is exist. | |||
| Args: | |||
| computing_resource_mgr (ComputingResourceManager): The ComputingResourceManager instance. | |||
| """ | |||
| if self._loader is None: | |||
| ms_dataloader = MSDataLoader(self._summary_dir) | |||
| loaders = [ms_dataloader] | |||
| @@ -48,7 +53,7 @@ class DataLoader: | |||
| logger.warning("No valid files can be loaded, summary_dir: %s.", self._summary_dir) | |||
| raise exceptions.SummaryLogPathInvalid() | |||
| self._loader.load() | |||
| self._loader.load(computing_resource_mgr) | |||
| def get_events_data(self): | |||
| """ | |||
| @@ -35,14 +35,16 @@ from mindinsight.conf import settings | |||
| from mindinsight.datavisual.common import exceptions | |||
| from mindinsight.datavisual.common.enums import CacheStatus | |||
| from mindinsight.datavisual.common.log import logger | |||
| from mindinsight.datavisual.common.enums import DataManagerStatus | |||
| from mindinsight.datavisual.common.enums import DataManagerStatus, DetailCacheManagerStatus | |||
| from mindinsight.datavisual.common.enums import PluginNameEnum | |||
| from mindinsight.datavisual.common.exceptions import TrainJobNotExistError | |||
| from mindinsight.datavisual.data_transform.loader_generators.loader_generator import MAX_DATA_LOADER_SIZE | |||
| from mindinsight.datavisual.data_transform.loader_generators.data_loader_generator import DataLoaderGenerator | |||
| from mindinsight.utils.computing_resource_mgr import ComputingResourceManager | |||
| from mindinsight.utils.exceptions import MindInsightException | |||
| from mindinsight.utils.exceptions import ParamValueError | |||
| from mindinsight.utils.exceptions import UnknownError | |||
| from mindinsight.datavisual.utils.tools import exception_wrapper | |||
| class _BasicTrainJob: | |||
| @@ -414,6 +416,13 @@ class _DetailCacheManager(_BaseCacheManager): | |||
| self._loader_pool_mutex = threading.Lock() | |||
| self._max_threads_count = 30 | |||
| self._loader_generators = loader_generators | |||
| self._status = DetailCacheManagerStatus.INIT.value | |||
| self._loading_mutex = threading.Lock() | |||
| @property | |||
| def status(self): | |||
| """Get loading status, if it is loading, return True.""" | |||
| return self._status | |||
| def has_content(self): | |||
| """Whether this cache manager has train jobs.""" | |||
| @@ -434,6 +443,20 @@ class _DetailCacheManager(_BaseCacheManager): | |||
| """Get loader pool size.""" | |||
| return len(self._loader_pool) | |||
| def _load_in_cache(self): | |||
| """Generate and execute loaders.""" | |||
| def load(): | |||
| self._generate_loaders() | |||
| self._execute_load_data() | |||
| try: | |||
| exception_wrapper(load()) | |||
| except UnknownError as ex: | |||
| logger.warning("Load event data failed. Detail: %s.", str(ex)) | |||
| finally: | |||
| self._status = DetailCacheManagerStatus.DONE.value | |||
| logger.info("Load event data end, status: %r, and loader pool size is %r.", | |||
| self._status, self.loader_pool_size()) | |||
| def update_cache(self, disk_train_jobs: Iterable[_BasicTrainJob]): | |||
| """ | |||
| Update cache. | |||
| @@ -444,8 +467,13 @@ class _DetailCacheManager(_BaseCacheManager): | |||
| disk_train_jobs (Iterable[_BasicTrainJob]): Basic info about train jobs on disk. | |||
| """ | |||
| self._generate_loaders() | |||
| self._execute_load_data() | |||
| with self._loading_mutex: | |||
| if self._status == DetailCacheManagerStatus.LOADING.value: | |||
| logger.debug("Event data is loading, and loader pool size is %r.", self.loader_pool_size()) | |||
| return | |||
| self._status = DetailCacheManagerStatus.LOADING.value | |||
| thread = threading.Thread(target=self._load_in_cache, name="load_detail_in_cache") | |||
| thread.start() | |||
| def cache_train_job(self, train_id): | |||
| """Cache given train job.""" | |||
| @@ -510,7 +538,7 @@ class _DetailCacheManager(_BaseCacheManager): | |||
| logger.debug("delete loader %s", loader_id) | |||
| self._loader_pool.pop(loader_id) | |||
| def _execute_loader(self, loader_id): | |||
| def _execute_loader(self, loader_id, computing_resource_mgr): | |||
| """ | |||
| Load data form data_loader. | |||
| @@ -518,7 +546,7 @@ class _DetailCacheManager(_BaseCacheManager): | |||
| Args: | |||
| loader_id (str): An ID for `Loader`. | |||
| computing_resource_mgr (ComputingResourceManager): The ComputingResourceManager instance. | |||
| """ | |||
| try: | |||
| with self._loader_pool_mutex: | |||
| @@ -527,7 +555,7 @@ class _DetailCacheManager(_BaseCacheManager): | |||
| logger.debug("Loader %r has been deleted, will not load data.", loader_id) | |||
| return | |||
| loader.data_loader.load() | |||
| loader.data_loader.load(computing_resource_mgr) | |||
| # Update loader cache status to CACHED. | |||
| # Loader with cache status CACHED should remain the same cache status. | |||
| @@ -580,13 +608,17 @@ class _DetailCacheManager(_BaseCacheManager): | |||
| logger.info("Start to execute load data. threads_count: %s.", threads_count) | |||
| with ThreadPoolExecutor(max_workers=threads_count) as executor: | |||
| futures = [] | |||
| loader_pool = self._get_snapshot_loader_pool() | |||
| for loader_id in loader_pool: | |||
| future = executor.submit(self._execute_loader, loader_id) | |||
| futures.append(future) | |||
| wait(futures, return_when=ALL_COMPLETED) | |||
| with ComputingResourceManager( | |||
| executors_cnt=threads_count, | |||
| max_processes_cnt=settings.MAX_PROCESSES_COUNT) as computing_resource_mgr: | |||
| with ThreadPoolExecutor(max_workers=threads_count) as executor: | |||
| futures = [] | |||
| loader_pool = self._get_snapshot_loader_pool() | |||
| for loader_id in loader_pool: | |||
| future = executor.submit(self._execute_loader, loader_id, computing_resource_mgr) | |||
| futures.append(future) | |||
| wait(futures, return_when=ALL_COMPLETED) | |||
| def _get_threads_count(self): | |||
| """ | |||
| @@ -706,8 +738,7 @@ class _DetailCacheManager(_BaseCacheManager): | |||
| loader = self._get_loader(train_id) | |||
| if loader is None: | |||
| logger.warning("No valid summary log in train job %s, " | |||
| "or it is not in the cache.", train_id) | |||
| logger.info("No valid summary log in train job %s, or it is not in the cache.", train_id) | |||
| return None | |||
| train_job = loader.to_dict() | |||
| @@ -831,6 +862,11 @@ class DataManager: | |||
| self._detail_cache = _DetailCacheManager(loader_generators) | |||
| self._brief_cache = _BriefCacheManager() | |||
| # This lock is used to make sure that only one self._load_data_in_thread() is running. | |||
| # Because self._load_data_in_thread() will create process pool when loading files, we can not | |||
| # afford to run multiple self._load_data_in_thread() simultaneously (will create too many processes). | |||
| self._load_data_lock = threading.Lock() | |||
| @property | |||
| def summary_base_dir(self): | |||
| """Get summary base dir.""" | |||
| @@ -886,19 +922,12 @@ class DataManager: | |||
| def _load_data_in_thread_wrapper(self): | |||
| """Wrapper for load data in thread.""" | |||
| try: | |||
| self._load_data_in_thread() | |||
| except MindInsightException as exc: | |||
| with self._load_data_lock: | |||
| exception_wrapper(self._load_data()) | |||
| except UnknownError as exc: | |||
| # Not raising the exception here to ensure that data reloading does not crash. | |||
| logger.warning(exc.message) | |||
| def _load_data_in_thread(self): | |||
| """Log (but not swallow) exceptions in thread to help debugging.""" | |||
| try: | |||
| self._load_data() | |||
| except Exception as exc: | |||
| logger.exception(exc) | |||
| raise UnknownError('Load data thread error.') | |||
| def _load_data(self): | |||
| """This function will load data once and ignore it if the status is loading.""" | |||
| logger.info("Start to load data, reload interval: %r.", self._reload_interval) | |||
| @@ -928,13 +957,13 @@ class DataManager: | |||
| self._brief_cache.update_cache(basic_train_jobs) | |||
| self._detail_cache.update_cache(basic_train_jobs) | |||
| if not self._brief_cache.has_content() and not self._detail_cache.has_content(): | |||
| if not self._brief_cache.has_content() and not self._detail_cache.has_content() \ | |||
| and self._detail_cache.status == DetailCacheManagerStatus.DONE.value: | |||
| self.status = DataManagerStatus.INVALID.value | |||
| else: | |||
| self.status = DataManagerStatus.DONE.value | |||
| logger.info("Load event data end, status: %r, and loader pool size is %r.", | |||
| self.status, self._detail_cache.loader_pool_size()) | |||
| logger.info("Load brief data end, and loader pool size is %r.", self._detail_cache.loader_pool_size()) | |||
| @staticmethod | |||
| def check_reload_interval(reload_interval): | |||
| @@ -1035,14 +1064,6 @@ class DataManager: | |||
| return TrainJob(brief_train_job, detail_train_job) | |||
| def list_train_jobs(self): | |||
| """ | |||
| List train jobs. | |||
| To be implemented. | |||
| """ | |||
| raise NotImplementedError() | |||
| @property | |||
| def status(self): | |||
| """ | |||
| @@ -1077,5 +1098,9 @@ class DataManager: | |||
| """Get brief train job.""" | |||
| return self._brief_cache.get_train_job(train_id) | |||
| def get_detail_cache_status(self): | |||
| """Get detail status, just for ut/st.""" | |||
| return self._detail_cache.status | |||
| DATA_MANAGER = DataManager(settings.SUMMARY_BASE_DIR) | |||
| @@ -35,13 +35,15 @@ CONFIG = { | |||
| 'max_tag_sizes_per_plugin': | |||
| { | |||
| PluginNameEnum.GRAPH.value: settings.MAX_GRAPH_TAG_SIZE, | |||
| PluginNameEnum.TENSOR.value: settings.MAX_TENSOR_TAG_SIZE | |||
| }, | |||
| 'max_step_sizes_per_tag': | |||
| { | |||
| PluginNameEnum.SCALAR.value: settings.MAX_SCALAR_STEP_SIZE_PER_TAG, | |||
| PluginNameEnum.IMAGE.value: settings.MAX_IMAGE_STEP_SIZE_PER_TAG, | |||
| PluginNameEnum.GRAPH.value: settings.MAX_GRAPH_STEP_SIZE_PER_TAG, | |||
| PluginNameEnum.HISTOGRAM.value: settings.MAX_HISTOGRAM_STEP_SIZE_PER_TAG | |||
| PluginNameEnum.HISTOGRAM.value: settings.MAX_HISTOGRAM_STEP_SIZE_PER_TAG, | |||
| PluginNameEnum.TENSOR.value: settings.MAX_TENSOR_STEP_SIZE_PER_TAG | |||
| } | |||
| } | |||
| @@ -84,6 +86,7 @@ class EventsData: | |||
| deleted_tag = self._check_tag_out_of_spec(plugin_name) | |||
| if deleted_tag is not None: | |||
| if tag in self._deleted_tags: | |||
| logger.debug("Tag is in deleted tags: %s.", tag) | |||
| return | |||
| self.delete_tensor_event(deleted_tag) | |||
| @@ -0,0 +1,237 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Histogram data.""" | |||
| import math | |||
| from mindinsight.utils.exceptions import ParamValueError | |||
| from mindinsight.datavisual.utils.utils import calc_histogram_bins | |||
| def mask_invalid_number(num): | |||
| """Mask invalid number to 0.""" | |||
| if math.isnan(num) or math.isinf(num): | |||
| return type(num)(0) | |||
| return num | |||
| class Bucket: | |||
| """ | |||
| Bucket data class. | |||
| Args: | |||
| left (double): Left edge of the histogram bucket. | |||
| width (double): Width of the histogram bucket. | |||
| count (int): Count of numbers fallen in the histogram bucket. | |||
| """ | |||
| def __init__(self, left, width, count): | |||
| self._left = left | |||
| self._width = width | |||
| self._count = count | |||
| @property | |||
| def left(self): | |||
| """Gets left edge of the histogram bucket.""" | |||
| return self._left | |||
| @property | |||
| def count(self): | |||
| """Gets count of numbers fallen in the histogram bucket.""" | |||
| return self._count | |||
| @property | |||
| def width(self): | |||
| """Gets width of the histogram bucket.""" | |||
| return self._width | |||
| @property | |||
| def right(self): | |||
| """Gets right edge of the histogram bucket.""" | |||
| return self._left + self._width | |||
| def as_tuple(self): | |||
| """Gets the bucket as tuple.""" | |||
| return self._left, self._width, self._count | |||
| def __repr__(self): | |||
| """Returns repr(self).""" | |||
| return "Bucket(left={}, width={}, count={})".format(self._left, self._width, self._count) | |||
| class Histogram: | |||
| """ | |||
| Histogram data class. | |||
| Args: | |||
| buckets (tuple[Bucket]): The buckets of histogram data. | |||
| max_val (number): The max value of histogram data. | |||
| min_val (number): The min value of histogram data. | |||
| count (int): The count of histogram data. | |||
| """ | |||
| # Max quantity of original buckets. | |||
| MAX_ORIGINAL_BUCKETS_COUNT = 90 | |||
| def __init__(self, buckets, max_val, min_val, count): | |||
| self._visual_max = max_val | |||
| self._visual_min = min_val | |||
| self._count = count | |||
| self._original_buckets = buckets | |||
| # default bin number | |||
| self._visual_bins = calc_histogram_bins(count) | |||
| # Note that tuple is immutable, so sharing tuple is often safe. | |||
| self._re_sampled_buckets = () | |||
| @property | |||
| def original_buckets_count(self): | |||
| """Gets original buckets quantity.""" | |||
| return len(self._original_buckets) | |||
| def set_visual_range(self, max_val: float, min_val: float, bins: int) -> None: | |||
| """ | |||
| Sets visual range for later re-sampling. | |||
| It's caller's duty to ensure input is valid. | |||
| Why we need visual range for histograms? Aligned buckets between steps can help users know about the trend of | |||
| tensors. Miss aligned buckets between steps might miss-lead users about the trend of a tensor. Because for | |||
| given tensor, if you have thinner buckets, count of every bucket will get lower, however, if you have | |||
| thicker buckets, count of every bucket will get higher. When they are displayed together, user might think | |||
| the histogram with thicker buckets has more values. This is miss-leading. So we need to unify buckets across | |||
| steps. Visual range for histogram is a technology for unifying buckets. | |||
| Args: | |||
| max_val (float): Max value for visual histogram. | |||
| min_val (float): Min value for visual histogram. | |||
| bins (int): Bins number for visual histogram. | |||
| """ | |||
| if max_val < min_val: | |||
| raise ParamValueError( | |||
| "Invalid input. max_val({}) is less or equal than min_val({}).".format(max_val, min_val)) | |||
| if bins < 1: | |||
| raise ParamValueError("Invalid input bins({}). Must be greater than 0.".format(bins)) | |||
| self._visual_max = max_val | |||
| self._visual_min = min_val | |||
| self._visual_bins = bins | |||
| # mark _re_sampled_buckets to empty | |||
| self._re_sampled_buckets = () | |||
| def _calc_intersection_len(self, max1, min1, max2, min2): | |||
| """Calculates intersection length of [min1, max1] and [min2, max2].""" | |||
| if max1 < min1: | |||
| raise ParamValueError( | |||
| "Invalid input. max1({}) is less than min1({}).".format(max1, min1)) | |||
| if max2 < min2: | |||
| raise ParamValueError( | |||
| "Invalid input. max2({}) is less than min2({}).".format(max2, min2)) | |||
| if min1 <= min2: | |||
| if max1 <= min2: | |||
| # return value must be calculated by max1.__sub__ | |||
| return max1 - max1 | |||
| if max1 <= max2: | |||
| return max1 - min2 | |||
| # max1 > max2 | |||
| return max2 - min2 | |||
| # min1 > min2 | |||
| if max2 <= min1: | |||
| return max2 - max2 | |||
| if max2 <= max1: | |||
| return max2 - min1 | |||
| return max1 - min1 | |||
| def _re_sample_buckets(self): | |||
| """Re-samples buckets according to visual_max, visual_min and visual_bins.""" | |||
| if self._visual_max == self._visual_min: | |||
| # Adjust visual range if max equals min. | |||
| self._visual_max += 0.5 | |||
| self._visual_min -= 0.5 | |||
| width = (self._visual_max - self._visual_min) / self._visual_bins | |||
| if not self._count: | |||
| self._re_sampled_buckets = tuple( | |||
| Bucket(self._visual_min + width * i, width, 0) | |||
| for i in range(self._visual_bins)) | |||
| return | |||
| re_sampled = [] | |||
| original_pos = 0 | |||
| original_bucket = self._original_buckets[original_pos] | |||
| for i in range(self._visual_bins): | |||
| cur_left = self._visual_min + width * i | |||
| cur_right = cur_left + width | |||
| cur_estimated_count = 0.0 | |||
| # Skip no bucket range. | |||
| if cur_right <= original_bucket.left: | |||
| re_sampled.append(Bucket(cur_left, width, math.ceil(cur_estimated_count))) | |||
| continue | |||
| # Skip no intersect range. | |||
| while cur_left >= original_bucket.right: | |||
| original_pos += 1 | |||
| if original_pos >= len(self._original_buckets): | |||
| break | |||
| original_bucket = self._original_buckets[original_pos] | |||
| # entering with this condition: cur_right > original_bucket.left and cur_left < original_bucket.right | |||
| while True: | |||
| if original_pos >= len(self._original_buckets): | |||
| break | |||
| original_bucket = self._original_buckets[original_pos] | |||
| intersection = self._calc_intersection_len( | |||
| min1=cur_left, max1=cur_right, | |||
| min2=original_bucket.left, max2=original_bucket.right) | |||
| if not original_bucket.width: | |||
| estimated_count = original_bucket.count | |||
| else: | |||
| estimated_count = (intersection / original_bucket.width) * original_bucket.count | |||
| cur_estimated_count += estimated_count | |||
| if cur_right > original_bucket.right: | |||
| # Need to sample next original bucket to this visual bucket. | |||
| original_pos += 1 | |||
| else: | |||
| # Current visual bucket has taken all intersect buckets into account. | |||
| break | |||
| re_sampled.append(Bucket(cur_left, width, math.ceil(cur_estimated_count))) | |||
| self._re_sampled_buckets = tuple(re_sampled) | |||
| def buckets(self, convert_to_tuple=True): | |||
| """ | |||
| Get visual buckets instead of original buckets. | |||
| Args: | |||
| convert_to_tuple (bool): Whether convert bucket object to tuple. | |||
| Returns: | |||
| tuple, contains buckets. | |||
| """ | |||
| if not self._re_sampled_buckets: | |||
| self._re_sample_buckets() | |||
| if not convert_to_tuple: | |||
| return self._re_sampled_buckets | |||
| return tuple(bucket.as_tuple() for bucket in self._re_sampled_buckets) | |||
| @@ -13,90 +13,26 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Histogram data container.""" | |||
| import math | |||
| from mindinsight.datavisual.data_transform.histogram import Histogram, Bucket, mask_invalid_number | |||
| from mindinsight.datavisual.proto_files.mindinsight_summary_pb2 import Summary | |||
| from mindinsight.utils.exceptions import ParamValueError | |||
| from mindinsight.datavisual.utils.utils import calc_histogram_bins | |||
| def _mask_invalid_number(num): | |||
| """Mask invalid number to 0.""" | |||
| if math.isnan(num) or math.isinf(num): | |||
| return type(num)(0) | |||
| return num | |||
| class Bucket: | |||
| """ | |||
| Bucket data class. | |||
| Args: | |||
| left (double): Left edge of the histogram bucket. | |||
| width (double): Width of the histogram bucket. | |||
| count (int): Count of numbers fallen in the histogram bucket. | |||
| """ | |||
| def __init__(self, left, width, count): | |||
| self._left = left | |||
| self._width = width | |||
| self._count = count | |||
| @property | |||
| def left(self): | |||
| """Gets left edge of the histogram bucket.""" | |||
| return self._left | |||
| @property | |||
| def count(self): | |||
| """Gets count of numbers fallen in the histogram bucket.""" | |||
| return self._count | |||
| @property | |||
| def width(self): | |||
| """Gets width of the histogram bucket.""" | |||
| return self._width | |||
| @property | |||
| def right(self): | |||
| """Gets right edge of the histogram bucket.""" | |||
| return self._left + self._width | |||
| def as_tuple(self): | |||
| """Gets the bucket as tuple.""" | |||
| return self._left, self._width, self._count | |||
| def __repr__(self): | |||
| """Returns repr(self).""" | |||
| return "Bucket(left={}, width={}, count={})".format(self._left, self._width, self._count) | |||
| class HistogramContainer: | |||
| """ | |||
| Histogram data container. | |||
| Histogram data container. | |||
| Args: | |||
| histogram_message (Summary.Histogram): Histogram message in summary file. | |||
| Args: | |||
| histogram_message (Summary.Histogram): Histogram message in summary file. | |||
| """ | |||
| # Max quantity of original buckets. | |||
| MAX_ORIGINAL_BUCKETS_COUNT = 90 | |||
| def __init__(self, histogram_message: Summary.Histogram): | |||
| self._msg = histogram_message | |||
| original_buckets = [Bucket(bucket.left, bucket.width, bucket.count) for bucket in self._msg.buckets] | |||
| original_buckets = [Bucket(bucket.left, bucket.width, bucket.count) for bucket in histogram_message.buckets] | |||
| # Ensure buckets are sorted from min to max. | |||
| original_buckets.sort(key=lambda bucket: bucket.left) | |||
| self._original_buckets = tuple(original_buckets) | |||
| self._count = sum(bucket.count for bucket in self._original_buckets) | |||
| self._max = _mask_invalid_number(histogram_message.max) | |||
| self._min = _mask_invalid_number(histogram_message.min) | |||
| self._visual_max = self._max | |||
| self._visual_min = self._min | |||
| # default bin number | |||
| self._visual_bins = calc_histogram_bins(self._count) | |||
| # Note that tuple is immutable, so sharing tuple is often safe. | |||
| self._re_sampled_buckets = () | |||
| self._count = sum(bucket.count for bucket in original_buckets) | |||
| self._max = mask_invalid_number(histogram_message.max) | |||
| self._min = mask_invalid_number(histogram_message.min) | |||
| self._histogram = Histogram(tuple(original_buckets), self._max, self._min, self._count) | |||
| @property | |||
| def max(self): | |||
| @@ -114,148 +50,10 @@ class HistogramContainer: | |||
| return self._count | |||
| @property | |||
| def original_msg(self): | |||
| """Gets original proto message.""" | |||
| return self._msg | |||
| @property | |||
| def original_buckets_count(self): | |||
| """Gets original buckets quantity.""" | |||
| return len(self._original_buckets) | |||
| def set_visual_range(self, max_val: float, min_val: float, bins: int) -> None: | |||
| """ | |||
| Sets visual range for later re-sampling. | |||
| It's caller's duty to ensure input is valid. | |||
| Why we need visual range for histograms? Aligned buckets between steps can help users know about the trend of | |||
| tensors. Miss aligned buckets between steps might miss-lead users about the trend of a tensor. Because for | |||
| given tensor, if you have thinner buckets, count of every bucket will get lower, however, if you have | |||
| thicker buckets, count of every bucket will get higher. When they are displayed together, user might think | |||
| the histogram with thicker buckets has more values. This is miss-leading. So we need to unify buckets across | |||
| steps. Visual range for histogram is a technology for unifying buckets. | |||
| Args: | |||
| max_val (float): Max value for visual histogram. | |||
| min_val (float): Min value for visual histogram. | |||
| bins (int): Bins number for visual histogram. | |||
| """ | |||
| if max_val < min_val: | |||
| raise ParamValueError( | |||
| "Invalid input. max_val({}) is less or equal than min_val({}).".format(max_val, min_val)) | |||
| if bins < 1: | |||
| raise ParamValueError("Invalid input bins({}). Must be greater than 0.".format(bins)) | |||
| self._visual_max = max_val | |||
| self._visual_min = min_val | |||
| self._visual_bins = bins | |||
| # mark _re_sampled_buckets to empty | |||
| self._re_sampled_buckets = () | |||
| def _calc_intersection_len(self, max1, min1, max2, min2): | |||
| """Calculates intersection length of [min1, max1] and [min2, max2].""" | |||
| if max1 < min1: | |||
| raise ParamValueError( | |||
| "Invalid input. max1({}) is less than min1({}).".format(max1, min1)) | |||
| if max2 < min2: | |||
| raise ParamValueError( | |||
| "Invalid input. max2({}) is less than min2({}).".format(max2, min2)) | |||
| if min1 <= min2: | |||
| if max1 <= min2: | |||
| # return value must be calculated by max1.__sub__ | |||
| return max1 - max1 | |||
| if max1 <= max2: | |||
| return max1 - min2 | |||
| # max1 > max2 | |||
| return max2 - min2 | |||
| # min1 > min2 | |||
| if max2 <= min1: | |||
| return max2 - max2 | |||
| if max2 <= max1: | |||
| return max2 - min1 | |||
| return max1 - min1 | |||
| def _re_sample_buckets(self): | |||
| """Re-samples buckets according to visual_max, visual_min and visual_bins.""" | |||
| if self._visual_max == self._visual_min: | |||
| # Adjust visual range if max equals min. | |||
| self._visual_max += 0.5 | |||
| self._visual_min -= 0.5 | |||
| width = (self._visual_max - self._visual_min) / self._visual_bins | |||
| if not self.count: | |||
| self._re_sampled_buckets = tuple( | |||
| Bucket(self._visual_min + width * i, width, 0) | |||
| for i in range(self._visual_bins)) | |||
| return | |||
| re_sampled = [] | |||
| original_pos = 0 | |||
| original_bucket = self._original_buckets[original_pos] | |||
| for i in range(self._visual_bins): | |||
| cur_left = self._visual_min + width * i | |||
| cur_right = cur_left + width | |||
| cur_estimated_count = 0.0 | |||
| # Skip no bucket range. | |||
| if cur_right <= original_bucket.left: | |||
| re_sampled.append(Bucket(cur_left, width, math.ceil(cur_estimated_count))) | |||
| continue | |||
| # Skip no intersect range. | |||
| while cur_left >= original_bucket.right: | |||
| original_pos += 1 | |||
| if original_pos >= len(self._original_buckets): | |||
| break | |||
| original_bucket = self._original_buckets[original_pos] | |||
| # entering with this condition: cur_right > original_bucket.left and cur_left < original_bucket.right | |||
| while True: | |||
| if original_pos >= len(self._original_buckets): | |||
| break | |||
| original_bucket = self._original_buckets[original_pos] | |||
| intersection = self._calc_intersection_len( | |||
| min1=cur_left, max1=cur_right, | |||
| min2=original_bucket.left, max2=original_bucket.right) | |||
| if not original_bucket.width: | |||
| estimated_count = original_bucket.count | |||
| else: | |||
| estimated_count = (intersection / original_bucket.width) * original_bucket.count | |||
| cur_estimated_count += estimated_count | |||
| if cur_right > original_bucket.right: | |||
| # Need to sample next original bucket to this visual bucket. | |||
| original_pos += 1 | |||
| else: | |||
| # Current visual bucket has taken all intersect buckets into account. | |||
| break | |||
| re_sampled.append(Bucket(cur_left, width, math.ceil(cur_estimated_count))) | |||
| self._re_sampled_buckets = tuple(re_sampled) | |||
| def buckets(self, convert_to_tuple=True): | |||
| """ | |||
| Get visual buckets instead of original buckets. | |||
| Args: | |||
| convert_to_tuple (bool): Whether convert bucket object to tuple. | |||
| Returns: | |||
| tuple, contains buckets. | |||
| """ | |||
| if not self._re_sampled_buckets: | |||
| self._re_sample_buckets() | |||
| if not convert_to_tuple: | |||
| return self._re_sampled_buckets | |||
| def histogram(self): | |||
| """Gets histogram data""" | |||
| return self._histogram | |||
| return tuple(bucket.as_tuple() for bucket in self._re_sampled_buckets) | |||
| def buckets(self): | |||
| """Gets histogram buckets""" | |||
| return self._histogram.buckets() | |||
| @@ -0,0 +1,30 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Image container.""" | |||
| from mindinsight.datavisual.proto_files.mindinsight_summary_pb2 import Summary | |||
| class ImageContainer: | |||
| """ | |||
| Container for image to allow pickling. | |||
| Args: | |||
| image_message (Summary.Image): Image proto buffer message. | |||
| """ | |||
| def __init__(self, image_message: Summary.Image): | |||
| self.height = image_message.height | |||
| self.width = image_message.width | |||
| self.colorspace = image_message.colorspace | |||
| self.encoded_image = image_message.encoded_image | |||
| @@ -32,14 +32,18 @@ from mindinsight.datavisual.data_access.file_handler import FileHandler | |||
| from mindinsight.datavisual.data_transform.events_data import EventsData | |||
| from mindinsight.datavisual.data_transform.events_data import TensorEvent | |||
| from mindinsight.datavisual.data_transform.graph import MSGraph | |||
| from mindinsight.datavisual.proto_files import mindinsight_summary_pb2 as summary_pb2 | |||
| from mindinsight.datavisual.data_transform.histogram import Histogram | |||
| from mindinsight.datavisual.data_transform.histogram_container import HistogramContainer | |||
| from mindinsight.datavisual.data_transform.image_container import ImageContainer | |||
| from mindinsight.datavisual.data_transform.tensor_container import TensorContainer, MAX_TENSOR_COUNT | |||
| from mindinsight.datavisual.proto_files import mindinsight_anf_ir_pb2 as anf_ir_pb2 | |||
| from mindinsight.datavisual.proto_files import mindinsight_summary_pb2 as summary_pb2 | |||
| from mindinsight.datavisual.utils import crc32 | |||
| from mindinsight.utils.exceptions import UnknownError | |||
| from mindinsight.datavisual.data_transform.histogram_container import HistogramContainer | |||
| HEADER_SIZE = 8 | |||
| CRC_STR_SIZE = 4 | |||
| MAX_EVENT_STRING = 500000000 | |||
| class MSDataLoader: | |||
| @@ -77,11 +81,14 @@ class MSDataLoader: | |||
| "we will reload all files in path %s.", self._summary_dir) | |||
| self.__init__(self._summary_dir) | |||
| def load(self): | |||
| def load(self, computing_resource_mgr): | |||
| """ | |||
| Load all log valid files. | |||
| When the file is reloaded, it will continue to load from where it left off. | |||
| Args: | |||
| computing_resource_mgr (ComputingResourceManager): The ComputingResourceManager instance. | |||
| """ | |||
| logger.debug("Start to load data in ms data loader.") | |||
| filenames = self.filter_valid_files() | |||
| @@ -92,8 +99,9 @@ class MSDataLoader: | |||
| self._valid_filenames = filenames | |||
| self._check_files_deleted(filenames, old_filenames) | |||
| for parser in self._parser_list: | |||
| parser.parse_files(filenames, events_data=self._events_data) | |||
| with computing_resource_mgr.get_executor() as executor: | |||
| for parser in self._parser_list: | |||
| parser.parse_files(executor, filenames, events_data=self._events_data) | |||
| def filter_valid_files(self): | |||
| """ | |||
| @@ -123,11 +131,12 @@ class _Parser: | |||
| self._latest_mtime = 0 | |||
| self._summary_dir = summary_dir | |||
| def parse_files(self, filenames, events_data): | |||
| def parse_files(self, executor, filenames, events_data): | |||
| """ | |||
| Load files and parse files content. | |||
| Args: | |||
| executor (Executor): The executor instance. | |||
| filenames (list[str]): File name list. | |||
| events_data (EventsData): The container of event data. | |||
| """ | |||
| @@ -175,7 +184,7 @@ class _Parser: | |||
| class _PbParser(_Parser): | |||
| """This class is used to parse pb file.""" | |||
| def parse_files(self, filenames, events_data): | |||
| def parse_files(self, executor, filenames, events_data): | |||
| pb_filenames = self.filter_files(filenames) | |||
| pb_filenames = self.sort_files(pb_filenames) | |||
| for filename in pb_filenames: | |||
| @@ -253,11 +262,12 @@ class _SummaryParser(_Parser): | |||
| self._summary_file_handler = None | |||
| self._events_data = None | |||
| def parse_files(self, filenames, events_data): | |||
| def parse_files(self, executor, filenames, events_data): | |||
| """ | |||
| Load summary file and parse file content. | |||
| Args: | |||
| executor (Executor): The executor instance. | |||
| filenames (list[str]): File name list. | |||
| events_data (EventsData): The container of event data. | |||
| """ | |||
| @@ -283,7 +293,9 @@ class _SummaryParser(_Parser): | |||
| self._latest_file_size = new_size | |||
| try: | |||
| self._load_single_file(self._summary_file_handler) | |||
| self._load_single_file(self._summary_file_handler, executor) | |||
| # Wait for data in this file to be processed to avoid loading multiple files at the same time. | |||
| executor.wait_all_tasks_finish() | |||
| except UnknownError as ex: | |||
| logger.warning("Parse summary file failed, detail: %r," | |||
| "file path: %s.", str(ex), file_path) | |||
| @@ -302,14 +314,14 @@ class _SummaryParser(_Parser): | |||
| lambda filename: (re.search(r'summary\.\d+', filename) | |||
| and not filename.endswith("_lineage")), filenames)) | |||
| def _load_single_file(self, file_handler): | |||
| def _load_single_file(self, file_handler, executor): | |||
| """ | |||
| Load a log file data. | |||
| Args: | |||
| file_handler (FileHandler): A file handler. | |||
| executor (Executor): The executor instance. | |||
| """ | |||
| logger.debug("Load single summary file, file path: %s.", file_handler.file_path) | |||
| while True: | |||
| start_offset = file_handler.offset | |||
| try: | |||
| @@ -317,9 +329,34 @@ class _SummaryParser(_Parser): | |||
| if event_str is None: | |||
| file_handler.reset_offset(start_offset) | |||
| break | |||
| event = summary_pb2.Event.FromString(event_str) | |||
| self._event_parse(event) | |||
| if len(event_str) > MAX_EVENT_STRING: | |||
| logger.warning("file_path: %s, event string: %d exceeds %d and drop it.", | |||
| file_handler.file_path, len(event_str), MAX_EVENT_STRING) | |||
| continue | |||
| future = executor.submit(self._event_parse, event_str, self._latest_filename) | |||
| def _add_tensor_event_callback(future_value): | |||
| try: | |||
| tensor_values = future_value.result() | |||
| for tensor_value in tensor_values: | |||
| if tensor_value.plugin_name == PluginNameEnum.GRAPH.value: | |||
| try: | |||
| graph_tags = self._events_data.list_tags_by_plugin(PluginNameEnum.GRAPH.value) | |||
| except KeyError: | |||
| graph_tags = [] | |||
| summary_tags = self.filter_files(graph_tags) | |||
| for tag in summary_tags: | |||
| self._events_data.delete_tensor_event(tag) | |||
| self._events_data.add_tensor_event(tensor_value) | |||
| except Exception as exc: | |||
| # Log exception for debugging. | |||
| logger.exception(exc) | |||
| raise | |||
| future.add_done_callback(_add_tensor_event_callback) | |||
| except exceptions.CRCFailedError: | |||
| file_handler.reset_offset(start_offset) | |||
| logger.warning("Check crc faild and ignore this file, file_path=%s, " | |||
| @@ -379,19 +416,29 @@ class _SummaryParser(_Parser): | |||
| return event_str | |||
| def _event_parse(self, event): | |||
| @staticmethod | |||
| def _event_parse(event_str, latest_file_name): | |||
| """ | |||
| Transform `Event` data to tensor_event and update it to EventsData. | |||
| This method is static to avoid sending unnecessary objects to other processes. | |||
| Args: | |||
| event (Event): Message event in summary proto, data read from file handler. | |||
| event (str): Message event string in summary proto, data read from file handler. | |||
| latest_file_name (str): Latest file name. | |||
| """ | |||
| plugins = { | |||
| 'scalar_value': PluginNameEnum.SCALAR, | |||
| 'image': PluginNameEnum.IMAGE, | |||
| 'histogram': PluginNameEnum.HISTOGRAM, | |||
| 'tensor': PluginNameEnum.TENSOR | |||
| } | |||
| logger.debug("Start to parse event string. Event string len: %s.", len(event_str)) | |||
| event = summary_pb2.Event.FromString(event_str) | |||
| logger.debug("Deserialize event string completed.") | |||
| ret_tensor_events = [] | |||
| if event.HasField('summary'): | |||
| for value in event.summary.value: | |||
| for plugin in plugins: | |||
| @@ -399,44 +446,52 @@ class _SummaryParser(_Parser): | |||
| continue | |||
| plugin_name_enum = plugins[plugin] | |||
| tensor_event_value = getattr(value, plugin) | |||
| logger.debug("Processing plugin value: %s.", plugin_name_enum) | |||
| if plugin == 'histogram': | |||
| if plugin == PluginNameEnum.HISTOGRAM.value: | |||
| tensor_event_value = HistogramContainer(tensor_event_value) | |||
| # Drop steps if original_buckets_count exceeds HistogramContainer.MAX_ORIGINAL_BUCKETS_COUNT | |||
| # to avoid time-consuming re-sample process. | |||
| if tensor_event_value.original_buckets_count > HistogramContainer.MAX_ORIGINAL_BUCKETS_COUNT: | |||
| if tensor_event_value.histogram.original_buckets_count > Histogram.MAX_ORIGINAL_BUCKETS_COUNT: | |||
| logger.info('original_buckets_count exceeds ' | |||
| 'HistogramContainer.MAX_ORIGINAL_BUCKETS_COUNT') | |||
| continue | |||
| elif plugin == PluginNameEnum.TENSOR.value: | |||
| tensor_event_value = TensorContainer(tensor_event_value) | |||
| tensor_count = 1 | |||
| for d in tensor_event_value.dims: | |||
| tensor_count *= d | |||
| if tensor_count > MAX_TENSOR_COUNT: | |||
| logger.warning('tag: %s/tensor, tensor count: %d exceeds %d and drop it.', | |||
| value.tag, tensor_count, MAX_TENSOR_COUNT) | |||
| continue | |||
| elif plugin == PluginNameEnum.IMAGE.value: | |||
| tensor_event_value = ImageContainer(tensor_event_value) | |||
| tensor_event = TensorEvent(wall_time=event.wall_time, | |||
| step=event.step, | |||
| tag='{}/{}'.format(value.tag, plugin_name_enum.value), | |||
| plugin_name=plugin_name_enum.value, | |||
| value=tensor_event_value, | |||
| filename=self._latest_filename) | |||
| self._events_data.add_tensor_event(tensor_event) | |||
| filename=latest_file_name) | |||
| logger.debug("Tensor event generated, plugin is %s, tag is %s, step is %s.", | |||
| plugin_name_enum, value.tag, event.step) | |||
| ret_tensor_events.append(tensor_event) | |||
| elif event.HasField('graph_def'): | |||
| graph = MSGraph() | |||
| graph.build_graph(event.graph_def) | |||
| tensor_event = TensorEvent(wall_time=event.wall_time, | |||
| step=event.step, | |||
| tag=self._latest_filename, | |||
| tag=latest_file_name, | |||
| plugin_name=PluginNameEnum.GRAPH.value, | |||
| value=graph, | |||
| filename=self._latest_filename) | |||
| try: | |||
| graph_tags = self._events_data.list_tags_by_plugin(PluginNameEnum.GRAPH.value) | |||
| except KeyError: | |||
| graph_tags = [] | |||
| summary_tags = self.filter_files(graph_tags) | |||
| for tag in summary_tags: | |||
| self._events_data.delete_tensor_event(tag) | |||
| filename=latest_file_name) | |||
| ret_tensor_events.append(tensor_event) | |||
| self._events_data.add_tensor_event(tensor_event) | |||
| return ret_tensor_events | |||
| @staticmethod | |||
| def _compare_summary_file(current_file, dst_file): | |||
| @@ -205,15 +205,15 @@ class HistogramReservoir(Reservoir): | |||
| visual_range = _VisualRange() | |||
| max_count = 0 | |||
| for sample in self._samples: | |||
| histogram = sample.value | |||
| if histogram.count == 0: | |||
| histogram_container = sample.value | |||
| if histogram_container.count == 0: | |||
| # ignore empty tensor | |||
| continue | |||
| max_count = max(histogram.count, max_count) | |||
| visual_range.update(histogram.max, histogram.min) | |||
| max_count = max(histogram_container.count, max_count) | |||
| visual_range.update(histogram_container.max, histogram_container.min) | |||
| if visual_range.max == visual_range.min and not max_count: | |||
| logger.info("Max equals to min. Count is zero.") | |||
| logger.debug("Max equals to min. Count is zero.") | |||
| bins = calc_histogram_bins(max_count) | |||
| @@ -225,7 +225,7 @@ class HistogramReservoir(Reservoir): | |||
| bins, | |||
| max_count) | |||
| for sample in self._samples: | |||
| histogram = sample.value | |||
| histogram = sample.value.histogram | |||
| histogram.set_visual_range(visual_range.max, visual_range.min, bins) | |||
| self._visual_range_up_to_date = True | |||
| @@ -245,6 +245,6 @@ class ReservoirFactory: | |||
| Returns: | |||
| Reservoir, reservoir instance for given plugin name. | |||
| """ | |||
| if plugin_name == PluginNameEnum.HISTOGRAM.value: | |||
| if plugin_name in (PluginNameEnum.HISTOGRAM.value, PluginNameEnum.TENSOR.value): | |||
| return HistogramReservoir(size) | |||
| return Reservoir(size) | |||
| @@ -0,0 +1,269 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Tensor data container.""" | |||
| import threading | |||
| import numpy as np | |||
| from mindinsight.datavisual.common.log import logger | |||
| from mindinsight.datavisual.data_transform.histogram import Histogram, Bucket | |||
| from mindinsight.datavisual.utils.utils import calc_histogram_bins | |||
| from mindinsight.utils.exceptions import ParamValueError | |||
| F32_MIN, F32_MAX = np.finfo(np.float32).min, np.finfo(np.float32).max | |||
| MAX_TENSOR_COUNT = 10000000 | |||
| class Statistics: | |||
| """Statistics data class. | |||
| Args: | |||
| max_value (float): max value of tensor data. | |||
| min_value (float): min value of tensor data. | |||
| avg_value (float): avg value of tensor data. | |||
| count (int): total count of tensor data. | |||
| nan_count (int): count of NAN. | |||
| neg_inf_count (int): count of negative INF. | |||
| pos_inf_count (int): count of positive INF. | |||
| """ | |||
| def __init__(self, max_value=0, min_value=0, avg_value=0, | |||
| count=0, nan_count=0, neg_inf_count=0, pos_inf_count=0): | |||
| self._max = max_value | |||
| self._min = min_value | |||
| self._avg = avg_value | |||
| self._count = count | |||
| self._nan_count = nan_count | |||
| self._neg_inf_count = neg_inf_count | |||
| self._pos_inf_count = pos_inf_count | |||
| @property | |||
| def max(self): | |||
| """Get max value of tensor.""" | |||
| return self._max | |||
| @property | |||
| def min(self): | |||
| """Get min value of tensor.""" | |||
| return self._min | |||
| @property | |||
| def avg(self): | |||
| """Get avg value of tensor.""" | |||
| return self._avg | |||
| @property | |||
| def count(self): | |||
| """Get total count of tensor.""" | |||
| return self._count | |||
| @property | |||
| def nan_count(self): | |||
| """Get count of NAN.""" | |||
| return self._nan_count | |||
| @property | |||
| def neg_inf_count(self): | |||
| """Get count of negative INF.""" | |||
| return self._neg_inf_count | |||
| @property | |||
| def pos_inf_count(self): | |||
| """Get count of positive INF.""" | |||
| return self._pos_inf_count | |||
| def get_statistics_from_tensor(tensors): | |||
| """ | |||
| Calculates statistics data of tensor. | |||
| Args: | |||
| tensors (numpy.ndarray): An numpy.ndarray of tensor data. | |||
| Returns: | |||
| an instance of Statistics. | |||
| """ | |||
| ma_value = np.ma.masked_invalid(tensors) | |||
| total, valid = tensors.size, ma_value.count() | |||
| invalids = [] | |||
| for isfn in np.isnan, np.isposinf, np.isneginf: | |||
| if total - valid > sum(invalids): | |||
| count = np.count_nonzero(isfn(tensors)) | |||
| invalids.append(count) | |||
| else: | |||
| invalids.append(0) | |||
| nan_count, pos_inf_count, neg_inf_count = invalids | |||
| if not valid: | |||
| logger.warning('There are no valid values in the tensors(size=%d, shape=%s)', total, tensors.shape) | |||
| statistics = Statistics(max_value=0, | |||
| min_value=0, | |||
| avg_value=0, | |||
| count=total, | |||
| nan_count=nan_count, | |||
| neg_inf_count=neg_inf_count, | |||
| pos_inf_count=pos_inf_count) | |||
| return statistics | |||
| # BUG: max of a masked array with dtype np.float16 returns inf | |||
| # See numpy issue#15077 | |||
| if issubclass(tensors.dtype.type, np.floating): | |||
| tensor_min = ma_value.min(fill_value=np.PINF) | |||
| tensor_max = ma_value.max(fill_value=np.NINF) | |||
| if tensor_min < F32_MIN or tensor_max > F32_MAX: | |||
| logger.warning('Values(%f, %f) are too large, you may encounter some undefined ' | |||
| 'behaviours hereafter.', tensor_min, tensor_max) | |||
| else: | |||
| tensor_min = ma_value.min() | |||
| tensor_max = ma_value.max() | |||
| tensor_sum = ma_value.sum(dtype=np.float64) | |||
| statistics = Statistics(max_value=tensor_max, | |||
| min_value=tensor_min, | |||
| avg_value=tensor_sum / valid, | |||
| count=total, | |||
| nan_count=nan_count, | |||
| neg_inf_count=neg_inf_count, | |||
| pos_inf_count=pos_inf_count) | |||
| return statistics | |||
| def _get_data_from_tensor(tensor): | |||
| """ | |||
| Get data from tensor and convert to tuple. | |||
| Args: | |||
| tensor (TensorProto): Tensor proto data. | |||
| Returns: | |||
| tuple, the item of tensor value. | |||
| """ | |||
| return tuple(tensor.float_data) | |||
| def calc_original_buckets(np_value, stats): | |||
| """ | |||
| Calculate buckets from tensor data. | |||
| Args: | |||
| np_value (numpy.ndarray): An numpy.ndarray of tensor data. | |||
| stats (Statistics): An instance of Statistics about tensor data. | |||
| Returns: | |||
| list, a list of bucket about tensor data. | |||
| Raises: | |||
| ParamValueError, If np_value or stats is None. | |||
| """ | |||
| if np_value is None or stats is None: | |||
| raise ParamValueError("Invalid input. np_value or stats is None.") | |||
| valid_count = stats.count - stats.nan_count - stats.neg_inf_count - stats.pos_inf_count | |||
| if not valid_count: | |||
| return [] | |||
| bins = calc_histogram_bins(valid_count) | |||
| first_edge, last_edge = stats.min, stats.max | |||
| if not first_edge < last_edge: | |||
| first_edge -= 0.5 | |||
| last_edge += 0.5 | |||
| bins = np.linspace(first_edge, last_edge, bins + 1, dtype=np_value.dtype) | |||
| hists, edges = np.histogram(np_value, bins=bins) | |||
| buckets = [] | |||
| for hist, edge1, edge2 in zip(hists, edges, edges[1:]): | |||
| bucket = Bucket(edge1, edge2 - edge1, hist) | |||
| buckets.append(bucket) | |||
| return buckets | |||
| class TensorContainer: | |||
| """ | |||
| Tensor data container. | |||
| Args: | |||
| tensor_message (Summary.TensorProto): Tensor message in summary file. | |||
| """ | |||
| def __init__(self, tensor_message): | |||
| self._lock = threading.Lock | |||
| # Original dims can not be pickled to transfer to other process, so tuple is used. | |||
| self._dims = tuple(tensor_message.dims) | |||
| self._data_type = tensor_message.data_type | |||
| self._np_array = None | |||
| self._data = _get_data_from_tensor(tensor_message) | |||
| self._stats = get_statistics_from_tensor(self.get_or_calc_ndarray()) | |||
| original_buckets = calc_original_buckets(self.get_or_calc_ndarray(), self._stats) | |||
| self._count = sum(bucket.count for bucket in original_buckets) | |||
| self._max = self._stats.max | |||
| self._min = self._stats.min | |||
| self._histogram = Histogram(tuple(original_buckets), self._max, self._min, self._count) | |||
| @property | |||
| def dims(self): | |||
| """Get dims of tensor.""" | |||
| return self._dims | |||
| @property | |||
| def data_type(self): | |||
| """Get data type of tensor.""" | |||
| return self._data_type | |||
| @property | |||
| def max(self): | |||
| """Get max value of tensor.""" | |||
| return self._max | |||
| @property | |||
| def min(self): | |||
| """Get min value of tensor.""" | |||
| return self._min | |||
| @property | |||
| def stats(self): | |||
| """Get statistics data of tensor.""" | |||
| return self._stats | |||
| @property | |||
| def count(self): | |||
| """Get count value of tensor.""" | |||
| return self._count | |||
| @property | |||
| def histogram(self): | |||
| """Get histogram data.""" | |||
| return self._histogram | |||
| def buckets(self): | |||
| """Get histogram buckets.""" | |||
| return self._histogram.buckets() | |||
| def get_or_calc_ndarray(self): | |||
| """Get or calculate ndarray.""" | |||
| with self._lock(): | |||
| if self._np_array is None: | |||
| self._convert_to_numpy_array() | |||
| return self._np_array | |||
| def _convert_to_numpy_array(self): | |||
| """Convert a list data to numpy array.""" | |||
| try: | |||
| ndarray = np.array(self._data).reshape(self._dims) | |||
| except ValueError as ex: | |||
| logger.error("Reshape array fail, detail: %r", str(ex)) | |||
| return | |||
| self._np_array = ndarray | |||
| @@ -0,0 +1,381 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Tensor Processor APIs.""" | |||
| from urllib.parse import unquote | |||
| import numpy as np | |||
| from mindinsight.datavisual.utils.tools import to_int | |||
| from mindinsight.utils.exceptions import ParamValueError, UrlDecodeError | |||
| from mindinsight.conf.constants import MAX_TENSOR_RESPONSE_DATA_SIZE | |||
| from mindinsight.datavisual.common.validation import Validation | |||
| from mindinsight.datavisual.common.exceptions import StepTensorDataNotInCacheError, TensorNotExistError | |||
| from mindinsight.datavisual.common.exceptions import ResponseDataExceedMaxValueError | |||
| from mindinsight.datavisual.data_transform.tensor_container import TensorContainer, get_statistics_from_tensor | |||
| from mindinsight.datavisual.processors.base_processor import BaseProcessor | |||
| from mindinsight.datavisual.proto_files import mindinsight_anf_ir_pb2 as anf_ir_pb2 | |||
| def convert_array_from_str(dims, limit=0): | |||
| """ | |||
| Convert string of dims data to array. | |||
| Args: | |||
| dims (str): Specify dims of tensor. | |||
| limit (int): The max flexible dimension count, default value is 0 which means that there is no limitation. | |||
| Returns: | |||
| list, a string like this: "[0, 0, :, :]" will convert to this value: [0, 0, None, None]. | |||
| Raises: | |||
| ParamValueError, If flexible dimensions exceed limit value. | |||
| """ | |||
| dims = dims.replace('[', '') \ | |||
| .replace(']', '') | |||
| dims_list = [] | |||
| count = 0 | |||
| for dim in dims.split(','): | |||
| dim = dim.strip() | |||
| if dim == ':': | |||
| dims_list.append(None) | |||
| count += 1 | |||
| else: | |||
| dims_list.append(to_int(dim, "dim")) | |||
| if limit and count > limit: | |||
| raise ParamValueError("Flexible dimensions cannot exceed limit value: {}, size: {}" | |||
| .format(limit, count)) | |||
| return dims_list | |||
| def get_specific_dims_data(ndarray, dims, tensor_dims): | |||
| """ | |||
| Get specific dims data. | |||
| Args: | |||
| ndarray (numpy.ndarray): An ndarray of numpy. | |||
| dims (list): A list of specific dims. | |||
| tensor_dims (list): A list of tensor dims. | |||
| Returns: | |||
| numpy.ndarray, an ndarray of specific dims tensor data. | |||
| Raises: | |||
| ParamValueError, If the length of param dims is not equal to the length of tensor dims or | |||
| the index of param dims out of range. | |||
| """ | |||
| if len(dims) != len(tensor_dims): | |||
| raise ParamValueError("The length of param dims: {}, is not equal to the " | |||
| "length of tensor dims: {}.".format(len(dims), len(tensor_dims))) | |||
| indices = [] | |||
| for k, d in enumerate(dims): | |||
| if d is not None: | |||
| if d >= tensor_dims[k]: | |||
| raise ParamValueError("The index: {} of param dims out of range: {}.".format(d, tensor_dims[k])) | |||
| indices.append(d) | |||
| else: | |||
| indices.append(slice(0, tensor_dims[k])) | |||
| return ndarray[tuple(indices)] | |||
| def get_statistics_dict(stats): | |||
| """ | |||
| Get statistics dict according to statistics value. | |||
| Args: | |||
| stats (Statistics): An instance of Statistics. | |||
| Returns: | |||
| dict, a dict including 'max', 'min', 'avg', 'count', 'nan_count', 'neg_inf_count', 'pos_inf_count'. | |||
| """ | |||
| statistics = { | |||
| "max": stats.max, | |||
| "min": stats.min, | |||
| "avg": stats.avg, | |||
| "count": stats.count, | |||
| "nan_count": stats.nan_count, | |||
| "neg_inf_count": stats.neg_inf_count, | |||
| "pos_inf_count": stats.pos_inf_count | |||
| } | |||
| return statistics | |||
| class TensorProcessor(BaseProcessor): | |||
| """Tensor Processor.""" | |||
| def get_tensors(self, train_ids, tags, step, dims, detail): | |||
| """ | |||
| Get tensor data for given train_ids, tags, step, dims and detail. | |||
| Args: | |||
| train_ids (list): Specify list of train job ID. | |||
| tags (list): Specify list of tag. | |||
| step (int): Specify step of tag, it's necessary when detail is equal to 'data'. | |||
| dims (str): Specify dims of step, it's necessary when detail is equal to 'data'. | |||
| detail (str): Specify which data to query, available values: 'stats', 'histogram' and 'data'. | |||
| Returns: | |||
| dict, a dict including the `tensors`. | |||
| Raises: | |||
| UrlDecodeError, If unquote train id error with strict mode. | |||
| """ | |||
| Validation.check_param_empty(train_id=train_ids, tag=tags) | |||
| for index, train_id in enumerate(train_ids): | |||
| try: | |||
| train_id = unquote(train_id, errors='strict') | |||
| except UnicodeDecodeError: | |||
| raise UrlDecodeError('Unquote train id error with strict mode') | |||
| else: | |||
| train_ids[index] = train_id | |||
| tensors = [] | |||
| for train_id in train_ids: | |||
| tensors += self._get_train_tensors(train_id, tags, step, dims, detail) | |||
| return {"tensors": tensors} | |||
| def _get_train_tensors(self, train_id, tags, step, dims, detail): | |||
| """ | |||
| Get tensor data for given train_id, tags, step, dims and detail. | |||
| Args: | |||
| train_id (str): Specify list of train job ID. | |||
| tags (list): Specify list of tag. | |||
| step (int): Specify step of tensor, it's necessary when detail is set to 'data'. | |||
| dims (str): Specify dims of tensor, it's necessary when detail is set to 'data'. | |||
| detail (str): Specify which data to query, available values: 'stats', 'histogram' and 'data'. | |||
| Returns: | |||
| list[dict], a list of dictionaries containing the `train_id`, `tag`, `values`. | |||
| Raises: | |||
| TensorNotExistError, If tensor with specific train_id and tag is not exist in cache. | |||
| ParamValueError, If the value of detail is not within available values: | |||
| 'stats', 'histogram' and 'data'. | |||
| """ | |||
| tensors_response = [] | |||
| for tag in tags: | |||
| try: | |||
| tensors = self._data_manager.list_tensors(train_id, tag) | |||
| except ParamValueError as err: | |||
| raise TensorNotExistError(err.message) | |||
| if tensors and not isinstance(tensors[0].value, TensorContainer): | |||
| raise TensorNotExistError("there is no tensor data in this tag: {}".format(tag)) | |||
| if detail is None or detail == 'stats': | |||
| values = self._get_tensors_summary(detail, tensors) | |||
| elif detail == 'data': | |||
| Validation.check_param_empty(step=step, dims=dims) | |||
| step = to_int(step, "step") | |||
| values = self._get_tensors_data(step, dims, tensors) | |||
| elif detail == 'histogram': | |||
| values = self._get_tensors_histogram(tensors) | |||
| else: | |||
| raise ParamValueError('Can not support this value: {} of detail.'.format(detail)) | |||
| tensor = { | |||
| "train_id": train_id, | |||
| "tag": tag, | |||
| "values": values | |||
| } | |||
| tensors_response.append(tensor) | |||
| return tensors_response | |||
| def _get_tensors_summary(self, detail, tensors): | |||
| """ | |||
| Builds a JSON-serializable object with information about tensor summary. | |||
| Args: | |||
| detail (str): Specify which data to query, detail value is None or 'stats' at this method. | |||
| tensors (list): The list of _Tensor data. | |||
| Returns: | |||
| dict, a dict including the `wall_time`, `step`, and `value' for each tensor. | |||
| { | |||
| "wall_time": 0, | |||
| "step": 0, | |||
| "value": { | |||
| "dims": [1], | |||
| "data_type": "DT_FLOAT32" | |||
| "statistics": { | |||
| "max": 0, | |||
| "min": 0, | |||
| "avg": 0, | |||
| "count": 1, | |||
| "nan_count": 0, | |||
| "neg_inf_count": 0, | |||
| "pos_inf_count": 0 | |||
| } This dict is being set when detail is equal to stats. | |||
| } | |||
| } | |||
| """ | |||
| values = [] | |||
| for tensor in tensors: | |||
| # This value is an instance of TensorContainer | |||
| value = tensor.value | |||
| value_dict = { | |||
| "dims": value.dims, | |||
| "data_type": anf_ir_pb2.DataType.Name(value.data_type) | |||
| } | |||
| if detail and detail == 'stats': | |||
| stats = get_statistics_dict(value.stats) | |||
| value_dict.update({"statistics": stats}) | |||
| values.append({ | |||
| "wall_time": tensor.wall_time, | |||
| "step": tensor.step, | |||
| "value": value_dict | |||
| }) | |||
| return values | |||
| def _get_tensors_data(self, step, dims, tensors): | |||
| """ | |||
| Builds a JSON-serializable object with information about tensor dims data. | |||
| Args: | |||
| step (int): Specify step of tensor. | |||
| dims (str): Specify dims of tensor. | |||
| tensors (list): The list of _Tensor data. | |||
| Returns: | |||
| dict, a dict including the `wall_time`, `step`, and `value' for each tensor. | |||
| { | |||
| "wall_time": 0, | |||
| "step": 0, | |||
| "value": { | |||
| "dims": [1], | |||
| "data_type": "DT_FLOAT32", | |||
| "data": [[0.1]] | |||
| "statistics": { | |||
| "max": 0, | |||
| "min": 0, | |||
| "avg": 0, | |||
| "count": 1, | |||
| "nan_count": 0, | |||
| "neg_inf_count": 0, | |||
| "pos_inf_count": 0 | |||
| } | |||
| } | |||
| } | |||
| Raises: | |||
| ResponseDataExceedMaxValueError, If the size of response data exceed max value. | |||
| StepTensorDataNotInCacheError, If query step is not in cache. | |||
| """ | |||
| values = [] | |||
| step_in_cache = False | |||
| dims = convert_array_from_str(dims, limit=2) | |||
| for tensor in tensors: | |||
| # This value is an instance of TensorContainer | |||
| value = tensor.value | |||
| if step != tensor.step: | |||
| continue | |||
| step_in_cache = True | |||
| ndarray = value.get_or_calc_ndarray() | |||
| res_data = get_specific_dims_data(ndarray, dims, list(value.dims)) | |||
| flatten_data = res_data.flatten().tolist() | |||
| if len(flatten_data) > MAX_TENSOR_RESPONSE_DATA_SIZE: | |||
| raise ResponseDataExceedMaxValueError("the size of response data: {} exceed max value: {}." | |||
| .format(len(flatten_data), MAX_TENSOR_RESPONSE_DATA_SIZE)) | |||
| def transfer(array): | |||
| if not isinstance(array, np.ndarray): | |||
| # The list is used here so that len function can be used | |||
| # when the value of array is `NAN`、`-INF` or `INF`. | |||
| array = [array] | |||
| transfer_data = [None] * len(array) | |||
| for index, data in enumerate(array): | |||
| if isinstance(data, np.ndarray): | |||
| transfer_data[index] = transfer(data) | |||
| else: | |||
| if np.isnan(data): | |||
| transfer_data[index] = 'NAN' | |||
| elif np.isneginf(data): | |||
| transfer_data[index] = '-INF' | |||
| elif np.isposinf(data): | |||
| transfer_data[index] = 'INF' | |||
| else: | |||
| transfer_data[index] = data | |||
| return transfer_data | |||
| stats = get_statistics_from_tensor(res_data) | |||
| if stats.nan_count + stats.neg_inf_count + stats.pos_inf_count > 0: | |||
| tensor_data = transfer(res_data) | |||
| else: | |||
| tensor_data = res_data.tolist() | |||
| values.append({ | |||
| "wall_time": tensor.wall_time, | |||
| "step": tensor.step, | |||
| "value": { | |||
| "dims": value.dims, | |||
| "data_type": anf_ir_pb2.DataType.Name(value.data_type), | |||
| "data": tensor_data, | |||
| "statistics": get_statistics_dict(stats) | |||
| } | |||
| }) | |||
| break | |||
| if not step_in_cache: | |||
| raise StepTensorDataNotInCacheError("this step: {} data may has been dropped.".format(step)) | |||
| return values | |||
| def _get_tensors_histogram(self, tensors): | |||
| """ | |||
| Builds a JSON-serializable object with information about tensor histogram data. | |||
| Args: | |||
| tensors (list): The list of _Tensor data. | |||
| Returns: | |||
| dict, a dict including the `wall_time`, `step`, and `value' for each tensor. | |||
| { | |||
| "wall_time": 0, | |||
| "step": 0, | |||
| "value": { | |||
| "dims": [1], | |||
| "data_type": "DT_FLOAT32", | |||
| "histogram_buckets": [[0.1, 0.2, 3]] | |||
| "statistics": { | |||
| "max": 0, | |||
| "min": 0, | |||
| "avg": 0, | |||
| "count": 1, | |||
| "nan_count": 0, | |||
| "neg_inf_count": 0, | |||
| "pos_inf_count": 0 | |||
| } | |||
| } | |||
| } | |||
| """ | |||
| values = [] | |||
| for tensor in tensors: | |||
| # This value is an instance of TensorContainer | |||
| value = tensor.value | |||
| buckets = value.buckets() | |||
| values.append({ | |||
| "wall_time": tensor.wall_time, | |||
| "step": tensor.step, | |||
| "value": { | |||
| "dims": value.dims, | |||
| "data_type": anf_ir_pb2.DataType.Name(value.data_type), | |||
| "histogram_buckets": buckets, | |||
| "statistics": get_statistics_dict(value.stats) | |||
| } | |||
| }) | |||
| return values | |||
| @@ -83,17 +83,24 @@ class TrainTaskManager(BaseProcessor): | |||
| plugins=plugins | |||
| ) | |||
| def query_train_jobs(self, offset=0, limit=10): | |||
| def query_train_jobs(self, offset=0, limit=10, request_train_id=None): | |||
| """ | |||
| Query train jobs. | |||
| Args: | |||
| offset (int): Specify page number. Default is 0. | |||
| limit (int): Specify page size. Default is 10. | |||
| request_train_id (str): Specify train id. Default is None. | |||
| Returns: | |||
| tuple, return quantity of total train jobs and list of train jobs specified by offset and limit. | |||
| """ | |||
| if request_train_id is not None: | |||
| train_job_item = self._get_train_job_item(request_train_id) | |||
| if train_job_item is None: | |||
| return 0, [] | |||
| return 1, [train_job_item] | |||
| brief_cache = self._data_manager.get_brief_cache() | |||
| brief_train_jobs = list(brief_cache.get_train_jobs().values()) | |||
| brief_train_jobs.sort(key=lambda x: x.basic_info.update_time, reverse=True) | |||
| @@ -106,37 +113,52 @@ class TrainTaskManager(BaseProcessor): | |||
| train_ids = [train_job.basic_info.train_id for train_job in brief_train_jobs[start:end]] | |||
| for train_id in train_ids: | |||
| try: | |||
| train_job = self._data_manager.get_train_job(train_id) | |||
| except exceptions.TrainJobNotExistError: | |||
| logger.warning('Train job %s not existed', train_id) | |||
| train_job_item = self._get_train_job_item(train_id) | |||
| if train_job_item is None: | |||
| continue | |||
| basic_info = train_job.get_basic_info() | |||
| train_job_item = dict( | |||
| train_id=basic_info.train_id, | |||
| relative_path=basic_info.train_id, | |||
| create_time=basic_info.create_time.strftime('%Y-%m-%d %H:%M:%S'), | |||
| update_time=basic_info.update_time.strftime('%Y-%m-%d %H:%M:%S'), | |||
| profiler_dir=basic_info.profiler_dir, | |||
| cache_status=train_job.cache_status.value, | |||
| ) | |||
| if train_job.cache_status == CacheStatus.CACHED: | |||
| plugins = self.get_plugins(train_id) | |||
| else: | |||
| plugins = dict(plugins={ | |||
| 'graph': [], | |||
| 'scalar': [], | |||
| 'image': [], | |||
| 'histogram': [], | |||
| }) | |||
| train_job_item.update(plugins) | |||
| train_jobs.append(train_job_item) | |||
| return total, train_jobs | |||
| def _get_train_job_item(self, train_id): | |||
| """ | |||
| Get train job item. | |||
| Args: | |||
| train_id (str): Specify train id. | |||
| Returns: | |||
| dict, a dict of train job item. | |||
| """ | |||
| try: | |||
| train_job = self._data_manager.get_train_job(train_id) | |||
| except exceptions.TrainJobNotExistError: | |||
| logger.warning('Train job %s not existed', train_id) | |||
| return None | |||
| basic_info = train_job.get_basic_info() | |||
| train_job_item = dict( | |||
| train_id=basic_info.train_id, | |||
| relative_path=basic_info.train_id, | |||
| create_time=basic_info.create_time.strftime('%Y-%m-%d %H:%M:%S'), | |||
| update_time=basic_info.update_time.strftime('%Y-%m-%d %H:%M:%S'), | |||
| profiler_dir=basic_info.profiler_dir, | |||
| cache_status=train_job.cache_status.value, | |||
| ) | |||
| if train_job.cache_status == CacheStatus.CACHED: | |||
| plugins = self.get_plugins(train_id) | |||
| else: | |||
| plugins = dict(plugins={ | |||
| 'graph': [], | |||
| 'scalar': [], | |||
| 'image': [], | |||
| 'histogram': [], | |||
| }) | |||
| train_job_item.update(plugins) | |||
| return train_job_item | |||
| def cache_train_jobs(self, train_ids): | |||
| """ | |||
| Cache train jobs. | |||
| @@ -21,7 +21,9 @@ from numbers import Number | |||
| from urllib.parse import unquote | |||
| from mindinsight.datavisual.common.exceptions import MaxCountExceededError | |||
| from mindinsight.datavisual.common.log import logger | |||
| from mindinsight.utils import exceptions | |||
| from mindinsight.utils.exceptions import UnknownError | |||
| _IMG_EXT_TO_MIMETYPE = { | |||
| 'bmp': 'image/bmp', | |||
| @@ -216,6 +218,16 @@ def if_nan_inf_to_none(name, value): | |||
| return value | |||
| def exception_wrapper(func): | |||
| def wrapper(*args, **kwargs): | |||
| try: | |||
| func(*args, **kwargs) | |||
| except Exception as exc: | |||
| logger.exception(exc) | |||
| raise UnknownError(str(exc)) | |||
| return wrapper | |||
| class Counter: | |||
| """Count accumulator with limit checking.""" | |||
| @@ -17,7 +17,7 @@ import os | |||
| from mindinsight.datavisual.data_transform.data_manager import BaseCacheItemUpdater, CachedTrainJob | |||
| from mindinsight.lineagemgr.common.log import logger | |||
| from mindinsight.lineagemgr.common.exceptions.exceptions import MindInsightException | |||
| from mindinsight.lineagemgr.common.exceptions.exceptions import LineageFileNotFoundError | |||
| from mindinsight.lineagemgr.common.validator.validate import validate_train_id, validate_added_info | |||
| from mindinsight.lineagemgr.lineage_parser import LineageParser, LINEAGE | |||
| from mindinsight.utils.exceptions import ParamValueError | |||
| @@ -59,19 +59,13 @@ class LineageCacheItemUpdater(BaseCacheItemUpdater): | |||
| try: | |||
| lineage_parser = self._lineage_parsing(cache_item) | |||
| except MindInsightException as err: | |||
| with cache_item.lock_key(LINEAGE): | |||
| try: | |||
| cache_item.delete(key=LINEAGE) | |||
| logger.info("Parse failed, delete the tran job %s. Detail: %s.", relative_path, str(err)) | |||
| except ParamValueError: | |||
| logger.debug("Parse failed, no need to delete the train job %s. " | |||
| "Detail: %s.", relative_path, str(err)) | |||
| except LineageFileNotFoundError: | |||
| self._delete_lineage_in_cache(cache_item, LINEAGE, relative_path) | |||
| return | |||
| super_lineage_obj = lineage_parser.super_lineage_obj | |||
| if super_lineage_obj is None: | |||
| logger.debug("There is no lineage to update in tran job %s.", relative_path) | |||
| logger.debug("There is no lineage to update in train job %s.", relative_path) | |||
| return | |||
| cache_item.set(key=LINEAGE, value=lineage_parser) | |||
| @@ -91,3 +85,12 @@ class LineageCacheItemUpdater(BaseCacheItemUpdater): | |||
| lineage_parser.load() | |||
| return lineage_parser | |||
| def _delete_lineage_in_cache(self, cache_item, key, relative_path): | |||
| with cache_item.lock_key(key): | |||
| try: | |||
| cache_item.delete(key=key) | |||
| logger.info("Parse failed, delete the tran job %s.", relative_path) | |||
| except ParamValueError: | |||
| logger.debug("Parse failed, and it is not in cache, " | |||
| "no need to delete the train job %s.", relative_path) | |||
| @@ -100,7 +100,15 @@ class LineageParser: | |||
| continue | |||
| self._latest_file_size = new_size | |||
| self._parse_summary_log() | |||
| try: | |||
| self._parse_summary_log() | |||
| except (LineageSummaryAnalyzeException, | |||
| LineageEventNotExistException, | |||
| LineageEventFieldNotExistException) as error: | |||
| logger.debug("Parse file failed, file_path is %s. Detail: %s.", file_path, str(error)) | |||
| except MindInsightException as error: | |||
| logger.exception(error) | |||
| logger.debug("Parse file failed, file_path is %s.", file_path) | |||
| def _init_if_files_deleted(self, file_list): | |||
| """Init variables if files deleted.""" | |||
| @@ -189,13 +197,6 @@ class LineageOrganizer: | |||
| self._super_lineage_objs.update({abs_summary_dir: super_lineage_obj}) | |||
| except LineageFileNotFoundError: | |||
| no_lineage_count += 1 | |||
| except (LineageSummaryAnalyzeException, | |||
| LineageEventNotExistException, | |||
| LineageEventFieldNotExistException) as error: | |||
| logger.warning("Parse file failed under summary_dir %s. Detail: %s.", relative_dir, str(error)) | |||
| except MindInsightException as error: | |||
| logger.exception(error) | |||
| logger.warning("Parse file failed under summary_dir %s.", relative_dir) | |||
| if no_lineage_count == len(relative_dirs): | |||
| logger.info('There is no summary log file under summary_base_dir.') | |||
| @@ -11,11 +11,11 @@ The Profiler enables users to: | |||
| To enable profiling on MindSpore, the MindInsight Profiler apis should be added to the script: | |||
| 1. Import MindInsight Profiler | |||
| 1. Import the Profiler | |||
| ``` | |||
| from mindinsight.profiler import Profiler | |||
| from mindspore.profiler import Profiler | |||
| ``` | |||
| 2. Initialize the Profiler after set context, and before the network initialization. | |||
| 2. Initialize the Profiler after set context, and before the network and hccl initialization. | |||
| Example: | |||
| @@ -12,16 +12,4 @@ | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| Profiler Module Introduction. | |||
| This module provides Python APIs to enable the profiling of MindSpore neural networks. | |||
| Users can import the mindinsight.profiler.Profiler, initialize the Profiler object to start profiling, | |||
| and use Profiler.analyse() to stop profiling and analyse the results. | |||
| To visualize the profiling results, users can open MindInsight Web, find the corresponding run | |||
| and click the profile link. | |||
| Now, Profiler supports the AICore operator analysis. | |||
| """ | |||
| from mindinsight.profiler.profiling import Profiler | |||
| __all__ = ["Profiler"] | |||
| """Profiler Module Introduction.""" | |||
| @@ -15,7 +15,7 @@ | |||
| """The analyser factory.""" | |||
| import threading | |||
| import mindinsight.profiler.analyser as analyser_module | |||
| from mindinsight.profiler import analyser as analyser_module | |||
| from mindinsight.profiler.common.exceptions.exceptions import \ | |||
| ProfilerAnalyserNotExistException | |||
| @@ -17,7 +17,6 @@ import json | |||
| import os | |||
| from mindinsight.profiler.analyser.base_analyser import BaseAnalyser | |||
| from mindinsight.profiler.parser.container import TimelineContainer | |||
| from mindinsight.profiler.common.exceptions.exceptions import ProfilerFileNotFoundException, \ | |||
| ProfilerIOException | |||
| from mindinsight.profiler.common.log import logger | |||
| @@ -27,6 +26,48 @@ from mindinsight.profiler.common.validator.validate_path import validate_and_nor | |||
| SIZE_LIMIT = 20 * 1024 * 1024 # 20MB | |||
| class TimelineContainer: | |||
| """ | |||
| A container of operator computation metadata. | |||
| Args: | |||
| split_list (list): The split list of metadata in op_compute output file. | |||
| """ | |||
| def __init__(self, split_list): | |||
| self._op_name = split_list[0] | |||
| self._stream_id = int(split_list[1]) | |||
| self._start_time = float(split_list[2]) | |||
| self._duration = float(split_list[3]) | |||
| self._pid = None | |||
| if len(split_list) == 5: | |||
| self._pid = int(split_list[4]) | |||
| @property | |||
| def op_name(self): | |||
| """Get the name of the operator.""" | |||
| return self._op_name | |||
| @property | |||
| def stream_id(self): | |||
| """Get the stream id of the operator.""" | |||
| return self._stream_id | |||
| @property | |||
| def start_time(self): | |||
| """Get the execution start time of the operator.""" | |||
| return self._start_time | |||
| @property | |||
| def duration(self): | |||
| """Get the duration of the operator execution.""" | |||
| return self._duration | |||
| @property | |||
| def pid(self): | |||
| """Get the pid of the operator execution.""" | |||
| return self._pid | |||
| class TimelineAnalyser(BaseAnalyser): | |||
| """ | |||
| Analyse timeline data from file. | |||
| @@ -62,9 +103,7 @@ class TimelineAnalyser(BaseAnalyser): | |||
| Returns: | |||
| json, the content of timeline data. | |||
| """ | |||
| # Search timeline json file under profiling dir. | |||
| display_filename = self._display_filename.format(self._device_id) | |||
| # Check if there is a timeline json file for display | |||
| file_path = os.path.join(self._profiling_dir, display_filename) | |||
| file_path = validate_and_normalize_path( | |||
| file_path, raise_key='Invalid timeline json path.' | |||
| @@ -90,11 +129,8 @@ class TimelineAnalyser(BaseAnalyser): | |||
| Returns: | |||
| json, the content of timeline summary information. | |||
| """ | |||
| file_path = None | |||
| summary_file_name = 'timeline_summary_{}.json'.format(self._device_id) | |||
| if summary_file_name in os.listdir(self._profiling_dir): | |||
| file_path = os.path.join(self._profiling_dir, summary_file_name) | |||
| summary_filename = self._timeline_summary_filename.format(self._device_id) | |||
| file_path = os.path.join(self._profiling_dir, summary_filename) | |||
| file_path = validate_and_normalize_path( | |||
| file_path, raise_key='Invalid timeline summary path.' | |||
| ) | |||
| @@ -107,6 +143,8 @@ class TimelineAnalyser(BaseAnalyser): | |||
| except (IOError, OSError, json.JSONDecodeError) as err: | |||
| logger.error('Error occurred when read timeline summary file: %s', err) | |||
| raise ProfilerIOException | |||
| else: | |||
| logger.info('No timeline summary file. Please check the output path.') | |||
| return timeline_summary | |||
| @@ -1,182 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| The parser for AI CPU preprocess data. | |||
| """ | |||
| import os | |||
| from tabulate import tabulate | |||
| from mindinsight.profiler.common._utils import fwrite_format, get_file_join_name | |||
| from mindinsight.profiler.common.log import logger | |||
| class DataPreProcessParser: | |||
| """ | |||
| The Parser for AI CPU preprocess data. | |||
| Args: | |||
| input_path(str): The profiling job path. | |||
| output_filename(str): The output data path and name. | |||
| """ | |||
| _source_file_target = 'DATA_PREPROCESS.dev.AICPU.' | |||
| _dst_file_title = 'title:DATA_PREPROCESS AICPU' | |||
| _dst_file_column_title = ['serial_number', 'node_type_name', 'total_time(ms)', | |||
| 'dispatch_time(ms)', 'run_start', 'run_end'] | |||
| _ms_unit = 1000 | |||
| def __init__(self, input_path, output_filename): | |||
| self._input_path = input_path | |||
| self._output_filename = output_filename | |||
| self._source_file_name = self._get_source_file() | |||
| self._ms_kernel_flag = 3 | |||
| self._other_kernel_flag = 6 | |||
| self._thread_flag = 7 | |||
| self._ms_kernel_run_end_index = 2 | |||
| self._other_kernel_run_end_index = 5 | |||
| self._result_list = [] | |||
| self._min_cycle_counter = float('inf') | |||
| def _get_source_file(self): | |||
| """Get log file name, which was created by ada service.""" | |||
| file_name = get_file_join_name(self._input_path, self._source_file_target) | |||
| if not file_name: | |||
| data_path = os.path.join(self._input_path, "data") | |||
| file_name = get_file_join_name(data_path, self._source_file_target) | |||
| return file_name | |||
| def _get_kernel_result(self, number, node_list, thread_list): | |||
| """Get the profiling data form different aicpu kernel""" | |||
| try: | |||
| if len(node_list) == self._ms_kernel_flag and len(thread_list) == self._thread_flag: | |||
| node_type_name = node_list[0].split(':')[-1] | |||
| run_end_index = self._ms_kernel_run_end_index | |||
| elif len(node_list) == self._other_kernel_flag and len(thread_list) == self._thread_flag: | |||
| node_type_name = node_list[0].split(':')[-1].split('/')[-1].split('-')[0] | |||
| run_end_index = self._other_kernel_run_end_index | |||
| else: | |||
| logger.warning("the data format can't support 'node_list':%s", str(node_list)) | |||
| return None | |||
| run_start = node_list[1].split(':')[-1].split(' ')[0] | |||
| run_end = node_list[run_end_index].split(':')[-1].split(' ')[0] | |||
| total_time = float(thread_list[-1].split('=')[-1].split()[0]) / self._ms_unit | |||
| dispatch_time = float(thread_list[-2].split('=')[-1].split()[0]) / self._ms_unit | |||
| return [number, node_type_name, total_time, dispatch_time, | |||
| run_start, run_end] | |||
| except IndexError as e: | |||
| logger.exception(e) | |||
| return None | |||
| def execute(self): | |||
| """Execute the parser, get result data, and write it to the output file.""" | |||
| if not os.path.exists(self._source_file_name): | |||
| logger.info("Did not find the aicpu profiling source file") | |||
| return | |||
| with open(self._source_file_name, 'rb') as ai_cpu_data: | |||
| ai_cpu_str = str(ai_cpu_data.read().replace(b'\n\x00', b' ___ ') | |||
| .replace(b'\x00', b' ___ '))[2:-1] | |||
| ai_cpu_lines = ai_cpu_str.split(" ___ ") | |||
| result_list = list() | |||
| ai_cpu_total_time_summary = 0 | |||
| # Node serial number. | |||
| serial_number = 1 | |||
| for i in range(len(ai_cpu_lines) - 1): | |||
| node_line = ai_cpu_lines[i] | |||
| thread_line = ai_cpu_lines[i + 1] | |||
| result = [] | |||
| if "Node" in node_line and "Thread" in thread_line: | |||
| # Get the node data from node_line | |||
| node_list = node_line.split(',') | |||
| thread_list = thread_line.split(',') | |||
| result = self._get_kernel_result(serial_number, node_list, thread_list) | |||
| if result is None: | |||
| continue | |||
| result_list.append(result) | |||
| # Calculate the total time. | |||
| total_time = result[2] | |||
| ai_cpu_total_time_summary += total_time | |||
| # Increase node serial number. | |||
| serial_number += 1 | |||
| elif "Node" in node_line and "Thread" not in thread_line: | |||
| node_type_name = node_line.split(',')[0].split(':')[-1] | |||
| logger.warning("The node type:%s cannot find thread data", node_type_name) | |||
| if result_list: | |||
| ai_cpu_total_time = format(ai_cpu_total_time_summary, '.6f') | |||
| result_list.append(["AI CPU Total Time(ms):", ai_cpu_total_time]) | |||
| fwrite_format(self._output_filename, data_source=self._dst_file_title, is_print=True, | |||
| is_start=True) | |||
| fwrite_format(self._output_filename, | |||
| data_source=tabulate(result_list, self._dst_file_column_title, | |||
| tablefmt='simple'), | |||
| is_start=True, is_print=True) | |||
| # For timeline display. | |||
| self._result_list = result_list | |||
| def query_aicpu_data(self): | |||
| """ | |||
| Get execution time of AI CPU operator. | |||
| Returns: | |||
| a dict, the metadata of AI CPU operator execution time. | |||
| """ | |||
| stream_id = 0 # Default stream id for AI CPU. | |||
| pid = 9000 # Default pid for AI CPU. | |||
| factor = 1000 # Convert time unit from 1us to 1ms | |||
| total_time = 0 | |||
| min_cycle_counter = float('inf') | |||
| aicpu_info = [] | |||
| op_count_list = [] | |||
| for aicpu_item in self._result_list: | |||
| if "AI CPU Total Time(ms):" in aicpu_item: | |||
| total_time = aicpu_item[-1] | |||
| continue | |||
| op_name = aicpu_item[1] | |||
| start_time = float(aicpu_item[4]) / factor | |||
| min_cycle_counter = min(min_cycle_counter, start_time) | |||
| end_time = float(aicpu_item[5]) / factor | |||
| duration = end_time - start_time | |||
| aicpu_info.append([op_name, stream_id, start_time, duration, pid]) | |||
| # Record the number of operator types. | |||
| if op_name not in op_count_list: | |||
| op_count_list.append(op_name) | |||
| self._min_cycle_counter = min_cycle_counter | |||
| aicpu_dict = { | |||
| 'info': aicpu_info, | |||
| 'total_time': float(total_time), | |||
| 'op_exe_times': len(aicpu_info), | |||
| 'num_of_ops': len(op_count_list), | |||
| 'num_of_streams': 1 | |||
| } | |||
| return aicpu_dict | |||
| @property | |||
| def min_cycle_counter(self): | |||
| """Get minimum cycle counter in AI CPU.""" | |||
| return self._min_cycle_counter | |||
| @@ -1,99 +0,0 @@ | |||
| """The container of metadata used in profiler parser.""" | |||
| class HWTSContainer: | |||
| """ | |||
| HWTS output container. | |||
| Args: | |||
| split_list (list): The split list of metadata in HWTS output file. | |||
| """ | |||
| def __init__(self, split_list): | |||
| self._op_name = '' | |||
| self._duration = None | |||
| self._status = split_list[0] | |||
| self._task_id = split_list[6] | |||
| self._cycle_counter = float(split_list[7]) | |||
| self._stream_id = split_list[8] | |||
| @property | |||
| def status(self): | |||
| """Get the status of the operator, i.e. Start or End.""" | |||
| return self._status | |||
| @property | |||
| def task_id(self): | |||
| """Get the task id of the operator.""" | |||
| return self._task_id | |||
| @property | |||
| def cycle_counter(self): | |||
| """Get the cycle counter.""" | |||
| return self._cycle_counter | |||
| @property | |||
| def stream_id(self): | |||
| """Get the stream id of the operator.""" | |||
| return self._stream_id | |||
| @property | |||
| def op_name(self): | |||
| """Get the name of the operator.""" | |||
| return self._op_name | |||
| @op_name.setter | |||
| def op_name(self, name): | |||
| """Set the name of the operator.""" | |||
| self._op_name = name | |||
| @property | |||
| def duration(self): | |||
| """Get the duration of the operator execution.""" | |||
| return self._duration | |||
| @duration.setter | |||
| def duration(self, value): | |||
| """Set the duration of the operator execution.""" | |||
| self._duration = value | |||
| class TimelineContainer: | |||
| """ | |||
| A container of operator computation metadata. | |||
| Args: | |||
| split_list (list): The split list of metadata in op_compute output file. | |||
| """ | |||
| def __init__(self, split_list): | |||
| self._op_name = split_list[0] | |||
| self._stream_id = int(split_list[1]) | |||
| self._start_time = float(split_list[2]) | |||
| self._duration = float(split_list[3]) | |||
| self._pid = None | |||
| if len(split_list) == 5: | |||
| self._pid = int(split_list[4]) | |||
| @property | |||
| def op_name(self): | |||
| """Get the name of the operator.""" | |||
| return self._op_name | |||
| @property | |||
| def stream_id(self): | |||
| """Get the stream id of the operator.""" | |||
| return self._stream_id | |||
| @property | |||
| def start_time(self): | |||
| """Get the execution start time of the operator.""" | |||
| return self._start_time | |||
| @property | |||
| def duration(self): | |||
| """Get the duration of the operator execution.""" | |||
| return self._duration | |||
| @property | |||
| def pid(self): | |||
| """Get the pid of the operator execution.""" | |||
| return self._pid | |||
| @@ -1,598 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Thr parser for parsing framework files.""" | |||
| import csv | |||
| import enum | |||
| import json | |||
| import os | |||
| import re | |||
| from marshmallow import ValidationError | |||
| from mindinsight.profiler.common.exceptions.exceptions import \ | |||
| ProfilerPathErrorException, ProfilerDirNotFoundException, \ | |||
| ProfilerFileNotFoundException, ProfilerDeviceIdMismatchException, \ | |||
| ProfilerRawFileException, ProfilerParamValueErrorException | |||
| from mindinsight.profiler.common.validator.validate_path import \ | |||
| validate_and_normalize_path | |||
| class VmDataType(enum.IntEnum): | |||
| """Definition of vm data type.""" | |||
| NUMBER_TYPE_BEGIN = 26 | |||
| NUMBER_TYPE_BOOL = 27 | |||
| NUMBER_TYPE_INT = 28 | |||
| NUMBER_TYPE_INT8 = 29 | |||
| NUMBER_TYPE_INT16 = 30 | |||
| NUMBER_TYPE_INT32 = 31 | |||
| NUMBER_TYPE_INT64 = 32 | |||
| NUMBER_TYPE_UINT = 33 | |||
| NUMBER_TYPE_UINT8 = 34 | |||
| NUMBER_TYPE_UINT16 = 35 | |||
| NUMBER_TYPE_UINT32 = 36 | |||
| NUMBER_TYPE_UINT64 = 37 | |||
| NUMBER_TYPE_FLOAT = 38 | |||
| NUMBER_TYPE_FLOAT16 = 39 | |||
| NUMBER_TYPE_FLOAT32 = 40 | |||
| NUMBER_TYPE_FLOAT64 = 41 | |||
| NUMBER_TYPE_END = 42 | |||
| @classmethod | |||
| def get_data_type_name(cls, num): | |||
| """ | |||
| Get the name of data type by enum number. | |||
| Args: | |||
| num (int): Enum number. | |||
| Returns: | |||
| str, the name of data type. | |||
| """ | |||
| data_type = cls._value2member_map_.get(num) | |||
| return 'UNKNOWN' if data_type is None else data_type.name | |||
| class GeDataType(enum.IntEnum): | |||
| """Definition of ge data type.""" | |||
| DT_FLOAT = 0 | |||
| DT_FLOAT16 = 1 | |||
| DT_INT8 = 2 | |||
| DT_INT16 = 6 | |||
| DT_UINT16 = 7 | |||
| DT_UINT8 = 4 | |||
| DT_INT32 = 3 | |||
| DT_INT64 = 9 | |||
| DT_UINT32 = 8 | |||
| DT_UINT64 = 10 | |||
| DT_BOOL = 12 | |||
| DT_DOUBLE = 11 | |||
| DT_STRING = 13 | |||
| DT_DUAL_SUB_INT8 = 14 | |||
| DT_DUAL_SUB_UINT8 = 15 | |||
| DT_COMPLEX64 = 16 | |||
| DT_COMPLEX128 = 17 | |||
| DT_QINT8 = 18 | |||
| DT_QINT16 = 19 | |||
| DT_QINT32 = 20 | |||
| DT_QUINT8 = 21 | |||
| DT_QUINT16 = 22 | |||
| DT_RESOURCE = 23 | |||
| DT_STRING_REF = 24 | |||
| DT_DUAL = 25 | |||
| DT_UNDEFINED = 26 | |||
| @classmethod | |||
| def get_data_type_name(cls, num): | |||
| """ | |||
| Get the name of data type by enum number. | |||
| Args: | |||
| num (int): Enum number. | |||
| Returns: | |||
| str, the name of data type. | |||
| """ | |||
| data_type = cls._value2member_map_.get(num) | |||
| return 'UNKNOWN' if data_type is None else data_type.name | |||
| class GeFormat(enum.IntEnum): | |||
| """Definition of ge format type.""" | |||
| FORMAT_NCHW = 0 | |||
| FORMAT_NHWC = 1 | |||
| FORMAT_ND = 2 | |||
| FORMAT_NC1HWC0 = 3 | |||
| FORMAT_FRACTAL_Z = 4 | |||
| FORMAT_NC1C0HWPAD = 5 | |||
| FORMAT_NHWC1C0 = 6 | |||
| FORMAT_FSR_NCHW = 7 | |||
| FORMAT_FRACTAL_DECONV = 8 | |||
| FORMAT_C1HWNC0 = 9 | |||
| FORMAT_FRACTAL_DECONV_TRANSPOSE = 10 | |||
| FORMAT_FRACTAL_DECONV_SP_STRIDE_TRANS = 11 | |||
| FORMAT_NC1HWC0_C04 = 12 | |||
| FORMAT_FRACTAL_Z_C04 = 13 | |||
| FORMAT_CHWN = 14 | |||
| FORMAT_FRACTAL_DECONV_SP_STRIDE8_TRANS = 15 | |||
| FORMAT_HWCN = 16 | |||
| FORMAT_NC1KHKWHWC0 = 17 | |||
| FORMAT_BN_WEIGHT = 18 | |||
| FORMAT_FILTER_HWCK = 19 | |||
| FORMAT_HASHTABLE_LOOKUP_LOOKUPS = 20 | |||
| FORMAT_HASHTABLE_LOOKUP_KEYS = 21 | |||
| FORMAT_HASHTABLE_LOOKUP_VALUE = 22 | |||
| FORMAT_HASHTABLE_LOOKUP_OUTPUT = 23 | |||
| FORMAT_HASHTABLE_LOOKUP_HITS = 24 | |||
| FORMAT_C1HWNCOC0 = 25 | |||
| FORMAT_MD = 26 | |||
| FORMAT_NDHWC = 27 | |||
| FORMAT_FRACTAL_ZZ = 28 | |||
| FORMAT_FRACTAL_NZ = 29 | |||
| FORMAT_NCDHW = 30 | |||
| FORMAT_DHWCN = 31 | |||
| FORMAT_NDC1HWC0 = 32 | |||
| FORMAT_FRACTAL_Z_3D = 33 | |||
| FORMAT_CN = 34 | |||
| FORMAT_NC = 35 | |||
| FORMAT_DHWNC = 36 | |||
| FORMAT_FRACTAL_Z_3D_TRANSPOSE = 37 | |||
| FORMAT_RESERVED = 38 | |||
| FORMAT_ALL = 39 | |||
| @classmethod | |||
| def get_format_name(cls, num): | |||
| """ | |||
| Get the name of format type by enum number. | |||
| Args: | |||
| num (int): Enum number. | |||
| Returns: | |||
| str, the name of format type. | |||
| """ | |||
| format_type = cls._value2member_map_.get(num) | |||
| return 'UNKNOWN' if format_type is None else format_type.name | |||
| class FrameworkParser: | |||
| """ | |||
| Thr parser for parsing framework files. | |||
| Args: | |||
| profiling_id (str): The profiling ID. | |||
| device_id (str): The device ID. | |||
| output_path (str): The directory of the parsed file. Default: `./`. | |||
| """ | |||
| _raw_data_dir = '/var/log/npu/profiling' | |||
| _regex_framework = r'Framework\.host\.(?P<data_type>.+)\.(?P<device_id>\d).+' | |||
| _regex_framework_in_data = r'Framework\.host\.(?P<data_type>.+)\.' \ | |||
| r'(?P<device_id>\d)\.(?P<profiling_id>[a-zA-Z0-9]+).+' | |||
| _col_names = [ | |||
| 'task_id', 'stream_id', 'block_dim', 'full_op_name', 'op_name', | |||
| 'op_type', 'subgraph', 'op_info' | |||
| ] | |||
| _graph_attr_name = [ | |||
| 'input_format', 'input_data_type', 'input_shape', 'output_format', | |||
| 'output_data_type', 'output_shape' | |||
| ] | |||
| # if the task id is less than the task id threshold, The combination of | |||
| # task id and Stream id represents one operator, else the task id represents | |||
| # one operator | |||
| _task_id_threshold = 25000 | |||
| def __init__(self, profiling_id, device_id, output_path='./'): | |||
| self._profiling_path = self._get_raw_profiling_path(profiling_id) | |||
| self._backend_type = None | |||
| self._framework_path = {'graph': [], 'task': [], 'point': []} | |||
| self._search_file(profiling_id, device_id) | |||
| self._device_id = device_id | |||
| self._save_path = self._get_save_path(device_id, output_path) | |||
| self._task_id_full_op_name_dict = {} | |||
| self._task_cache = {} | |||
| self._point_info = {} | |||
| self._parse_task_files() | |||
| self._parse_point_files() | |||
| @property | |||
| def save_path(self): | |||
| """ | |||
| The property of save path. | |||
| Returns: | |||
| str, the save path. | |||
| """ | |||
| return self._save_path | |||
| @property | |||
| def point_info(self): | |||
| """ | |||
| The property of the framework point information. | |||
| Returns: | |||
| dict, the framework point information. | |||
| """ | |||
| return self._point_info | |||
| def to_task_id_full_op_name_dict(self): | |||
| """ | |||
| Get the task id and full operator name dict. | |||
| Returns: | |||
| dict, the task id and full operator name dict. | |||
| """ | |||
| return self._task_id_full_op_name_dict | |||
| def parse(self): | |||
| """Parse the framework files.""" | |||
| self._parse_graph_files_and_save(self._task_cache) | |||
| del self._task_cache | |||
| def check_op_name(self, op_name, is_prefix=True): | |||
| """ | |||
| Check whether the operator name exists. | |||
| Args: | |||
| op_name (str): The operator name or operator name prefix. | |||
| is_prefix (bool): `True` if the op_name is prefix, else `False`. | |||
| Default: True. | |||
| Returns: | |||
| bool, `True` if the operator name does exist in framework file, else | |||
| `False`. | |||
| """ | |||
| if not op_name: | |||
| raise ProfilerParamValueErrorException('The op_name should exist.') | |||
| for full_op_name in self._task_id_full_op_name_dict.values(): | |||
| if full_op_name: | |||
| if is_prefix and full_op_name.startswith(op_name): | |||
| return True | |||
| if not is_prefix and op_name == full_op_name: | |||
| return True | |||
| return False | |||
| def _get_raw_profiling_path(self, profiling_id): | |||
| """ | |||
| Get raw profiling path. | |||
| Args: | |||
| profiling_id (str): The profiling ID. | |||
| Returns: | |||
| str, the raw profiling path. | |||
| Raises: | |||
| ProfilerPathErrorException: If the profiling path is invalid. | |||
| ProfilerDirNotFoundException: If the profiling dir is not found. | |||
| """ | |||
| profiling_path = os.path.join(self._raw_data_dir, profiling_id) | |||
| try: | |||
| profiling_path = validate_and_normalize_path( | |||
| profiling_path, 'profiler' | |||
| ) | |||
| except ValidationError: | |||
| raise ProfilerPathErrorException('Profiling path is invalid.') | |||
| if not os.path.isdir(profiling_path): | |||
| raise ProfilerDirNotFoundException(profiling_path) | |||
| return profiling_path | |||
| def _search_file(self, profiling_id, device_id): | |||
| """ | |||
| Search all framework files in raw profiling path. | |||
| Args: | |||
| profiling_id (str): The profiling ID. | |||
| device_id (str): The device ID. | |||
| Raises: | |||
| ProfilerFileNotFoundException: If the framework files are not found. | |||
| """ | |||
| # first search in the JOB dir, and if not, search in the sub directory | |||
| # in the JOB | |||
| self._search_file_from_job_path(device_id, search_in_sub_path=False) | |||
| if self._backend_type is None: | |||
| self._search_file_from_job_path(device_id, search_in_sub_path=True) | |||
| self._search_file_from_data_path(profiling_id, device_id) | |||
| if self._backend_type is None: | |||
| raise ProfilerFileNotFoundException('Framework') | |||
| self._framework_path['graph'].sort() | |||
| self._framework_path['task'].sort() | |||
| def _search_file_from_job_path(self, device_id, search_in_sub_path=False): | |||
| """ | |||
| Search framework files from job path. | |||
| Args: | |||
| device_id (str): The device ID. | |||
| search_in_sub_path (bool): `True` if search file in profiling dir, | |||
| else search in profiling sub dir. Default: False. | |||
| Raises: | |||
| ProfilerRawFileException: If the framework file type is inconsistent. | |||
| ProfilerDeviceIdMismatchException: If the device id is mismatch | |||
| with framework in the raw dir. | |||
| """ | |||
| profiling_dir = os.path.join(self._profiling_path, 'data') \ | |||
| if search_in_sub_path else self._profiling_path | |||
| if not os.path.isdir(profiling_dir): | |||
| return | |||
| files = os.listdir(profiling_dir) | |||
| for file in files: | |||
| pattern = re.search(self._regex_framework, file) | |||
| if not pattern or file.endswith('.done'): | |||
| continue | |||
| attrs = pattern.groupdict() | |||
| device_id_in_path = attrs.get('device_id') | |||
| if device_id_in_path != device_id: | |||
| raise ProfilerDeviceIdMismatchException() | |||
| data_type = attrs.get('data_type') | |||
| if data_type.startswith('vm.'): | |||
| if self._backend_type and self._backend_type != 'vm': | |||
| raise ProfilerRawFileException('Backend type is inconsistent.') | |||
| self._backend_type = 'vm' | |||
| data_type = data_type.split('.')[1] | |||
| else: | |||
| if self._backend_type and self._backend_type != 'ge': | |||
| raise ProfilerRawFileException('Backend type is inconsistent.') | |||
| self._backend_type = 'ge' | |||
| if data_type.startswith('graph_desc_info'): | |||
| self._framework_path['graph'].append( | |||
| os.path.join(profiling_dir, file) | |||
| ) | |||
| elif data_type.startswith('task_desc_info'): | |||
| self._framework_path['task'].append( | |||
| os.path.join(profiling_dir, file) | |||
| ) | |||
| elif data_type.startswith('point'): | |||
| self._framework_path['point'].append( | |||
| os.path.join(profiling_dir, file) | |||
| ) | |||
| def _search_file_from_data_path(self, profiling_id, device_id): | |||
| """ | |||
| Search framework files from data path. | |||
| Args: | |||
| profiling_id (str): The profiling ID. | |||
| device_id (str): The device ID. | |||
| Raises: | |||
| ProfilerRawFileException: If the framework file type is inconsistent. | |||
| ProfilerDeviceIdMismatchException: If the device id is mismatch | |||
| with framework in the raw dir. | |||
| """ | |||
| profiling_data_path = os.path.join( | |||
| self._raw_data_dir, 'container', device_id, 'data' | |||
| ) | |||
| if not os.path.isdir(profiling_data_path): | |||
| return | |||
| files = os.listdir(profiling_data_path) | |||
| for file in files: | |||
| pattern = re.search(self._regex_framework_in_data, file) | |||
| if not pattern or file.endswith('.done') or file.endswith('.zip'): | |||
| continue | |||
| attrs = pattern.groupdict() | |||
| profiling_id_in_path = attrs.get('profiling_id') | |||
| if profiling_id_in_path != profiling_id: | |||
| continue | |||
| device_id_in_path = attrs.get('device_id') | |||
| if device_id_in_path != device_id: | |||
| raise ProfilerDeviceIdMismatchException() | |||
| data_type = attrs.get('data_type') | |||
| if data_type.startswith('vm.'): | |||
| if self._backend_type and self._backend_type != 'vm': | |||
| raise ProfilerRawFileException('Backend type is inconsistent.') | |||
| self._backend_type = 'vm' | |||
| data_type = data_type.split('.')[1] | |||
| else: | |||
| if self._backend_type and self._backend_type != 'ge': | |||
| raise ProfilerRawFileException('Backend type is inconsistent.') | |||
| self._backend_type = 'ge' | |||
| if data_type.startswith('graph_desc_info'): | |||
| self._framework_path['graph'].append( | |||
| os.path.join(profiling_data_path, file) | |||
| ) | |||
| elif data_type.startswith('task_desc_info'): | |||
| self._framework_path['task'].append( | |||
| os.path.join(profiling_data_path, file) | |||
| ) | |||
| elif data_type.startswith('point'): | |||
| self._framework_path['point'].append( | |||
| os.path.join(profiling_data_path, file) | |||
| ) | |||
| def _get_save_path(self, device_id, output_path): | |||
| """ | |||
| Get the save path. | |||
| Args: | |||
| device_id (str): The device ID. | |||
| output_path (str): The output dir. | |||
| Returns: | |||
| str, the save path. | |||
| Raises: | |||
| ProfilerPathErrorException: If the output path is invalid. | |||
| ProfilerDirNotFoundException: If the output dir is not found. | |||
| """ | |||
| try: | |||
| output_dir = validate_and_normalize_path(output_path, 'profiler') | |||
| except ValidationError: | |||
| raise ProfilerPathErrorException('Output path is invalid.') | |||
| if not os.path.isdir(output_dir): | |||
| raise ProfilerDirNotFoundException(output_dir) | |||
| return os.path.join( | |||
| output_dir, '_'.join(['framework', 'raw', device_id]) + '.csv' | |||
| ) | |||
| def _parse_task_files(self): | |||
| """Parse the framework task files.""" | |||
| for path in self._framework_path['task']: | |||
| with open(path, 'r') as file: | |||
| for task_info in file: | |||
| infos = task_info.strip('\n').split(' ') | |||
| # key is op name, values is task id, stream id, block_dim | |||
| self._task_cache[infos[0]] = [infos[2], infos[3], infos[1]] | |||
| # if the task id is less than the task id threshold, the | |||
| # stream id and task id correspond to an operator | |||
| task_id = infos[2] | |||
| if int(task_id) < self._task_id_threshold: | |||
| task_id = '_'.join([infos[3], task_id]) | |||
| self._task_id_full_op_name_dict[task_id] = infos[0] | |||
| def _parse_graph_files_and_save(self, task_cache): | |||
| """ | |||
| Parse the framework graph files and save the framework information. | |||
| Args: | |||
| task_cache (dict): The task information cache. | |||
| """ | |||
| with open(self._save_path, 'w') as save_file: | |||
| csv_writer = csv.writer(save_file) | |||
| csv_writer.writerow(self._col_names) | |||
| for path in self._framework_path['graph']: | |||
| with open(path, 'r') as graph_file: | |||
| for graph_info in graph_file: | |||
| result = self._parse_one_row_graph_info(graph_info) | |||
| task_info = task_cache.get(result[0]) | |||
| if task_info: | |||
| task_info.extend(result) | |||
| csv_writer.writerow(task_info) | |||
| del task_cache[result[0]] | |||
| else: | |||
| save_info = [None, None, None] | |||
| save_info.extend(result) | |||
| csv_writer.writerow(save_info) | |||
| none_list = [None, None, None, None] | |||
| for key, value in task_cache.items(): | |||
| value.append(key) | |||
| value.extend(none_list) | |||
| csv_writer.writerow(value) | |||
| def _parse_one_row_graph_info(self, row_info): | |||
| """ | |||
| Parse the graph information in one row. | |||
| Args: | |||
| row_info (str): One row graph information. | |||
| Returns: | |||
| list[str], the parsed graph information. | |||
| """ | |||
| full_op_name = None | |||
| op_name = None | |||
| subgraph_name = None | |||
| op_type = None | |||
| op_info = dict() | |||
| cur_op_info_key = None | |||
| infos = row_info.strip('\n').split(' ') | |||
| for info in infos: | |||
| attr_name, attr_value = info.split(':', 1) | |||
| if attr_name == 'op_name': | |||
| full_op_name = attr_value | |||
| subgraph_name = self._get_subgraph_name(full_op_name) | |||
| op_name = self._get_op_name(full_op_name, subgraph_name) | |||
| elif attr_name == 'op_type': | |||
| op_type = attr_value | |||
| elif attr_name in ['input_id', 'output_id']: | |||
| cur_op_info_key = '{}_{}'.format( | |||
| attr_name.split('_')[0], attr_value | |||
| ) | |||
| op_info[cur_op_info_key] = dict() | |||
| elif attr_name in self._graph_attr_name: | |||
| op_attr = attr_name.split('_', 1)[1] | |||
| if op_attr == 'shape': | |||
| attr_value = attr_value.strip('"') | |||
| if self._backend_type == 'vm': | |||
| if op_attr == 'data_type': | |||
| attr_value = VmDataType.get_data_type_name( | |||
| int(attr_value) | |||
| ) | |||
| else: | |||
| if op_attr == 'data_type': | |||
| attr_value = GeDataType.get_data_type_name( | |||
| int(attr_value) | |||
| ) | |||
| elif op_attr == 'format': | |||
| attr_value = GeFormat.get_format_name(int(attr_value)) | |||
| op_info[cur_op_info_key][op_attr] = attr_value | |||
| # the list info are full_op_name, op_name, op_type, subgraph, op_info | |||
| return [full_op_name, op_name, op_type, subgraph_name, | |||
| json.dumps(op_info)] | |||
| def _get_subgraph_name(self, full_op_name): | |||
| """ | |||
| Get subgraph name. | |||
| Args: | |||
| full_op_name (str): The full operator name. | |||
| Returns: | |||
| str, the subgraph name. | |||
| """ | |||
| subgraph_name = full_op_name.split('/', 1)[0] | |||
| if subgraph_name in ['Default', 'Gradients']: | |||
| return subgraph_name | |||
| return None | |||
| def _get_op_name(self, full_op_name, subgraph_name): | |||
| """ | |||
| Get operator name. | |||
| Args: | |||
| full_op_name (str): The full operator name. | |||
| subgraph_name (str): The subgraph name. | |||
| Returns: | |||
| str, the operator name. | |||
| """ | |||
| if subgraph_name is None: | |||
| return full_op_name | |||
| if self._backend_type == 'vm': | |||
| return full_op_name.split('/')[-1] | |||
| strs = full_op_name.split(subgraph_name + '/') | |||
| op_name = None | |||
| for name_str in strs: | |||
| if not name_str: | |||
| continue | |||
| if op_name is None: | |||
| op_name = name_str.split('/')[-1] | |||
| else: | |||
| op_name = '+'.join([op_name, name_str.split('/')[-1]]) | |||
| return op_name | |||
| def _parse_point_files(self): | |||
| """Parse the framework point files.""" | |||
| for path in self._framework_path['point']: | |||
| with open(path, 'r') as file: | |||
| for point_info in file: | |||
| infos = point_info.strip('\n').split(' ') | |||
| self._point_info[int(infos[0])] = infos[1] | |||
| @@ -1,109 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """The parser for hwts log file.""" | |||
| import os | |||
| import struct | |||
| from mindinsight.profiler.common._utils import fwrite_format, get_file_join_name | |||
| from mindinsight.profiler.common.log import logger | |||
| class HWTSLogParser: | |||
| """ | |||
| The Parser for hwts log files. | |||
| Args: | |||
| _input_path (str): The profiling job path. Such as: '/var/log/npu/profiling/JOBAIFGJEJFEDCBAEADIFJAAAAAAAAAA". | |||
| output_filename (str): The output data path and name. Such as: './output_format_data_hwts_0.txt'. | |||
| """ | |||
| _source_file_target = 'hwts.log.data.45.dev.profiler_default_tag' | |||
| _dst_file_title = 'title:45 HWTS data' | |||
| _dst_file_column_title = 'Type cnt Core_ID Block_ID Task_ID Cycle_counter Stream_ID' | |||
| def __init__(self, input_path, output_filename): | |||
| self._input_path = input_path | |||
| self._output_filename = output_filename | |||
| self._source_flie_name = self._get_source_file() | |||
| def _get_source_file(self): | |||
| """Get hwts log file name, which was created by ada service.""" | |||
| file_name = get_file_join_name(self._input_path, self._source_file_target) | |||
| if not file_name: | |||
| data_path = os.path.join(self._input_path, "data") | |||
| file_name = get_file_join_name(data_path, self._source_file_target) | |||
| if not file_name: | |||
| msg = ("Fail to find hwts log file, under profiling directory") | |||
| raise RuntimeError(msg) | |||
| return file_name | |||
| def execute(self): | |||
| """ | |||
| Execute the parser, get result data, and write it to the output file. | |||
| Returns: | |||
| bool, whether succeed to analyse hwts log. | |||
| """ | |||
| content_format = ['QIIIIIIIIIIII', 'QIIQIIIIIIII', 'IIIIQIIIIIIII'] | |||
| log_type = ['Start of task', 'End of task', 'Start of block', 'End of block', 'Block PMU'] | |||
| result_data = "" | |||
| with open(self._source_flie_name, 'rb') as hwts_data: | |||
| while True: | |||
| line = hwts_data.read(64) | |||
| if line: | |||
| if not line.strip(): | |||
| continue | |||
| else: | |||
| break | |||
| byte_first_four = struct.unpack('BBHHH', line[0:8]) | |||
| byte_first = bin(byte_first_four[0]).replace('0b', '').zfill(8) | |||
| ms_type = byte_first[-3:] | |||
| is_warn_res0_ov = byte_first[4] | |||
| cnt = int(byte_first[0:4], 2) | |||
| core_id = byte_first_four[1] | |||
| blk_id, task_id = byte_first_four[3], byte_first_four[4] | |||
| if ms_type in ['000', '001', '010']: # log type 0,1,2 | |||
| result = struct.unpack(content_format[0], line[8:]) | |||
| syscnt = result[0] | |||
| stream_id = result[1] | |||
| elif ms_type == '011': # log type 3 | |||
| result = struct.unpack(content_format[1], line[8:]) | |||
| syscnt = result[0] | |||
| stream_id = result[1] | |||
| elif ms_type == '100': # log type 4 | |||
| result = struct.unpack(content_format[2], line[8:]) | |||
| stream_id = result[2] | |||
| if is_warn_res0_ov == '0': | |||
| syscnt = result[4] | |||
| else: | |||
| syscnt = None | |||
| else: | |||
| logger.info("Profiling: invalid hwts log record type %s", ms_type) | |||
| continue | |||
| if int(task_id) < 25000: | |||
| task_id = str(stream_id) + "_" + str(task_id) | |||
| result_data += ("%-14s %-4s %-8s %-9s %-8s %-15s %s\n" %(log_type[int(ms_type, 2)], cnt, core_id, | |||
| blk_id, task_id, syscnt, stream_id)) | |||
| fwrite_format(self._output_filename, data_source=self._dst_file_title, is_start=True) | |||
| fwrite_format(self._output_filename, data_source=self._dst_file_column_title) | |||
| fwrite_format(self._output_filename, data_source=result_data) | |||
| return True | |||
| @@ -1,93 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Minddata aicpu parser.""" | |||
| import os | |||
| from tabulate import tabulate | |||
| from mindinsight.profiler.common._utils import get_file_join_name, fwrite_format | |||
| from mindinsight.profiler.common.log import logger | |||
| class MinddataParser: | |||
| """Minddata Aicpu Parser.""" | |||
| @staticmethod | |||
| def parse_minddata_aicpu_data(minddata_aicpu_source_path): | |||
| """ | |||
| Parse minddata get_next info which contains queue size and execute time. | |||
| Args: | |||
| minddata_aicpu_source_path (str): the source file path. | |||
| Returns: | |||
| list[Union[str, float]], the converted data. | |||
| """ | |||
| result = list() | |||
| try: | |||
| with open(minddata_aicpu_source_path) as source_data_file: | |||
| source_data = source_data_file.read() | |||
| step_data = source_data.split("\x00") | |||
| for one_step in step_data: | |||
| if one_step: | |||
| node_info = one_step.split(", ") | |||
| node_name, node_start, node_end, queue_size = "", 0, 0, 0 | |||
| if node_info: | |||
| node_name = node_info[0].replace("Node:", "") | |||
| if len(node_info) > 2: | |||
| node_start = node_info[1].replace("Run start:", "") | |||
| if node_start.isdigit(): | |||
| node_start = int(node_start) | |||
| node_end = node_info[2].replace("Run end:", "") | |||
| if node_end.isdigit(): | |||
| node_end = int(node_end) | |||
| if len(node_info) > 3: | |||
| queue_size = node_info[3].replace("queue size:", "") | |||
| if queue_size.isdigit(): | |||
| queue_size = int(queue_size) | |||
| one_step_list = [node_name, node_start, node_end, queue_size] | |||
| result.append(one_step_list) | |||
| except OSError: | |||
| logger.error("Open get_next profiling file error.") | |||
| return result | |||
| @staticmethod | |||
| def execute(source_path, output_path, device_id): | |||
| """ | |||
| Execute the parser. | |||
| Args: | |||
| source_path (str): the source file path. | |||
| output_path (str): the output file path. | |||
| device_id (str): the device id. | |||
| """ | |||
| col_names = ["node_name", "start_time", "end_time", "queue_size"] | |||
| minddata_aicpu_source_path = get_file_join_name( | |||
| input_path=source_path, file_name='DATA_PREPROCESS.dev.AICPUMI') | |||
| if not minddata_aicpu_source_path: | |||
| minddata_aicpu_source_path = get_file_join_name( | |||
| input_path=os.path.join(source_path, "data"), file_name='DATA_PREPROCESS.dev.AICPUMI') | |||
| if not minddata_aicpu_source_path: | |||
| return | |||
| minddata_aicpu_output_path = os.path.join(output_path, "minddata_aicpu_" + device_id + ".txt") | |||
| minddata_aicpu_data = MinddataParser.parse_minddata_aicpu_data(minddata_aicpu_source_path) | |||
| if minddata_aicpu_data: | |||
| fwrite_format( | |||
| minddata_aicpu_output_path, | |||
| tabulate(minddata_aicpu_data, col_names, tablefmt='simple'), | |||
| is_start=True | |||
| ) | |||
| @@ -1,289 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Thr parser for parsing minddata pipeline files.""" | |||
| import csv | |||
| import json | |||
| import os | |||
| from queue import Queue | |||
| from marshmallow import ValidationError | |||
| from mindinsight.profiler.common.exceptions.exceptions import \ | |||
| ProfilerPathErrorException, ProfilerFileNotFoundException, \ | |||
| ProfilerDirNotFoundException, ProfilerRawFileException | |||
| from mindinsight.profiler.common.log import logger | |||
| from mindinsight.profiler.common.validator.validate_path import \ | |||
| validate_and_normalize_path | |||
| class MinddataPipelineParser: | |||
| """ | |||
| Thr parser for parsing minddata pipeline files. | |||
| Args: | |||
| source_dir (str): The minddata pipeline source dir. | |||
| device_id (str): The device ID. | |||
| output_path (str): The directory of the parsed file. Default: `./`. | |||
| Raises: | |||
| ProfilerPathErrorException: If the minddata pipeline file path or | |||
| the output path is invalid. | |||
| ProfilerFileNotFoundException: If the minddata pipeline file or | |||
| the output dir does not exist. | |||
| """ | |||
| _raw_pipeline_file_name = 'pipeline_profiling_{}.json' | |||
| _parsed_pipeline_file_name = 'minddata_pipeline_raw_{}.csv' | |||
| _col_names = [ | |||
| 'op_id', 'op_type', 'num_workers', 'output_queue_size', | |||
| 'output_queue_average_size', 'output_queue_length', | |||
| 'output_queue_usage_rate', 'sample_interval', 'parent_id', 'children_id' | |||
| ] | |||
| def __init__(self, source_dir, device_id, output_path='./'): | |||
| self._device_id = device_id | |||
| self._pipeline_path = self._get_pipeline_path(source_dir) | |||
| self._save_path = self._get_save_path(output_path) | |||
| @property | |||
| def save_path(self): | |||
| """ | |||
| The property of save path. | |||
| Returns: | |||
| str, the save path. | |||
| """ | |||
| return self._save_path | |||
| def parse(self): | |||
| """ | |||
| Parse the minddata pipeline files. | |||
| Raises: | |||
| ProfilerRawFileException: If fails to parse the raw file of | |||
| minddata pipeline or the file is empty. | |||
| """ | |||
| with open(self._pipeline_path, 'r') as file: | |||
| try: | |||
| pipeline_info = json.load(file) | |||
| except (json.JSONDecodeError, TypeError) as err: | |||
| logger.exception(err) | |||
| raise ProfilerRawFileException( | |||
| 'Fail to parse minddata pipeline file.' | |||
| ) | |||
| if not pipeline_info: | |||
| logger.warning('The minddata pipeline file is empty.') | |||
| raise ProfilerRawFileException( | |||
| 'The minddata pipeline file is empty.' | |||
| ) | |||
| self._parse_and_save(pipeline_info) | |||
| def _get_pipeline_path(self, source_dir): | |||
| """ | |||
| Get the minddata pipeline file path. | |||
| Args: | |||
| source_dir (str): The minddata pipeline source dir. | |||
| Returns: | |||
| str, the minddata pipeline file path. | |||
| """ | |||
| pipeline_path = os.path.join( | |||
| source_dir, | |||
| self._raw_pipeline_file_name.format(self._device_id) | |||
| ) | |||
| try: | |||
| pipeline_path = validate_and_normalize_path(pipeline_path, 'profiler') | |||
| except ValidationError: | |||
| logger.warning('Minddata pipeline file is invalid.') | |||
| raise ProfilerPathErrorException('Minddata pipeline file is invalid.') | |||
| if not os.path.isfile(pipeline_path): | |||
| logger.warning( | |||
| 'The minddata pipeline file <%s> not found.', pipeline_path | |||
| ) | |||
| raise ProfilerFileNotFoundException(pipeline_path) | |||
| return pipeline_path | |||
| def _get_save_path(self, output_path): | |||
| """ | |||
| Get the save path. | |||
| Args: | |||
| output_path (str): The output dir. | |||
| Returns: | |||
| str, the save path. | |||
| """ | |||
| try: | |||
| output_dir = validate_and_normalize_path(output_path, 'profiler') | |||
| except ValidationError: | |||
| logger.warning('Output path is invalid.') | |||
| raise ProfilerPathErrorException('Output path is invalid.') | |||
| if not os.path.isdir(output_dir): | |||
| logger.warning('The output dir <%s> not found.', output_dir) | |||
| raise ProfilerDirNotFoundException(output_dir) | |||
| return os.path.join( | |||
| output_dir, self._parsed_pipeline_file_name.format(self._device_id) | |||
| ) | |||
| def _parse_and_save(self, pipeline_info): | |||
| """ | |||
| Parse and save the parsed minddata pipeline file. | |||
| Args: | |||
| pipeline_info (dict): The pipeline info reads from the raw file of | |||
| the minddata pipeline. | |||
| Raises: | |||
| ProfilerRawFileException: If the format of minddata pipeline raw | |||
| file is wrong. | |||
| """ | |||
| sample_interval = pipeline_info.get('sampling_interval') | |||
| op_info = pipeline_info.get('op_info') | |||
| if sample_interval is None or not op_info: | |||
| raise ProfilerRawFileException( | |||
| 'The format of minddata pipeline raw file is wrong.' | |||
| ) | |||
| op_id_info_cache = {} | |||
| for item in op_info: | |||
| op_id_info_cache[item.get('op_id')] = item | |||
| with open(self._save_path, 'w') as save_file: | |||
| csv_writer = csv.writer(save_file) | |||
| csv_writer.writerow(self._col_names) | |||
| self._parse_and_save_op_info( | |||
| csv_writer, op_id_info_cache, sample_interval | |||
| ) | |||
| def _parse_and_save_op_info(self, csv_writer, op_id_info_cache, | |||
| sample_interval): | |||
| """ | |||
| Parse and save the minddata pipeline operator information. | |||
| Args: | |||
| csv_writer (csv.writer): The csv writer. | |||
| op_id_info_cache (dict): The operator id and information cache. | |||
| sample_interval (int): The sample interval. | |||
| Raises: | |||
| ProfilerRawFileException: If the operator that id is 0 does not exist. | |||
| """ | |||
| queue = Queue() | |||
| root_node = op_id_info_cache.get(0) | |||
| if not root_node: | |||
| raise ProfilerRawFileException( | |||
| 'The format of minddata pipeline raw file is wrong, ' | |||
| 'the operator that id is 0 does not exist.' | |||
| ) | |||
| root_node['parent_id'] = None | |||
| queue.put_nowait(root_node) | |||
| while not queue.empty(): | |||
| node = queue.get_nowait() | |||
| self._update_child_node(node, op_id_info_cache) | |||
| csv_writer.writerow(self._get_op_info(node, sample_interval)) | |||
| op_id = node.get('op_id') | |||
| children_ids = node.get('children') | |||
| if not children_ids: | |||
| continue | |||
| for child_op_id in children_ids: | |||
| sub_node = op_id_info_cache.get(child_op_id) | |||
| sub_node['parent_id'] = op_id | |||
| queue.put_nowait(sub_node) | |||
| def _update_child_node(self, node, op_id_info_cache): | |||
| """ | |||
| Updates the child node information of the operator. | |||
| Args: | |||
| node (dict): The node represents an operator. | |||
| op_id_info_cache (dict): The operator id and information cache. | |||
| """ | |||
| child_op_ids = node.get('children') | |||
| if not child_op_ids: | |||
| return | |||
| queue = Queue() | |||
| self._cp_list_item_to_queue(child_op_ids, queue) | |||
| new_child_op_ids = [] | |||
| while not queue.empty(): | |||
| child_op_id = queue.get_nowait() | |||
| child_node = op_id_info_cache.get(child_op_id) | |||
| if child_node is None: | |||
| continue | |||
| metrics = child_node.get('metrics') | |||
| if not metrics or not metrics.get('output_queue'): | |||
| op_ids = child_node.get('children') | |||
| if op_ids: | |||
| self._cp_list_item_to_queue(op_ids, queue) | |||
| else: | |||
| new_child_op_ids.append(child_op_id) | |||
| node['children'] = new_child_op_ids | |||
| def _get_op_info(self, op_node, sample_interval): | |||
| """ | |||
| Get the operator information. | |||
| Args: | |||
| op_node (dict): The node represents an operator. | |||
| sample_interval (int): The sample interval. | |||
| Returns: | |||
| list[str, int, float], the operator information. | |||
| """ | |||
| queue_size = None | |||
| queue_average_size = None | |||
| queue_length = None | |||
| queue_usage_rate = None | |||
| metrics = op_node.get('metrics') | |||
| if metrics: | |||
| output_queue = metrics.get('output_queue') | |||
| if output_queue: | |||
| queue_size = output_queue.get('size') | |||
| queue_average_size = sum(queue_size) / len(queue_size) | |||
| queue_length = output_queue.get('length') | |||
| queue_usage_rate = queue_average_size / queue_length | |||
| children_id = op_node.get('children') | |||
| op_info = [ | |||
| op_node.get('op_id'), | |||
| op_node.get('op_type'), | |||
| op_node.get('num_workers'), | |||
| queue_size, | |||
| queue_average_size, | |||
| queue_length, | |||
| queue_usage_rate, | |||
| sample_interval, | |||
| op_node.get('parent_id'), | |||
| children_id if children_id else None | |||
| ] | |||
| return op_info | |||
| def _cp_list_item_to_queue(self, inner_list, queue): | |||
| """ | |||
| Copy the contents of a list to a queue. | |||
| Args: | |||
| inner_list (list): The list. | |||
| queue (Queue): The target queue. | |||
| """ | |||
| for item in inner_list: | |||
| queue.put_nowait(item) | |||
| @@ -1,247 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Op compute time files parser.""" | |||
| import os | |||
| from mindinsight.profiler.common._utils import fwrite_format | |||
| from mindinsight.profiler.common.exceptions.exceptions import ProfilerFileNotFoundException, \ | |||
| ProfilerIOException | |||
| from mindinsight.profiler.common.log import logger | |||
| from mindinsight.profiler.common.validator.validate_path import validate_and_normalize_path | |||
| from mindinsight.profiler.parser.container import HWTSContainer | |||
| TIMELINE_FILE_COLUMN_TITLE = 'op_name, stream_id, start_time(ms), duration(ms)' | |||
| class OPComputeTimeParser: | |||
| """ | |||
| Join hwts info and framework info, get op time info, and output to the result file. | |||
| Args: | |||
| hwts_output_file (str): The file path of hwts_output_file. Such as: './output_format_data_hwts_0.txt". | |||
| output_filename (str): The output data file path and name. Such as: './output_op_compute_time_0.txt'. | |||
| op_task_info (dict): The task and op relation info. The format: {task_id, [opname, stream_id, block dim]}. | |||
| """ | |||
| _dst_file_title = 'title:op compute time' | |||
| _dst_file_column_title = 'op_name compute_time(ms) stream_id' | |||
| _dst_file_column_title += '\n------------ --------------- ---------' | |||
| def __init__(self, hwts_output_file, output_filename, op_task_info, | |||
| output_path, device_id): | |||
| hwts_output_file = validate_and_normalize_path( | |||
| hwts_output_file, raise_key='Invalid hwts output file path.' | |||
| ) | |||
| self._hwts_output_file = hwts_output_file | |||
| self._output_filename = output_filename | |||
| self._op_task_info = op_task_info | |||
| self._output_path = output_path | |||
| self._device_id = device_id | |||
| self._min_cycle_counter = float("inf") | |||
| def _get_op_task_id_map(self): | |||
| """ | |||
| Read hwts data file, get the task time info. | |||
| Returns: | |||
| list: all hwts task time info. | |||
| """ | |||
| op_map_result = [] | |||
| hwts_list = [] | |||
| if not os.path.exists(self._hwts_output_file): | |||
| logger.error('The hwts output file does not exist.') | |||
| raise ProfilerFileNotFoundException('hwts output file') | |||
| with open(self._hwts_output_file, 'r') as data_file: | |||
| lines = data_file.readlines() | |||
| for line in lines: | |||
| if line.startswith("Start of task") or line.startswith("End of task"): | |||
| line_split = line.split() | |||
| container = HWTSContainer(line_split) | |||
| hwts_list.append(container) | |||
| # hwts op map by taskId | |||
| for hwts in hwts_list: | |||
| if hwts.task_id in self._op_task_info.keys(): | |||
| hwts.op_name = self._op_task_info[hwts.task_id] | |||
| op_map_result.append(hwts) | |||
| return op_map_result | |||
| def execute(self): | |||
| """Execute the parser, compute all op, get op time, and write it to the output file.""" | |||
| # Calculate the execution time of operators, | |||
| # and update the minimum cycle counter. | |||
| tmp_result_data = self._calculate_op_execution_time() | |||
| # Convert time units from nanoseconds to milliseconds. | |||
| # The unit of the cycle counter is 10 nanoseconds. | |||
| op_name_time_dict = {} | |||
| op_name_stream_dict = {} | |||
| op_name_count_dict = {} | |||
| op_name_task_dict = {} | |||
| op_name_start_time = {} | |||
| self._convert_op_time_unit( | |||
| tmp_result_data, op_name_time_dict, op_name_stream_dict, | |||
| op_name_count_dict, op_name_task_dict, op_name_start_time | |||
| ) | |||
| result_data = "" | |||
| total_time = 0 | |||
| for op_name, time in op_name_time_dict.items(): | |||
| if op_name in op_name_stream_dict.keys(): | |||
| stream_id = op_name_stream_dict[op_name] | |||
| avg_time = time / op_name_count_dict[op_name] | |||
| total_time += avg_time | |||
| result_data += ("%s %s %s\n" %(op_name, str(avg_time), stream_id)) | |||
| result_data += ("total op %s 0" %(str(total_time))) | |||
| timeline_data = [] | |||
| for op_name, time in op_name_time_dict.items(): | |||
| if op_name in op_name_stream_dict.keys(): | |||
| stream_id = op_name_stream_dict[op_name] | |||
| start_time_list = op_name_start_time.get(op_name) | |||
| for (start_time, duration) in start_time_list: | |||
| timeline_data.append([op_name, stream_id, start_time, duration]) | |||
| # Write the metadata of operators into the file, | |||
| # including operator name, average time, and stream id. | |||
| self._write_op_time_into_file(result_data) | |||
| # Write the timeline data into file, | |||
| # including operator name, stream id, start time, and duration. | |||
| self._write_timeline_data_into_file(timeline_data) | |||
| def _write_op_time_into_file(self, result_data): | |||
| """ | |||
| Write the metadata of operators into the file, including | |||
| op name, average time, and stream id. | |||
| Args: | |||
| result_data (str): The metadata to be written into the file. | |||
| 'op_name_1', 'avg_time_1', 'stream_id_1', | |||
| 'op_name_2', 'avg_time_2', 'stream_id_2', | |||
| ... | |||
| """ | |||
| fwrite_format(self._output_filename, data_source=self._dst_file_title, is_start=True) | |||
| fwrite_format(self._output_filename, data_source=self._dst_file_column_title) | |||
| fwrite_format(self._output_filename, data_source=result_data) | |||
| def _write_timeline_data_into_file(self, timeline_data): | |||
| """ | |||
| Write the timeline information into the file, including | |||
| operator name, stream id, start time and duration. | |||
| Args: | |||
| timeline_data (list): The metadata to be written into the file. | |||
| [ | |||
| ['op_name_1', 'stream_id_1', 'start_time_1', 'durarion_1'], | |||
| ['op_name_2', 'stream_id_2', 'start_time_2', 'durarion_2'], | |||
| [...] | |||
| ] | |||
| """ | |||
| # sorted by start times | |||
| timeline_data.sort(key=lambda x: float(x[2])) | |||
| filename = 'output_timeline_data_{}.txt'.format(self._device_id) | |||
| file_path = os.path.join(self._output_path, filename) | |||
| file_path = validate_and_normalize_path(file_path, raise_key='Invalid file path of timeline data.') | |||
| # write to file | |||
| try: | |||
| with open(file_path, 'w') as f_obj: | |||
| f_obj.write(TIMELINE_FILE_COLUMN_TITLE + '\n') | |||
| for timeline in timeline_data: | |||
| timeline = [str(item) for item in timeline] | |||
| f_obj.write(','.join(timeline) + '\n') | |||
| except (IOError, OSError) as err: | |||
| logger.error('Error occurred when writing intermediate timeline file: %s', err) | |||
| raise ProfilerIOException | |||
| def _calculate_op_execution_time(self): | |||
| """ | |||
| Calculate the execution time of each operator. | |||
| Returns: | |||
| list, including the intermediate data of op execution time. | |||
| """ | |||
| tmp_result_data = [] | |||
| op_map_list = self._get_op_task_id_map() | |||
| cur_index = 0 | |||
| length = len(op_map_list) | |||
| min_cycle_counter = float("inf") | |||
| while cur_index < length: | |||
| if cur_index + 1 == length: | |||
| break | |||
| op_start = op_map_list[cur_index] | |||
| op_end = op_map_list[cur_index + 1] | |||
| if op_start.status == "Start" and op_end.status == "End" \ | |||
| and op_start.op_name == op_end.op_name: | |||
| op_start.duration = op_end.cycle_counter - op_start.cycle_counter | |||
| tmp_result_data.append(op_start) | |||
| cur_index += 2 | |||
| if not op_start.op_name.startswith("assign"): | |||
| min_cycle_counter = min(min_cycle_counter, op_start.cycle_counter) | |||
| else: | |||
| cur_index += 1 | |||
| # Update the value of minimum cycle counter. | |||
| self._min_cycle_counter = min_cycle_counter / 1e5 # Convert the time unit from 10ns to 1ms | |||
| return tmp_result_data | |||
| def _convert_op_time_unit(self, op_data_list, op_name_time_dict, op_name_stream_dict, | |||
| op_name_count_dict, op_name_task_dict, op_name_start_time): | |||
| """ | |||
| Calculate the execution time of operator and convert it into millisecond. | |||
| Args: | |||
| op_data_list (list): The list of operator metadata. | |||
| op_name_time_dict (dict): The mapping relation of operator name and its execution time. | |||
| op_name_stream_dict (dict): The mapping relation of operator name and its stream id. | |||
| op_name_count_dict (dict): The mapping relation of operator name and its count. | |||
| op_name_task_dict (dict): The mapping relation of operator name and its task id. | |||
| op_name_start_time (dict): The mapping relation of operator name and its start time. | |||
| """ | |||
| factor = 1e5 | |||
| for item in op_data_list: | |||
| op_name = item.op_name | |||
| # Unit conversion: converting the cycle counter into ms. | |||
| op_start_time_str = str(item.cycle_counter / factor) | |||
| op_duration = item.duration / factor | |||
| op_duration_str = str(item.duration / factor) | |||
| if op_name in op_name_time_dict.keys(): | |||
| op_name_time_dict[op_name] += op_duration | |||
| if item.task_id == op_name_task_dict[op_name]: | |||
| op_name_count_dict[op_name] += 1 | |||
| op_name_start_time[op_name].append( | |||
| (op_start_time_str, op_duration_str) | |||
| ) | |||
| else: | |||
| op_name_time_dict[op_name] = op_duration | |||
| op_name_stream_dict[op_name] = item.stream_id | |||
| op_name_task_dict[op_name] = item.task_id | |||
| op_name_count_dict[op_name] = 1 | |||
| op_name_start_time[op_name] = [] | |||
| op_name_start_time[op_name].append( | |||
| (op_start_time_str, op_duration_str) | |||
| ) | |||
| @property | |||
| def min_cycle_counter(self): | |||
| """Get minimum cycle counter.""" | |||
| return self._min_cycle_counter | |||
| @@ -1,312 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """The parser for step trace data.""" | |||
| import csv | |||
| import json | |||
| import os | |||
| import stat | |||
| import struct | |||
| from collections import namedtuple | |||
| from decimal import Decimal | |||
| from mindinsight.profiler.common.exceptions.exceptions import ProfilerPathErrorException, \ | |||
| JobIdMismatchException, ProfilerIOException | |||
| from mindinsight.profiler.common.log import logger as log | |||
| from mindinsight.profiler.common.util import get_summary_for_step_trace | |||
| StepTraceStruct = namedtuple( | |||
| 'TrainingTraceStruct', ['tag_id', 'task_id', 'stream_id', 'sys_count'] | |||
| ) | |||
| class StepTraceParser: | |||
| """ | |||
| The parser for step trace data. | |||
| Args: | |||
| input_dir (str): The directory that contains original step trace data. | |||
| output_file_path (str): The output file path. | |||
| job_id (int): The job id used to define the start of new step. Default: 0. | |||
| skip_first_step (bool): Whether skip the first step or not. | |||
| """ | |||
| _event_size = 20 | |||
| _fp_tag = 1 | |||
| _bp_tag = 2 | |||
| def __init__(self, input_dir, output_file_path, job_id=0, skip_first_step=False): | |||
| self._input_dir = input_dir | |||
| self._output_path = output_file_path | |||
| self._job_id = job_id | |||
| self._skip_first_step = skip_first_step | |||
| self._result = [] | |||
| self._header = [] | |||
| self._step_num = 0 | |||
| @property | |||
| def output_file(self): | |||
| """The property of step trace header.""" | |||
| file_name = self._output_path.rsplit('/', 2) | |||
| return file_name[-1] if len(file_name) == 3 else '' | |||
| def show(self): | |||
| """The property of step trace info.""" | |||
| summary_info = {} | |||
| if self._result: | |||
| summary_info = get_summary_for_step_trace(self._result[-1], self._header) | |||
| summary_info['total_steps'] = len(self._result) - 1 | |||
| print('\nStep trace summary info (unit: syscnt):') | |||
| print(summary_info) | |||
| print('\nThe step trace parse result saves under ${summary_dir}/profiler/%s' | |||
| % self.output_file) | |||
| def parse_and_save(self): | |||
| """Parse step trace files and save the result.""" | |||
| try: | |||
| source_files = self._get_step_trace_files() | |||
| self._parse(source_files) | |||
| self._save() | |||
| except IOError as err: | |||
| log.exception(err) | |||
| raise ProfilerIOException() | |||
| else: | |||
| log.info("Finish to save intermediate result for step trace file.") | |||
| def record_point_info(self, point_info, output_path): | |||
| """ | |||
| Record point info into json. | |||
| Args: | |||
| point_info (dict): The point info about tag id and relative op name. | |||
| output_path (str): The output path for saving point info. | |||
| Returns: | |||
| dict, parsed point info. | |||
| """ | |||
| points = { | |||
| 'fp_start': point_info.get(self._fp_tag, ''), | |||
| 'bp_end': point_info.get(self._bp_tag, '') | |||
| } | |||
| try: | |||
| with open(output_path, 'w') as json_file: | |||
| json.dump(points, json_file) | |||
| os.chmod(output_path, stat.S_IREAD) | |||
| except (IOError, OSError) as err: | |||
| log.warning('Failed to save point info. %s', err) | |||
| raise ProfilerIOException | |||
| return points | |||
| def _get_step_trace_files(self): | |||
| """Get step trace files.""" | |||
| # step trace files may under $profiler_dir or $profiler_dir/data | |||
| profiler_dir = self._input_dir | |||
| step_trace_files = self._search_file(profiler_dir) | |||
| if not step_trace_files: | |||
| # try to find step trace files under $profiler_dir/data | |||
| profiler_dir = os.path.join(profiler_dir, 'data') | |||
| step_trace_files = self._search_file(profiler_dir) | |||
| if not step_trace_files: | |||
| raise ProfilerPathErrorException('Training trace file does not exist.') | |||
| return step_trace_files | |||
| @staticmethod | |||
| def _search_file(input_dir): | |||
| """Search step trace file under specific input directory.""" | |||
| # validate input_dir | |||
| if not os.path.isdir(input_dir): | |||
| raise ProfilerPathErrorException( | |||
| '{} does not exist or is not a dir'.format(input_dir) | |||
| ) | |||
| # get step trace files | |||
| files = os.listdir(input_dir) | |||
| step_trace_files = list( | |||
| filter( | |||
| lambda file: file.startswith('training_trace') and not file.endswith('.done'), | |||
| files | |||
| ) | |||
| ) | |||
| # validate result | |||
| if len(step_trace_files) > 1: | |||
| # the format of file name is like | |||
| # `training_trace.46.dev.profiler_default_tag.$id.slice_$number` | |||
| # use the $number as the sorted key | |||
| try: | |||
| step_trace_files.sort(key=lambda path: int(path.rsplit('_', 1)[-1])) | |||
| except ValueError as err: | |||
| log.warning("Unable to parse file names: %s. %s", step_trace_files, err) | |||
| step_trace_files = [] | |||
| file_paths = [os.path.join(input_dir, file) for file in step_trace_files] | |||
| log.info("Find %d step trace files.", len(file_paths)) | |||
| return file_paths | |||
| def _parse(self, source_files): | |||
| """Parse source step trace files.""" | |||
| log.info("Start to parse step trace file.") | |||
| event_info = {} | |||
| for source_file in source_files: | |||
| with open(source_file, 'rb') as handler: | |||
| content = handler.read() | |||
| for step_trace in self._get_next_step_trace(content, event_info): | |||
| if self._skip_first_step: | |||
| self._skip_first_step = False | |||
| continue | |||
| self._record_trace_event(step_trace) | |||
| self._record_average_info() | |||
| log.info("Finish to parse step trace file.") | |||
| def _get_next_step_trace(self, content, event_info): | |||
| """ | |||
| Get next step trace info. | |||
| Args: | |||
| content (bytes): The input step trace info. | |||
| event_info (dict): The event info. | |||
| Returns: | |||
| Generator, return the step trace one by one. | |||
| """ | |||
| for pos in range(0, len(content), 20): | |||
| next_event = self._get_trace_struct(content[pos:pos + self._event_size]) | |||
| self._construct_event_info(next_event, event_info) | |||
| if event_info.get('end'): | |||
| yield event_info | |||
| def _get_trace_struct(self, bin_info): | |||
| """Translate event info to StepTraceStruct.""" | |||
| if len(bin_info) == self._event_size: | |||
| parsed_info = struct.unpack('=QHHQ', bin_info) | |||
| return StepTraceStruct(*parsed_info) | |||
| return None | |||
| def _construct_event_info(self, next_event, event_info): | |||
| """Construct event info according to next_event.""" | |||
| min_job_id = 255 | |||
| step_flag: bool = lambda tag: tag > min_job_id or tag == 0 | |||
| end_flag: bool = lambda tag: tag == min_job_id | |||
| fp_flag: bool = lambda tag: tag == self._fp_tag | |||
| bp_flag: bool = lambda tag: tag == self._bp_tag | |||
| def _on_step_event(): | |||
| """Handle step event.""" | |||
| self._validate_tag_id(tag_id) | |||
| start_time = event_info.get('end', '-') | |||
| event_info.clear() | |||
| event_info['start'] = start_time | |||
| event_info['reduce'] = {} | |||
| def _on_reduce_event(): | |||
| """Handle reduce event.""" | |||
| stream_id = next_event.stream_id | |||
| if event_info['reduce'].get(stream_id): | |||
| event_info['reduce'][stream_id].append(sys_count) | |||
| else: | |||
| event_info['reduce'][stream_id] = [sys_count] | |||
| tag_id = next_event.tag_id | |||
| sys_count = next_event.sys_count | |||
| if end_flag(tag_id): | |||
| event_info['end'] = sys_count | |||
| elif step_flag(tag_id): | |||
| _on_step_event() | |||
| elif fp_flag(tag_id): | |||
| event_info['fp'] = sys_count | |||
| elif bp_flag(tag_id): | |||
| event_info['bp'] = sys_count | |||
| else: | |||
| _on_reduce_event() | |||
| def _validate_tag_id(self, job_id): | |||
| """Check the job id in source step trace file is same os user set.""" | |||
| if not self._job_id: | |||
| self._job_id = job_id | |||
| elif self._job_id != job_id: | |||
| raise JobIdMismatchException() | |||
| def _record_trace_event(self, step_trace): | |||
| """Record trace event.""" | |||
| self._step_num += 1 | |||
| start_time = step_trace.get('start') | |||
| end_time = step_trace.get('end') | |||
| fp_time = step_trace.get('fp') | |||
| bp_time = step_trace.get('bp') | |||
| if not (start_time and end_time and fp_time and bp_time): | |||
| log.warning("The step %d is missing basic time.", self._step_num) | |||
| return | |||
| if start_time == '-': | |||
| start_time = fp_time | |||
| row_data = { | |||
| 'step_num': self._step_num, | |||
| 'start_point': start_time, | |||
| 'end_point': end_time, | |||
| 'total': end_time - start_time, | |||
| 'fp_point': fp_time, | |||
| 'bp_point': bp_time, | |||
| 'iteration_interval': fp_time - start_time, | |||
| 'fp_and_bp': bp_time - fp_time, | |||
| 'tail': end_time - bp_time | |||
| } | |||
| # update reduce info | |||
| self._update_reduce_info(step_trace, row_data) | |||
| # save the row data | |||
| if not self._header: | |||
| self._header = list(row_data.keys()) | |||
| row_data_list = [row_data.get(header_name, 0) for header_name in self._header] | |||
| self._result.append(row_data_list) | |||
| @staticmethod | |||
| def _update_reduce_info(step_trace, row_data): | |||
| """Extract reduce info.""" | |||
| reduce_time = step_trace.get('reduce', {}) | |||
| for stream_id, time_points in reduce_time.items(): | |||
| time_point_num = len(time_points) | |||
| if time_point_num % 2: | |||
| log.warning("Stream %d has %d reduce time points.", stream_id, time_point_num) | |||
| continue | |||
| for index, point_id in enumerate(range(0, time_point_num, 2)): | |||
| field_name = f'stream_{stream_id}_parallel_{index}' | |||
| row_data[field_name + '_start_point'] = time_points[point_id] | |||
| row_data[field_name + '_end_point'] = time_points[point_id + 1] | |||
| row_data[field_name] = time_points[point_id + 1] - time_points[point_id] | |||
| def _record_average_info(self): | |||
| """Calculate average info.""" | |||
| result_size = len(self._result) | |||
| # calculate average data for each column in result data | |||
| average_data = [0] * len(self._header) | |||
| if result_size >= 2: | |||
| for row_info in self._result[1:]: | |||
| average_data = [ | |||
| Decimal(i) + Decimal(j) for i, j in zip(row_info, average_data) | |||
| ] | |||
| average_data = [ | |||
| round((item / (result_size - 1))) for item in average_data | |||
| ] | |||
| # change step num info in average_data to None | |||
| step_num_index = self._header.index('step_num') | |||
| average_data[step_num_index] = '-' | |||
| self._result.append(average_data) | |||
| log.info("Finish add average info for step trace.") | |||
| def _save(self): | |||
| log.info("Start to save step trace file.") | |||
| if not self._header: | |||
| return | |||
| with open(self._output_path, 'w') as file_handle: | |||
| csv_writer = csv.writer(file_handle) | |||
| csv_writer.writerow(self._header) | |||
| for row_data in self._result: | |||
| csv_writer.writerow(row_data) | |||
| os.chmod(self._output_path, stat.S_IREAD) | |||
| @@ -1,460 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Profiling api file.""" | |||
| import os | |||
| import time | |||
| from marshmallow import ValidationError | |||
| from tabulate import tabulate | |||
| from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory | |||
| from mindinsight.profiler.analyser.integrator import Integrator | |||
| from mindinsight.profiler.common._utils import get_file_names, fwrite_format | |||
| from mindinsight.profiler.common.exceptions.exceptions import ProfilerFileNotFoundException, \ | |||
| ProfilerIOException | |||
| from mindinsight.profiler.common.log import logger | |||
| from mindinsight.profiler.common.validator.checkparam import \ | |||
| check_bool, check_subgraph | |||
| from mindinsight.profiler.common.validator.validate_path import \ | |||
| validate_and_normalize_path | |||
| from mindinsight.profiler.parser.aicpu_data_parser import DataPreProcessParser | |||
| from mindinsight.profiler.parser.framework_parser import FrameworkParser | |||
| from mindinsight.profiler.parser.hwts_log_parser import HWTSLogParser | |||
| from mindinsight.profiler.parser.minddata_parser import MinddataParser | |||
| from mindinsight.profiler.parser.minddata_pipeline_parser import \ | |||
| MinddataPipelineParser | |||
| from mindinsight.profiler.parser.optime_parser import OPComputeTimeParser | |||
| from mindinsight.profiler.parser.step_trace_parser import StepTraceParser | |||
| from mindinsight.utils.exceptions import MindInsightException | |||
| PROFILING_LOG_BASE_PATH = "/var/log/npu/profiling" | |||
| INIT_OP_NAME = 'Default/InitDataSetQueue' | |||
| class Profiler: | |||
| """ | |||
| Performance profiling API. | |||
| Enable MindSpore users to profile the performance of neural network. | |||
| Args: | |||
| subgraph (str): Define which subgraph to monitor and analyse, can be 'all', 'Default', 'Gradients'. | |||
| is_detail (bool): Whether to show profiling data for op_instance level, only show optype level if False. | |||
| is_show_op_path (bool): Whether to save the full path for each op instance. | |||
| output_path (str): Output data path. | |||
| optypes_to_deal (str): Op type names, the data of which optype should be collected and analysed, | |||
| will deal with all op if null; Different op types should be seperated by comma. | |||
| optypes_not_deal (str): Op type names, the data of which optype will not be collected and analysed; | |||
| Different op types should be seperated by comma. | |||
| Examples: | |||
| >>> from mindinsight.profiler import Profiler | |||
| >>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", | |||
| >>> device_id=int(os.environ["DEVICE_ID"])) | |||
| >>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data') | |||
| >>> model = Model(train_network) | |||
| >>> dataset = get_dataset() | |||
| >>> model.train(2, dataset) | |||
| >>> profiler.analyse() | |||
| """ | |||
| _base_profiling_container_path = "/var/log/npu/profiling/container" | |||
| _hwts_output_filename_target = "output_format_data_hwts_" | |||
| _opcompute_output_filename_target = "output_op_compute_time_" | |||
| _aicpu_op_output_filename_target = "output_data_preprocess_aicpu_" | |||
| def __init__(self, subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data', | |||
| optypes_to_deal='', optypes_not_deal='Variable', job_id=""): | |||
| # get device_id and device_target | |||
| self._get_devid_and_devtarget() | |||
| self._container_path = os.path.join(self._base_profiling_container_path, self._dev_id) | |||
| data_path = os.path.join(self._container_path, "data") | |||
| if not os.path.exists(data_path): | |||
| os.makedirs(data_path, exist_ok=True) | |||
| self._output_path = validate_and_normalize_path(output_path, | |||
| 'Profiler output path (' + output_path + ')') | |||
| self._output_path = os.path.join(self._output_path, "profiler") | |||
| if not os.path.exists(self._output_path): | |||
| os.makedirs(self._output_path, exist_ok=True) | |||
| os.environ['PROFILING_MODE'] = 'true' | |||
| os.environ['PROFILING_OPTIONS'] = 'training_trace:task_trace' | |||
| os.environ['MINDDATA_PROFILING_DIR'] = self._output_path | |||
| os.environ['DEVICE_ID'] = self._dev_id | |||
| # use context interface to open profiling, for the new mindspore version(after 2020.5.21) | |||
| try: | |||
| import mindspore.context as context | |||
| context.set_context(enable_profiling=True, profiling_options="training_trace:task_trace") | |||
| except ImportError: | |||
| logger.error("Profiling: fail to import context from mindspore.") | |||
| except ValueError: | |||
| logger.error("Profiling: fail to set context enable_profiling") | |||
| os.environ['AICPU_PROFILING_MODE'] = 'true' | |||
| os.environ['PROFILING_DIR'] = str(self._container_path) | |||
| self._subgraph = check_subgraph(subgraph) | |||
| self._valid_optype_name = optypes_to_deal.split(",") if optypes_to_deal else [] | |||
| self._filt_optype_names = optypes_not_deal.split(",") if optypes_not_deal else [] | |||
| self._detail = check_bool(is_detail, 'is_detail') | |||
| self._withfullpath = check_bool(is_show_op_path, 'is_show_op_path') | |||
| self._profiling_job_id = job_id | |||
| # add job id env through user input later | |||
| self._job_id_env = 0 | |||
| self._start_time = int(time.time() * 10000000) | |||
| logger.info("Profiling: profiling start time: %d", self._start_time) | |||
| def analyse(self): | |||
| """ | |||
| Collect and analyse performance data, called after training or during training. | |||
| Examples: | |||
| >>> from mindinsight.profiler import Profiler | |||
| >>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", | |||
| >>> device_id=int(os.environ["DEVICE_ID"])) | |||
| >>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data') | |||
| >>> model = Model(train_network) | |||
| >>> dataset = get_dataset() | |||
| >>> model.train(2, dataset) | |||
| >>> profiler.analyse() | |||
| """ | |||
| try: | |||
| from mindspore.communication.management import release | |||
| release() | |||
| except ImportError: | |||
| logger.error("Profiling: fail to import release from mindspore.") | |||
| job_id = self._get_profiling_job_id() | |||
| logger.info("Profiling: job id is %s ", job_id) | |||
| source_path = os.path.join(PROFILING_LOG_BASE_PATH, job_id) | |||
| # parse hwts.log.data.45.dev file, and get task profiling data | |||
| hwts_output_filename = self._hwts_output_filename_target + self._dev_id + ".txt" | |||
| hwts_output_filename = os.path.join(self._output_path, hwts_output_filename) | |||
| hwtslog_parser = HWTSLogParser(source_path, hwts_output_filename) | |||
| result = hwtslog_parser.execute() | |||
| if not result: | |||
| logger.error("Profiling: fail to parse hwts log file.") | |||
| return | |||
| # parse Framework file, and get the relation of op and tasks | |||
| framework_parser = FrameworkParser(job_id, self._dev_id, self._output_path) | |||
| framework_parser.parse() | |||
| op_task_dict = framework_parser.to_task_id_full_op_name_dict() | |||
| if not op_task_dict: | |||
| logger.error("Profiling: fail to parse framework files.") | |||
| return | |||
| # get op compute time from hwts data and framework data, write output_op_compute_time.txt | |||
| opcompute_output_filename = self._opcompute_output_filename_target + self._dev_id + ".txt" | |||
| opcompute_output_filename = os.path.join(self._output_path, opcompute_output_filename) | |||
| optime_parser = OPComputeTimeParser( | |||
| hwts_output_filename, opcompute_output_filename, | |||
| op_task_dict, self._output_path, self._dev_id | |||
| ) | |||
| optime_parser.execute() | |||
| # parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt | |||
| output_data_preprocess_aicpu = self._aicpu_op_output_filename_target + self._dev_id + ".txt" | |||
| output_data_preprocess_aicpu = os.path.join(self._output_path, output_data_preprocess_aicpu) | |||
| aicpu_data_parser = DataPreProcessParser(source_path, output_data_preprocess_aicpu) | |||
| aicpu_data_parser.execute() | |||
| # Parsing minddata AICPU profiling | |||
| MinddataParser.execute(source_path, self._output_path, self._dev_id) | |||
| # parse minddata pipeline operator and queue | |||
| try: | |||
| pipeline_parser = MinddataPipelineParser(self._output_path, self._dev_id, self._output_path) | |||
| pipeline_parser.parse() | |||
| except MindInsightException as err: | |||
| logger.warning(err.message) | |||
| # analyse op compute time info | |||
| try: | |||
| self._analyser_op_info() | |||
| except MindInsightException as err: | |||
| logger.warning(err.message) | |||
| # analyse step trace info | |||
| try: | |||
| self._analyse_step_trace(source_path, framework_parser) | |||
| except MindInsightException as err: | |||
| logger.warning(err.message) | |||
| # analyse timeline info | |||
| try: | |||
| self._analyse_timeline(aicpu_data_parser, optime_parser) | |||
| except (ProfilerIOException, ProfilerFileNotFoundException, ValidationError) as err: | |||
| logger.warning('Fail to write timeline data: %s', err) | |||
| def _analyse_step_trace(self, source_path, framework_parser): | |||
| """ | |||
| Analyse step trace data and save the result. | |||
| Args: | |||
| source_path (str): The directory that contains the step trace original data. | |||
| framework_parser (FrameworkParser): The framework parse instance. | |||
| """ | |||
| logger.info("Begin to parse step trace.") | |||
| # construct output path | |||
| step_trace_intermediate_file_path = os.path.join( | |||
| self._output_path, | |||
| f'step_trace_raw_{self._dev_id}_detail_time.csv' | |||
| ) | |||
| point_info_file_path = os.path.join( | |||
| self._output_path, | |||
| 'step_trace_point_info.json' | |||
| ) | |||
| # whether keep the first step | |||
| skip_first_step_flag = framework_parser.check_op_name(INIT_OP_NAME) | |||
| point_info = framework_parser.point_info | |||
| # parser the step trace files and save the result to disk | |||
| parser = StepTraceParser(input_dir=source_path, | |||
| output_file_path=step_trace_intermediate_file_path, | |||
| job_id=self._job_id_env, | |||
| skip_first_step=skip_first_step_flag) | |||
| parser.parse_and_save() | |||
| point_info = parser.record_point_info(point_info, point_info_file_path) | |||
| # print parser result | |||
| parser.show() | |||
| logger.info("Finish saving the intermediate result: %s", step_trace_intermediate_file_path) | |||
| logger.info("The point info is: %s", point_info) | |||
| def _analyse_timeline(self, aicpu_parser, optime_parser): | |||
| """ | |||
| Analyse and parse timeline info. | |||
| Args: | |||
| aicpu_parser (DataPreProcessParser): The parser instance for AI CPU operator | |||
| execution time calculation. | |||
| optime_parser (OPComputeTimeParserParser): The parser instance for AI Core | |||
| operator execution time calculation. | |||
| """ | |||
| timeline_analyser = AnalyserFactory.instance().get_analyser( | |||
| 'timeline', self._output_path, self._dev_id | |||
| ) | |||
| # Get framework info | |||
| aicoredetail_analyser = AnalyserFactory.instance().get_analyser( | |||
| 'aicore_detail', self._output_path, self._dev_id | |||
| ) | |||
| framework_info = aicoredetail_analyser.query() | |||
| # Get all reduce info | |||
| step_trace_analyser = AnalyserFactory.instance().get_analyser( | |||
| 'step_trace', self._output_path, self._dev_id | |||
| ) | |||
| all_reduce_info = step_trace_analyser.query_for_all_reduce() | |||
| # Get timeline info | |||
| logger.info('Start writing timeline info...') | |||
| logger.info('Warm Prompt: It could take a few minutes if you are training ' | |||
| 'with a complex network or more than 10 steps.') | |||
| # Add info into timeline, such as AI CPU, AllReduce, framework info. | |||
| aicpu_info = aicpu_parser.query_aicpu_data() | |||
| min_cycle_counter = min(aicpu_parser.min_cycle_counter, optime_parser.min_cycle_counter) | |||
| timeline_analyser.init_timeline(all_reduce_info, framework_info, aicpu_info, min_cycle_counter) | |||
| timeline_analyser.write_timeline() | |||
| timeline_analyser.write_timeline_summary() | |||
| def __del__(self): | |||
| """Disable the profiling collection service, called after training.""" | |||
| os.environ['PROFILING_MODE'] = str("false") | |||
| try: | |||
| import mindspore.context as context | |||
| context.set_context(enable_profiling=False) | |||
| except ImportError: | |||
| pass | |||
| def _get_profiling_job_id(self): | |||
| """Get profiling job id, which was generated by ada service. | |||
| Returns: | |||
| str: profiling jon id. | |||
| """ | |||
| if self._profiling_job_id: | |||
| return self._profiling_job_id | |||
| job_id = "" | |||
| cmd = "ls -t " + PROFILING_LOG_BASE_PATH + "|grep JOB|awk '{print $1}'" | |||
| r = os.popen(cmd) | |||
| profiling_job_dirs = r.readlines() | |||
| r.close() | |||
| for item in profiling_job_dirs: | |||
| path = os.path.join(PROFILING_LOG_BASE_PATH, item.strip()) | |||
| log_file = get_file_names(path, "host_start.log") | |||
| if not log_file: | |||
| logger.error("Profiling: job path %s, host_start.log not exist.", path) | |||
| continue | |||
| log_file = os.path.join(path, log_file[0]) | |||
| item_dict = self._parse_host_start_log(log_file) | |||
| if not item_dict: | |||
| logger.error("Profiling: job path %s, fail to get job start info.", path) | |||
| continue | |||
| if self._start_time > int(item_dict["start_time"]): | |||
| logger.info("Profiling: job path %s, start_time %s, training start_time %d.", | |||
| path, item_dict["start_time"], self._start_time) | |||
| break | |||
| if self._dev_id != item_dict["device_id"]: | |||
| logger.info("Profiling: job path %s, dev id %s, training device id %s.", | |||
| path, item_dict["device_id"], self._dev_id) | |||
| continue | |||
| job_id = item.strip() | |||
| break | |||
| if not job_id: | |||
| msg = ("Fail to get profiling job, please check whether job dir was generated") | |||
| raise RuntimeError(msg) | |||
| return job_id | |||
| def _parse_host_start_log(self, input_file): | |||
| """ | |||
| Parse host start log file, get the device id and start time of the job. | |||
| Args: | |||
| input_file (str): The file path of the host start log file. | |||
| Returns: | |||
| dict, job start time and device id. | |||
| """ | |||
| item_dict = {} | |||
| for line in open(input_file): | |||
| if "Device" in line: | |||
| item_dict["device_id"] = line[7:len(line)-2] | |||
| elif "clock_realtime" in line: | |||
| item_dict["start_time"] = line[16:len(line)-3] | |||
| return item_dict | |||
| def _analyser_op_info(self): | |||
| """Analyse the operator information.""" | |||
| integrator = Integrator(self._output_path, self._dev_id) | |||
| integrator.integrate() | |||
| aicore_type_result = self._query_op_type_info() | |||
| detail_file_path = os.path.join( | |||
| self._output_path, | |||
| 'output_op_compute_time_detail_{}.txt'.format(self._dev_id) | |||
| ) | |||
| fwrite_format(detail_file_path, data_source='title:op compute time') | |||
| display_names = [ | |||
| 'optype_name', 'compute_time(ms, per-step)', | |||
| 'called_times(per-step)', 'percent' | |||
| ] | |||
| data_source = tabulate(aicore_type_result, display_names) | |||
| fwrite_format(detail_file_path, data_source=data_source, is_print=True) | |||
| if self._detail: | |||
| op_type_order = [item[0] for item in aicore_type_result] | |||
| aicore_detail_result = self._query_op_detail_info(op_type_order) | |||
| fwrite_format(detail_file_path, data_source='', is_print=True) | |||
| fwrite_format(detail_file_path, data_source='Detail:', is_print=True) | |||
| data_source = tabulate( | |||
| aicore_detail_result.get('object'), | |||
| aicore_detail_result.get('col_name') | |||
| ) | |||
| fwrite_format(detail_file_path, data_source=data_source, is_print=True) | |||
| def _query_op_type_info(self): | |||
| """ | |||
| Query AICORE operator type information. | |||
| Returns: | |||
| list[list], the AICORE operator type and execution time information. | |||
| """ | |||
| condition = { | |||
| 'sort_condition': { | |||
| 'name': 'execution_time', | |||
| 'type': 'descending' | |||
| } | |||
| } | |||
| analyser = AnalyserFactory.instance().get_analyser( | |||
| 'aicore_type', self._output_path, self._dev_id | |||
| ) | |||
| result = analyser.query(condition) | |||
| return result.get('object') | |||
| def _query_op_detail_info(self, op_type_order): | |||
| """ | |||
| Query AICORE operator detail information. | |||
| Args: | |||
| op_type_order(list): The name of the op type in order. | |||
| Returns: | |||
| dict, the AICORE operator detail information. | |||
| """ | |||
| op_type_condition = {} | |||
| if self._valid_optype_name: | |||
| op_type_condition['in'] = self._valid_optype_name | |||
| if self._filt_optype_names: | |||
| op_type_condition['not_in'] = self._filt_optype_names | |||
| subgraph_condition = {} | |||
| if self._subgraph != 'all': | |||
| subgraph_condition['in'] = [self._subgraph] | |||
| filter_condition = { | |||
| 'op_type': op_type_condition, | |||
| 'subgraph': subgraph_condition, | |||
| 'is_display_detail': False, | |||
| 'is_display_full_op_name': self._withfullpath | |||
| } | |||
| analyser = AnalyserFactory.instance().get_analyser( | |||
| 'aicore_detail', self._output_path, self._dev_id | |||
| ) | |||
| result = analyser.query_and_sort_by_op_type( | |||
| filter_condition, op_type_order | |||
| ) | |||
| return result | |||
| def _get_devid_and_devtarget(self): | |||
| """Get device id and target of this training.""" | |||
| device_target = "" | |||
| dev_id = "" | |||
| try: | |||
| import mindspore.context as context | |||
| dev_id = str(context.get_context("device_id")) | |||
| device_target = context.get_context("device_target") | |||
| except ImportError: | |||
| logger.error("Profiling: fail to import context from mindspore.") | |||
| except ValueError as err: | |||
| logger.error("Profiling: fail to get context, %s", err) | |||
| if not dev_id or not dev_id.isdigit(): | |||
| dev_id = os.getenv('DEVICE_ID') | |||
| if not dev_id or not dev_id.isdigit(): | |||
| dev_id = "0" | |||
| logger.error("Fail to get DEVICE_ID, use 0 instead.") | |||
| if device_target and device_target != "Davinci" \ | |||
| and device_target != "Ascend": | |||
| msg = ("Profiling: unsupport backend: %s" \ | |||
| % device_target) | |||
| raise RuntimeError(msg) | |||
| self._dev_id = dev_id | |||
| @@ -103,21 +103,17 @@ class Command(BaseCommand): | |||
| self.logfile.info('Stop mindinsight with port %s and pid %s.', port, pid) | |||
| process = psutil.Process(pid) | |||
| child_pids = [child.pid for child in process.children()] | |||
| processes_to_kill = [process] | |||
| # Set recursive to True to kill grand children processes. | |||
| for child in process.children(recursive=True): | |||
| processes_to_kill.append(child) | |||
| # kill gunicorn master process | |||
| try: | |||
| os.kill(pid, signal.SIGKILL) | |||
| except PermissionError: | |||
| self.console.info('kill pid %s failed due to permission error', pid) | |||
| sys.exit(1) | |||
| # cleanup gunicorn worker processes | |||
| for child_pid in child_pids: | |||
| for proc in processes_to_kill: | |||
| self.logfile.info('Stopping mindinsight process %s.', proc.pid) | |||
| try: | |||
| os.kill(child_pid, signal.SIGKILL) | |||
| except ProcessLookupError: | |||
| pass | |||
| proc.send_signal(signal.SIGKILL) | |||
| except psutil.Error as ex: | |||
| self.logfile.warning("Stop process %s failed. Detail: %s.", proc.pid, str(ex)) | |||
| for hook in HookUtils.instance().hooks(): | |||
| hook.on_shutdown(self.logfile) | |||
| @@ -154,7 +150,19 @@ class Command(BaseCommand): | |||
| if user != process.username(): | |||
| continue | |||
| pid = process.pid if process.ppid() == 1 else process.ppid() | |||
| gunicorn_master_process = process | |||
| # The gunicorn master process might have grand children (eg forked by process pool). | |||
| while True: | |||
| parent_process = gunicorn_master_process.parent() | |||
| if parent_process is None or parent_process.pid == 1: | |||
| break | |||
| parent_cmd = parent_process.cmdline() | |||
| if ' '.join(parent_cmd).find(self.cmd_regex) == -1: | |||
| break | |||
| gunicorn_master_process = parent_process | |||
| pid = gunicorn_master_process.pid | |||
| for open_file in process.open_files(): | |||
| if open_file.path.endswith(self.access_log_path): | |||
| @@ -0,0 +1,41 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """The metrics collector.""" | |||
| from ._collect_cpu import collect_cpu | |||
| from ._collect_mem import collect_mem | |||
| from ._collect_npu import collect_npu | |||
| __all__ = ['collect_cpu', 'collect_mem', 'collect_npu', 'get_metrics'] | |||
| def get_metrics(): | |||
| mem = collect_mem() | |||
| mem_total = mem.get('total') | |||
| mem_available = mem.get('available') | |||
| mem_used = mem.get('used') | |||
| return { | |||
| 'npu': collect_npu(), | |||
| 'cpu': { | |||
| 'overall': collect_cpu(percent=True), | |||
| 'percpu': collect_cpu(percpu=True, percent=True) | |||
| }, | |||
| 'memory': { | |||
| 'virtual': { | |||
| 'available': mem_available, | |||
| 'used': mem_used, | |||
| 'others': max(mem_total - mem_available - mem_used, 0) | |||
| } | |||
| } | |||
| } | |||
| @@ -0,0 +1,37 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """The cpu collector.""" | |||
| import psutil | |||
| def collect_cpu(percpu=False, percent=False): | |||
| """ | |||
| Collect the cpu info. | |||
| Args: | |||
| percpu (bool): To return a list of cpu info for each logical CPU on the system. | |||
| percent (bool): Represent the sized in percentage. | |||
| Returns: | |||
| Union[dict, List[dict]], the CPUs info. | |||
| """ | |||
| if percent: | |||
| times = psutil.cpu_times_percent(percpu=percpu) | |||
| else: | |||
| times = psutil.cpu_times(percpu=percpu) | |||
| if not percpu: | |||
| return dict(times._asdict()) | |||
| return [dict(time._asdict()) for time in times] | |||
| @@ -0,0 +1,27 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """The memory collector.""" | |||
| import psutil | |||
| def collect_mem(): | |||
| """ | |||
| Collect the virtual memory info. | |||
| Returns: | |||
| dict, the virtual memory info. | |||
| """ | |||
| return dict(psutil.virtual_memory()._asdict()) | |||
| @@ -0,0 +1,420 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """The npu collector.""" | |||
| import inspect | |||
| from collections import defaultdict | |||
| from ctypes import CDLL, Structure, byref, c_char, c_int, c_uint, c_ulong, c_ushort | |||
| from functools import lru_cache, wraps | |||
| from threading import Lock, Thread | |||
| from mindinsight.sysmetric.common.exceptions import DsmiQueryingException | |||
| from mindinsight.sysmetric.common.log import logger | |||
| def _timeout(seconds, default): | |||
| """ | |||
| The timeout decorator wait for specified seconds or return the default value. | |||
| Args: | |||
| seconds (float): The specified seconds. | |||
| default (Any): The default value. | |||
| """ | |||
| def outer(fn): | |||
| cached, lockdict = {}, defaultdict(Lock) | |||
| def target(*args): | |||
| lock = lockdict[args] | |||
| if lock.acquire(blocking=False): | |||
| try: | |||
| cached[args] = fn(*args) | |||
| finally: | |||
| lock.release() | |||
| else: | |||
| logger.debug('%s%r skipped.', fn.__name__, args) | |||
| @wraps(fn) | |||
| def inner(*args): | |||
| thread = Thread(target=target, args=args, daemon=True) | |||
| thread.start() | |||
| thread.join(seconds) | |||
| if thread.is_alive(): | |||
| logger.debug('%s%r timeouted.', fn.__name__, args) | |||
| return cached.get(args, default) | |||
| return inner | |||
| return outer | |||
| def _fallback_to_prev_result(fn): | |||
| """Fallback to previous successful result when failing.""" | |||
| prev_result = None | |||
| @wraps(fn) | |||
| def wrap(*args): | |||
| nonlocal prev_result | |||
| sucess, result = fn(*args) | |||
| if sucess: | |||
| prev_result = result | |||
| return sucess, result | |||
| if prev_result is not None: | |||
| return sucess, prev_result | |||
| raise RuntimeError(f'{fn.__name__} querying failed and no previous successful result.') | |||
| return wrap | |||
| def _libsmicall(*args): | |||
| """ | |||
| Call the lib function to querying NPU metrics. | |||
| Returns: | |||
| bool, True when success of querying, False otherwise. | |||
| """ | |||
| if not libsmi: | |||
| logger.error('Trying to call the libdrvdsmi_host which is not loaded.') | |||
| raise ValueError('Trying to call the libdrvdsmi_host which is not loaded.') | |||
| fname = inspect.stack()[1].function | |||
| error_code = getattr(libsmi, fname)(*args) | |||
| if error_code != 0: | |||
| logger.error('%s querying failed with error code %d.', fname, error_code) | |||
| return error_code == 0 | |||
| @lru_cache(maxsize=4) | |||
| def dsmi_get_device_count(): | |||
| """ | |||
| Get device count. | |||
| Returns: | |||
| int, the device count. | |||
| Raises: | |||
| RuntimeError, when querying dsmi returning non-zero. | |||
| """ | |||
| device_count = c_int() | |||
| if _libsmicall(byref(device_count)): | |||
| return device_count.value | |||
| raise RuntimeError('Querying device count failed.') | |||
| @lru_cache(maxsize=4) | |||
| def dsmi_list_device(count): | |||
| """ | |||
| List the device IDs. | |||
| Args: | |||
| count (int): The device count. | |||
| Returns: | |||
| List[int], the device IDs. | |||
| Raises: | |||
| RuntimeError, when querying dsmi returning non-zero. | |||
| """ | |||
| device_id_array = c_int * count | |||
| device_id_list = device_id_array() | |||
| count = c_int(count) | |||
| if _libsmicall(device_id_list, count): | |||
| return list(device_id_list) | |||
| raise RuntimeError('Querying device id list failed.') | |||
| @lru_cache(maxsize=8) | |||
| @_fallback_to_prev_result | |||
| def dsmi_get_chip_info(device_id): | |||
| """ | |||
| Get chip info. | |||
| Args: | |||
| device_id (int): The specific device id. | |||
| Returns: | |||
| dict, the chip info: | |||
| - chip_type (str): The chip type. | |||
| - chip_name (str): The chip name. | |||
| - chip_ver (str): The chip name. | |||
| Raises: | |||
| RuntimeError, when querying dsmi returning non-zero. | |||
| """ | |||
| class ChipInfoStruct(Structure): | |||
| _fields_ = [('chip_type', c_char * 32), ('chip_name', c_char * 32), ('chip_ver', c_char * 32)] | |||
| device_id = c_int(device_id) | |||
| chip_info = ChipInfoStruct() | |||
| success = _libsmicall(device_id, byref(chip_info)) | |||
| return success, { | |||
| 'chip_type': chip_info.chip_type.decode('utf-8'), | |||
| 'chip_name': chip_info.chip_name.decode('utf-8'), | |||
| 'chip_ver': chip_info.chip_ver.decode('utf-8') | |||
| } | |||
| @_fallback_to_prev_result | |||
| def dsmi_get_device_health(device_id): | |||
| """ | |||
| Get device health. | |||
| Args: | |||
| device_id (int): The specific device id. | |||
| Returns: | |||
| int, 0 indicats normal, 1 minor alarm, 2 major alarm, 3 critical alarm, 0xffffffff device not found. | |||
| Raises: | |||
| RuntimeError, when querying dsmi returning non-zero. | |||
| """ | |||
| device_id = c_int(device_id) | |||
| health = c_uint() | |||
| success = _libsmicall(device_id, byref(health)) | |||
| return success, health.value | |||
| @lru_cache(maxsize=8) | |||
| @_fallback_to_prev_result | |||
| def dsmi_get_device_ip_address(device_id): | |||
| """ | |||
| Get device IP address. | |||
| Args: | |||
| device_id (int): The specific device ID. | |||
| Returns: | |||
| dict, the device IP address: | |||
| - ip_address (str): the IP address. | |||
| - mask_address (str): the mask address. | |||
| Raises: | |||
| RuntimeError, when querying dsmi returning non-zero. | |||
| """ | |||
| is_ipv6, port_type, port_id = False, 1, 0 | |||
| class Ipaddrstruct(Structure): | |||
| _fields_ = [('u_addr', c_char * (16 if is_ipv6 else 4)), ('ip_type', c_int)] | |||
| ip_type = c_int(1 if is_ipv6 else 0) | |||
| device_id = c_int(device_id) | |||
| ip_address = Ipaddrstruct(b'', ip_type) | |||
| mask_address = Ipaddrstruct(b'', ip_type) | |||
| success = _libsmicall(device_id, port_type, port_id, byref(ip_address), byref(mask_address)) | |||
| def pad(u_addr): | |||
| for i in range(4): | |||
| if i < len(u_addr): | |||
| yield u_addr[i] | |||
| else: | |||
| yield 0 | |||
| return success, { | |||
| 'ip_address': '.'.join(str(c) for c in pad(ip_address.u_addr)), | |||
| 'mask_address': '.'.join(str(c) for c in pad(mask_address.u_addr)) | |||
| } | |||
| @_fallback_to_prev_result | |||
| def dsmi_get_hbm_info(device_id): | |||
| """ | |||
| Get the HBM info. | |||
| Args: | |||
| device_id (int): The specific device id. | |||
| Returns: | |||
| dict, the HBM info: | |||
| memory_size (int), The total HBM memory, in KB. | |||
| frep (int), The HBM frequency, in MHZ. | |||
| memory_usage (int), The used HBM memory, in KB. | |||
| temp (int), The HBM temperature, in °C. | |||
| bandwith_util_rate (int): The bandwith util rate, in %. | |||
| Raises: | |||
| RuntimeError, when querying dsmi returning non-zero. | |||
| """ | |||
| class HbmInfoStruct(Structure): | |||
| _fields_ = [('memory_size', c_ulong), ('freq', c_uint), ('memory_usage', c_ulong), ('temp', c_int), | |||
| ('bandwith_util_rate', c_uint)] | |||
| device_id = c_int(device_id) | |||
| hbm_info = HbmInfoStruct() | |||
| success = _libsmicall(device_id, byref(hbm_info)) | |||
| return success, { | |||
| 'memory_size': hbm_info.memory_size, | |||
| 'freq': hbm_info.freq, | |||
| 'memory_usage': hbm_info.memory_usage, | |||
| 'temp': hbm_info.temp, | |||
| 'bandwith_util_rate': hbm_info.bandwith_util_rate | |||
| } | |||
| @_timeout(0.2, -1) | |||
| def dsmi_get_device_utilization_rate(device_id, device_type): | |||
| """ | |||
| Get device utilization rate, %. | |||
| Note: Query AI Core when profiling turns on will return failure. | |||
| Args: | |||
| device_id (int): The specific device id | |||
| device_type (int): The device type, 1 for memory, 2 AI Core, 5 memory bandwidth, 6 HBM, 10 HBM bandwidth. | |||
| Returns: | |||
| int, the utilization rate, returning -1 to indicate querying failed. | |||
| """ | |||
| device_id = c_int(device_id) | |||
| device_type = c_int(device_type) | |||
| utilization_rate = c_uint() | |||
| if _libsmicall(device_id, device_type, byref(utilization_rate)): | |||
| return utilization_rate.value | |||
| return -1 | |||
| @_fallback_to_prev_result | |||
| def dsmi_get_device_power_info(device_id): | |||
| """ | |||
| Get the device power. | |||
| Args: | |||
| device_id (int): The specific device id. | |||
| Returns: | |||
| dict, the device power info. | |||
| - power, the device power, in Watt. | |||
| Raises: | |||
| RuntimeError, when querying dsmi returning non-zero. | |||
| """ | |||
| class PowerInfoStruct(Structure): | |||
| _fields_ = [('power', c_ushort)] | |||
| power_info = PowerInfoStruct() | |||
| device_id = c_int(device_id) | |||
| success = _libsmicall(device_id, byref(power_info)) | |||
| return success, {'power': round(power_info.power * 0.1, 2)} | |||
| @_fallback_to_prev_result | |||
| def dsmi_get_device_temperature(device_id): | |||
| """ | |||
| Get the device temperature. | |||
| Args: | |||
| device_id (int): The specific device id. | |||
| Returns: | |||
| int, the device temperature, in °C. | |||
| Raises: | |||
| RuntimeError, when querying dsmi returning non-zero. | |||
| """ | |||
| device_id = c_int(device_id) | |||
| temperature = c_uint() | |||
| success = _libsmicall(device_id, byref(temperature)) | |||
| return success, temperature.value | |||
| def collect_npu(): | |||
| """Collect the metrics for each NPUs. | |||
| Returns: | |||
| List[dict], the metrics of each NPUs. | |||
| Raises: | |||
| DsmiQueryingException, when querying dsmi returning non-zero. | |||
| """ | |||
| try: | |||
| return _collect_npus() | |||
| except RuntimeError as e: | |||
| logger.warning(e.args[0]) | |||
| raise DsmiQueryingException(e.args[0]) | |||
| def _collect_npus(): | |||
| """Collect the metrics for each NPUs. | |||
| Returns: | |||
| List[dict], the metrics of each NPUs. | |||
| Raises: | |||
| RuntimeError, when querying dsmi returning non-zero. | |||
| """ | |||
| if not libsmi: | |||
| return None | |||
| count = dsmi_get_device_count() | |||
| device_ids = dsmi_list_device(count) | |||
| npus = [] | |||
| for device_id in device_ids: | |||
| npu = _collect_one(device_id) | |||
| npus.append(npu) | |||
| return npus | |||
| def _collect_one(device_id): | |||
| """ | |||
| Collect NPU info by the device_id. | |||
| Args: | |||
| device_id (int): The specific device id. | |||
| Returns: | |||
| dict, the NPU info. | |||
| Raises: | |||
| RuntimeError, when querying dsmi returning non-zero. | |||
| """ | |||
| kb_to_mb, memory_threshold, success = 1024, 4, [True] * 6 | |||
| success[0], health = dsmi_get_device_health(device_id) | |||
| success[1], hbm_info = dsmi_get_hbm_info(device_id) | |||
| success[2], chip_info = dsmi_get_chip_info(device_id) | |||
| success[3], ip_addr = dsmi_get_device_ip_address(device_id) | |||
| success[4], power_info = dsmi_get_device_power_info(device_id) | |||
| success[5], temperature = dsmi_get_device_temperature(device_id) | |||
| aicore_rate = dsmi_get_device_utilization_rate(device_id, 2) | |||
| return { | |||
| 'chip_name': chip_info.get('chip_name'), | |||
| 'device_id': device_id, | |||
| 'available': all(success) and health == 0 and hbm_info.get('memory_usage', 0) // kb_to_mb < memory_threshold, | |||
| 'health': health, | |||
| 'ip_address': ip_addr.get('ip_address'), | |||
| 'aicore_rate': aicore_rate, | |||
| 'hbm_info': { | |||
| 'memory_size': hbm_info.get('memory_size') // kb_to_mb, | |||
| 'memory_usage': hbm_info.get('memory_usage') // kb_to_mb | |||
| }, | |||
| 'power': power_info.get('power'), | |||
| 'temperature': temperature, | |||
| 'success': all(success) | |||
| } | |||
| try: | |||
| libsmi = CDLL('libdrvdsmi_host.so') | |||
| except OSError: | |||
| logger.info('Failed to load libdrvdsmi_host.so.') | |||
| libsmi = None | |||
| @@ -0,0 +1,25 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Define custom exception.""" | |||
| from mindinsight.utils.exceptions import MindInsightException | |||
| from mindinsight.utils.constant import SysmetricErrors | |||
| class DsmiQueryingException(MindInsightException): | |||
| """Dsmi Querying Failure""" | |||
| def __init__(self, message): | |||
| super(DsmiQueryingException, self).__init__(SysmetricErrors.DSMI_QUERYING_NONZERO, message) | |||
| @@ -1,4 +1,4 @@ | |||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| @@ -12,3 +12,7 @@ | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Resource logger.""" | |||
| from mindinsight.utils.log import setup_logger | |||
| logger = setup_logger(sub_module='sysmetric', log_name='sysmetric') | |||
| @@ -0,0 +1,22 @@ | |||
| <?xml version="1.0" encoding="UTF-8"?> | |||
| <svg width="1920px" height="1080px" viewBox="0 0 1920 1080" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> | |||
| <!-- Generator: Sketch 63.1 (92452) - https://sketch.com --> | |||
| <title>矩形</title> | |||
| <desc>Created with Sketch.</desc> | |||
| <defs> | |||
| <polygon id="path-1" points="0 0 1920 0 1920 1080 0 1080"></polygon> | |||
| <pattern id="pattern-3" width="16.4850993" height="16.4850993" x="-16.4850993" y="-16.4850993" patternUnits="userSpaceOnUse"> | |||
| <use xlink:href="#image-4" transform="scale(0.34343957,0.34343957)"></use> | |||
| </pattern> | |||
| <image id="image-4" width="48" height="48" xlink:href=""></image> | |||
| </defs> | |||
| <g id="硬件资源可视-特性文档" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd"> | |||
| <mask id="mask-2" fill="white"> | |||
| <use xlink:href="#path-1"></use> | |||
| </mask> | |||
| <g id="矩形"> | |||
| <use fill="#F2F5FC" xlink:href="#path-1"></use> | |||
| <use fill-opacity="0.2" fill="url(#pattern-3)" style="mix-blend-mode: multiply;" xlink:href="#path-1"></use> | |||
| </g> | |||
| </g> | |||
| </svg> | |||
| @@ -22,7 +22,6 @@ limitations under the License. | |||
| :aria-expanded="suggestionVisible" | |||
| :aria-owns="id"> | |||
| <el-input ref="input" | |||
| class="rtl-item" | |||
| v-bind="[$props, $attrs]" | |||
| @input="handleChange" | |||
| @focus="handleFocus" | |||
| @@ -296,7 +296,9 @@ export default { | |||
| */ | |||
| accuracyChange(value) { | |||
| this.formateGridArray(); | |||
| this.updateGrid(); | |||
| if (!this.requestError && !this.incorrectData) { | |||
| this.updateGrid(); | |||
| } | |||
| }, | |||
| /** | |||
| * Dimension selection changed | |||
| @@ -369,7 +371,9 @@ export default { | |||
| } | |||
| this.formateGridArray(); | |||
| this.formateColumnsData(); | |||
| this.updateGrid(); | |||
| if (!this.incorrectData) { | |||
| this.updateGrid(); | |||
| } | |||
| }); | |||
| }, | |||
| /** | |||
| @@ -32,6 +32,7 @@ limitations under the License. | |||
| <el-menu-item index="/model-traceback">{{$t("summaryManage.modelTraceback")}}</el-menu-item> | |||
| <el-menu-item index="/data-traceback">{{$t("summaryManage.dataTraceback")}}</el-menu-item> | |||
| <el-menu-item index="/compare-plate">{{$t("summaryManage.comparePlate")}}</el-menu-item> | |||
| <el-menu-item index="/hardware-visual">{{$t("summaryManage.hardwareVisual")}}</el-menu-item> | |||
| </el-menu> | |||
| </div> | |||
| </div> | |||
| @@ -42,28 +43,62 @@ limitations under the License. | |||
| || this.$route.path.indexOf('/histogram') > 0 | |||
| || this.$route.path.indexOf('/tensor') > 0 | |||
| || this.$route.path.indexOf('/training-dashboard') > 0 | |||
| || !this.$route.path.indexOf('/compare-plate')"> | |||
| <!-- automatic refresh switch --> | |||
| <el-switch v-model="isTimeReload" | |||
| :active-text="$t('header.timeReload')+$t('symbols.leftbracket')+ | |||
| timeReloadValue+$t('header.timeSecond')+$t('symbols.rightbracket')" | |||
| @change="timeReload"></el-switch> | |||
| <i class="el-icon-edit" | |||
| :title="$t('header.timeReloadScope')" | |||
| v-if="isTimeReload && !isShowInp" | |||
| @click="editTime"></i> | |||
| || !this.$route.path.indexOf('/compare-plate') | |||
| || !this.$route.path.indexOf('/hardware-visual')"> | |||
| <div class="reload-training" | |||
| v-if="this.$route.path.indexOf('/scalar') > 0 | |||
| || this.$route.path.indexOf('/image') > 0 | |||
| || this.$route.path.indexOf('/histogram') > 0 | |||
| || this.$route.path.indexOf('/tensor') > 0 | |||
| || this.$route.path.indexOf('/training-dashboard') > 0 | |||
| || !this.$route.path.indexOf('/compare-plate')"> | |||
| <!-- automatic refresh switch --> | |||
| <el-switch v-model="isTimeReload" | |||
| :active-text="$t('header.timeReload')+$t('symbols.leftbracket')+ | |||
| timeReloadValue+$t('header.timeSecond')+$t('symbols.rightbracket')" | |||
| @change="timeReload"></el-switch> | |||
| <i class="el-icon-edit" | |||
| :title="$t('header.timeReloadScope')" | |||
| v-if="isTimeReload && !isShowInp" | |||
| @click="editTime"></i> | |||
| <el-input v-if="isTimeReload && isShowInp" | |||
| v-model="newReloadValue" | |||
| type="text" | |||
| @input="timeValueChange"></el-input> | |||
| <el-input v-if="isTimeReload && isShowInp" | |||
| v-model="newReloadValue" | |||
| type="text" | |||
| @input="timeValueChange"></el-input> | |||
| <i class="el-icon-check" | |||
| v-if="isTimeReload && isShowInp" | |||
| @click="saveTimeValue"></i> | |||
| <i class="el-icon-close" | |||
| v-if="isTimeReload && isShowInp" | |||
| @click="cancelTimeValue"></i> | |||
| </div> | |||
| <div class="reload-hardware" | |||
| v-if="!this.$route.path.indexOf('/hardware-visual')"> | |||
| <!-- automatic refresh switch --> | |||
| <el-switch v-model="isHardwareTimeReload" | |||
| :active-text="$t('header.timeReload')+$t('symbols.leftbracket')+ | |||
| hardwareTimeReloadValue+$t('header.timeSecond')+$t('symbols.rightbracket')" | |||
| @change="hardwareTimeReload"></el-switch> | |||
| <i class="el-icon-edit" | |||
| :title="$t('header.timeReloadScope')" | |||
| v-if="isHardwareTimeReload && !isShowHardwareInp" | |||
| @click="editHardwareTime"></i> | |||
| <el-input v-if="isHardwareTimeReload && isShowHardwareInp" | |||
| v-model="newHardwareReloadValue" | |||
| type="text" | |||
| @input="hardwareTimeValueChange"></el-input> | |||
| <i class="el-icon-check" | |||
| v-if="isHardwareTimeReload && isShowHardwareInp" | |||
| @click="saveHardwareTimeValue"></i> | |||
| <i class="el-icon-close" | |||
| v-if="isHardwareTimeReload && isShowHardwareInp" | |||
| @click="cancelHardwareTimeValue"></i> | |||
| </div> | |||
| <i class="el-icon-check" | |||
| v-if="isTimeReload && isShowInp" | |||
| @click="saveTimeValue"></i> | |||
| <i class="el-icon-close" | |||
| v-if="isTimeReload && isShowInp" | |||
| @click="cancleTimeValue"></i> | |||
| <!-- manual refresh switch --> | |||
| <img src="../assets/images/reload.png" | |||
| @@ -90,6 +125,9 @@ export default { | |||
| isShowInp: false, | |||
| timeReloadValue: this.$store.state.timeReloadValue, | |||
| newReloadValue: this.$store.state.timeReloadValue, | |||
| isShowHardwareInp: false, | |||
| hardwareTimeReloadValue: this.$store.state.hardwareTimeReloadValue, | |||
| newHardwareReloadValue: this.$store.state.hardwareTimeReloadValue, | |||
| }; | |||
| }, | |||
| computed: { | |||
| @@ -104,6 +142,13 @@ export default { | |||
| }, | |||
| set(val) {}, | |||
| }, | |||
| // set and get isHardwareTimeReload status | |||
| isHardwareTimeReload: { | |||
| get() { | |||
| return this.$store.state.isHardwareTimeReload; | |||
| }, | |||
| set(val) {}, | |||
| }, | |||
| }, | |||
| watch: {}, | |||
| mounted() {}, | |||
| @@ -117,7 +162,7 @@ export default { | |||
| relPath(path) { | |||
| this.$router.push(path); | |||
| }, | |||
| // save isTimeReload status | |||
| // training reload setting | |||
| timeReload(val) { | |||
| localStorage.isTimeReload = val; | |||
| this.$store.commit('setIsTimeReload', val); | |||
| @@ -128,7 +173,7 @@ export default { | |||
| }, | |||
| saveTimeValue() { | |||
| if (this.newReloadValue) { | |||
| if (this.newReloadValue >= 0) { | |||
| this.newReloadValue = | |||
| this.newReloadValue < 3 | |||
| ? 3 | |||
| @@ -141,20 +186,65 @@ export default { | |||
| this.$store.commit('setTimeReloadValue', timeValue); | |||
| this.isShowInp = false; | |||
| } else { | |||
| this.cancleTimeValue(); | |||
| this.cancelTimeValue(); | |||
| } | |||
| }, | |||
| cancleTimeValue() { | |||
| cancelTimeValue() { | |||
| this.isShowInp = false; | |||
| this.newReloadValue = this.timeReloadValue; | |||
| }, | |||
| timeValueChange() { | |||
| if (this.newReloadValue === '') { | |||
| return; | |||
| } | |||
| this.newReloadValue = this.newReloadValue | |||
| .toString() | |||
| .replace(/[^\.\d]/g, '') | |||
| .replace(/\./g, ''); | |||
| this.newReloadValue = Number(this.newReloadValue); | |||
| }, | |||
| // hardware reload setting | |||
| hardwareTimeReload(val) { | |||
| localStorage.isHardwareTimeReload = val; | |||
| this.$store.commit('setIsHardwareTimeReload', val); | |||
| }, | |||
| editHardwareTime() { | |||
| this.isShowHardwareInp = true; | |||
| }, | |||
| saveHardwareTimeValue() { | |||
| if (this.newHardwareReloadValue >= 0) { | |||
| this.newHardwareReloadValue = | |||
| this.newHardwareReloadValue < 3 | |||
| ? 3 | |||
| : this.newHardwareReloadValue > 300 | |||
| ? 300 | |||
| : this.newHardwareReloadValue; | |||
| const timeValue = this.newHardwareReloadValue; | |||
| this.hardwareTimeReloadValue = timeValue; | |||
| localStorage.hardwareTimeReloadValue = timeValue; | |||
| this.$store.commit('setHardwareTimeReloadValue', timeValue); | |||
| this.isShowHardwareInp = false; | |||
| } else { | |||
| this.cancelHardwareTimeValue(); | |||
| } | |||
| }, | |||
| cancelHardwareTimeValue() { | |||
| this.isShowHardwareInp = false; | |||
| this.newHardwareReloadValue = this.hardwareTimeReloadValue; | |||
| }, | |||
| hardwareTimeValueChange() { | |||
| if (this.newHardwareReloadValue === '') { | |||
| return; | |||
| } | |||
| this.newHardwareReloadValue = this.newHardwareReloadValue | |||
| .toString() | |||
| .replace(/[^\.\d]/g, '') | |||
| .replace(/\./g, ''); | |||
| this.newHardwareReloadValue = Number(this.newHardwareReloadValue); | |||
| }, | |||
| // get active menu item | |||
| getActive() { | |||
| const str = this.$route.path.split('/'); | |||
| @@ -217,6 +307,13 @@ export default { | |||
| .el-icon-close { | |||
| color: #f56c6c; | |||
| } | |||
| .el-input { | |||
| width: 45px; | |||
| input { | |||
| padding: 0; | |||
| text-align: center; | |||
| } | |||
| } | |||
| } | |||
| // reload style | |||
| @@ -232,16 +329,10 @@ export default { | |||
| transform: rotate(1turn); | |||
| } | |||
| } | |||
| .cl-header-right .el-input { | |||
| width: 45px; | |||
| input { | |||
| padding: 0; | |||
| text-align: center; | |||
| } | |||
| } | |||
| .cl-header-nav { | |||
| margin-left: 50px; | |||
| flex: 1; | |||
| flex: 1.5; | |||
| .el-menu { | |||
| border-bottom: none; | |||
| @@ -164,25 +164,26 @@ export default { | |||
| listSelectAll() { | |||
| this.operateSelectAll = !this.operateSelectAll; | |||
| this.multiSelectedItemNames = {}; | |||
| this.selectedNumber = 0; | |||
| // Setting the status of list items | |||
| if (this.operateSelectAll) { | |||
| if (this.isLimit) { | |||
| const loopCount = this.checkListArr.length; | |||
| for (let i = 0; i < loopCount; i++) { | |||
| if (this.selectedNumber >= this.limitNum) { | |||
| break; | |||
| } | |||
| const listItem = this.checkListArr[i]; | |||
| if (listItem.checked) { | |||
| this.selectedNumber++; | |||
| if (listItem.show) { | |||
| if (this.selectedNumber >= this.limitNum) { | |||
| if (listItem.checked && listItem.show) { | |||
| this.multiSelectedItemNames[listItem.label] = true; | |||
| } | |||
| } else if (listItem.show) { | |||
| listItem.checked = true; | |||
| this.multiSelectedItemNames[listItem.label] = true; | |||
| this.selectedNumber++; | |||
| } else { | |||
| if (listItem.checked) { | |||
| if (listItem.show) { | |||
| this.multiSelectedItemNames[listItem.label] = true; | |||
| } | |||
| } else if (listItem.show) { | |||
| listItem.checked = true; | |||
| this.multiSelectedItemNames[listItem.label] = true; | |||
| this.selectedNumber++; | |||
| } | |||
| } | |||
| } | |||
| } else { | |||
| @@ -45,7 +45,8 @@ | |||
| "modelTraceback": "模型溯源", | |||
| "dataTraceback": "数据溯源", | |||
| "comparePlate": "对比看板", | |||
| "disableProfilerTip": "无profiler日志,无法查看性能分析" | |||
| "disableProfilerTip": "无profiler日志,无法查看性能分析", | |||
| "hardwareVisual": "硬件资源" | |||
| }, | |||
| "modelTraceback": { | |||
| "summaryPath": "训练日志路径", | |||
| @@ -99,7 +100,8 @@ | |||
| "samplingData": "数据抽样", | |||
| "imagesampleSwitch": "切换标签", | |||
| "invalidId": "无效的训练作业", | |||
| "summaryDirPath": "训练日志路径:" | |||
| "summaryDirPath": "训练日志路径:", | |||
| "loadingTip": "加载中" | |||
| }, | |||
| "scalar": { | |||
| "titleText": "标量", | |||
| @@ -368,7 +370,7 @@ | |||
| "FPMessage": "前向起始算子:", | |||
| "BPMessage": "反向终止算子:", | |||
| "approximateTime": "总时长 ≈ ", | |||
| "stepInputTip": "请输入step值(1~{max}的正整数)", | |||
| "stepInputTip": "请输入step值(1~{max}的正整数,值为空时展示平均值)", | |||
| "inputError": "输入参数异常,请输入一个1~{max}的正整数", | |||
| "defaultTip": "默认展示平均值", | |||
| "downloadTimeline": "下载", | |||
| @@ -384,7 +386,45 @@ | |||
| "title3": "如何使用时间线:", | |||
| "content31": "您可以通过时间线信息分析流切分方法是否合理、迭代间隙和拖尾时间是否过长等;", | |||
| "content32": "也可以具体定位到某个算子,查看分析它的执行时间。" | |||
| } | |||
| }, | |||
| "unit": "ms/次" | |||
| }, | |||
| "hardwareVisual": { | |||
| "processor": "昇腾AI处理器", | |||
| "ram": "内存", | |||
| "selectedCpu": "CPU-选中:", | |||
| "allCpu": "CPU-总计:", | |||
| "chipNameTip": "芯片名称", | |||
| "deviceIdTip": "芯片号", | |||
| "availableTip": "芯片是否空闲(仅供参考)", | |||
| "healthTip": "芯片健康指数", | |||
| "ipTip": "芯片IP地址", | |||
| "aicoreTip": "芯片利用率", | |||
| "hbmTip": "芯片已用HBM内存", | |||
| "powerTip": "芯片功耗", | |||
| "temperatureTip": "芯片温度", | |||
| "cpuUserTip": "运行于用户态的时间百分比", | |||
| "cpuSystemTip": "运行于内核态的时间百分比", | |||
| "cpuIdleTip": "处于空闲状态的时间百分比", | |||
| "cpuNiceTip": "运行低优先级进程的时间百分比", | |||
| "cpuIowaitTip": "等待IO的时间百分比", | |||
| "cpuIrqTip": "处理硬中断的时间百分比", | |||
| "cpuSoftirqTip": "处理软中断的时间百分比", | |||
| "cpuStealTip": "被其他虚拟机抢夺的时间百分比", | |||
| "cpuGuestTip": "运行虚拟机的时间百分比", | |||
| "cpuGuestniceTip": "运行低优先级虚拟机的时间百分比", | |||
| "cpuInterruptTip": "处理硬中断的时间百分比", | |||
| "cpuDpcTip": "远程调用的时间百分比", | |||
| "noNpuInfo": "暂无昇腾AI处理器信息", | |||
| "normal": "正常", | |||
| "generalWarn": "一般警告", | |||
| "importantWarn": "重要警告", | |||
| "emergencyWarn": "紧急警告", | |||
| "noChip": "芯片不存在或未启动", | |||
| "availableFree": "芯片空闲", | |||
| "availableBusy": "芯片已被占用或不可用", | |||
| "failQueryChip": "芯片信息查询有误", | |||
| "faliQuery": "查询有误" | |||
| }, | |||
| "components": { | |||
| "summaryTitle": "训练选择", | |||
| @@ -422,6 +462,7 @@ | |||
| "50542218": "筛选参数错误", | |||
| "50545012": "张量数据不存在,请刷新。", | |||
| "50545013": "请求的数据过大,请使用其他维度重试。", | |||
| "50545014": "查询的张量数据已被新数据替换,请刷新。" | |||
| "50545014": "查询的张量数据已被新数据替换,请刷新。", | |||
| "50548001": "昇腾AI处理器信息查询超时" | |||
| } | |||
| } | |||
| } | |||
| @@ -40,6 +40,9 @@ router.beforeEach((to, from, next) => { | |||
| store.commit('setIsReload', false); | |||
| next(); | |||
| }); | |||
| router.onError((error) => { | |||
| Vue.prototype.$message.error(i18n.messages[i18n.locale].public.netWorkError); | |||
| }); | |||
| // forbidden showing production tip | |||
| Vue.config.productionTip = false; | |||
| @@ -102,5 +102,9 @@ export default new Router({ | |||
| }, | |||
| ], | |||
| }, | |||
| { | |||
| path: '/hardware-visual', | |||
| component: () => import('./views/train-manage/hardware-visual.vue'), | |||
| }, | |||
| ], | |||
| }); | |||
| @@ -288,4 +288,10 @@ export default { | |||
| }, | |||
| }); | |||
| }, | |||
| getMetricsData() { | |||
| return axios({ | |||
| method: 'get', | |||
| url: 'v1/mindinsight/sysmetric/current', | |||
| }); | |||
| }, | |||
| }; | |||
| @@ -30,10 +30,20 @@ export default new Vuex.Store({ | |||
| timeReloadValue: localStorage.timeReloadValue | |||
| ? localStorage.timeReloadValue | |||
| : 3, | |||
| // Scheduled hardware reload flag | |||
| isHardwareTimeReload: localStorage.isHardwareTimeReload === 'false' ? false : true, | |||
| // hardware reload time | |||
| hardwareTimeReloadValue: localStorage.hardwareTimeReloadValue | |||
| ? localStorage.hardwareTimeReloadValue | |||
| : 5, | |||
| // multiSelevtGroup component count | |||
| multiSelectedGroupCount: 0, | |||
| tableId: 0, | |||
| componentsCount: 0, | |||
| summaryDirList: undefined, | |||
| selectedBarList: [], | |||
| hidenDirChecked: [], | |||
| customizedColumnOptions: [], | |||
| }, | |||
| mutations: { | |||
| // set cancelTokenArr | |||
| @@ -71,6 +81,13 @@ export default new Vuex.Store({ | |||
| setTimeReloadValue: (state, val) => { | |||
| state.timeReloadValue = val; | |||
| }, | |||
| // set isHardwareTimeReload | |||
| setIsHardwareTimeReload: (state, val) => { | |||
| state.isHardwareTimeReload = val; | |||
| }, | |||
| setHardwareTimeReloadValue: (state, val) => { | |||
| state.hardwareTimeReloadValue = val; | |||
| }, | |||
| multiSelectedGroupComponentNum(state) { | |||
| state.multiSelectedGroupCount++; | |||
| }, | |||
| @@ -172,7 +172,9 @@ export default { | |||
| return; | |||
| } | |||
| this.trainJobID = this.$route.query.train_id; | |||
| document.title = `${decodeURIComponent(this.trainJobID)}-${this.$t('trainingDashboard.dataMap')}-MindInsight`; | |||
| document.title = `${decodeURIComponent(this.trainJobID)}-${this.$t( | |||
| 'trainingDashboard.dataMap', | |||
| )}-MindInsight`; | |||
| this.$nextTick(() => { | |||
| this.queryGraphData(); | |||
| }); | |||
| @@ -554,6 +556,8 @@ export default { | |||
| const value = | |||
| select[item] instanceof Array | |||
| ? select[item].join(', ') | |||
| : select[item] === null | |||
| ? 'None' | |||
| : select[item]; | |||
| this.selectedNode.push({key: item, value: value}); | |||
| } | |||
| @@ -435,6 +435,14 @@ export default { | |||
| 'learning_rate', | |||
| 'device_num', | |||
| ], | |||
| valueType: { | |||
| float: 'float', | |||
| int: 'int', | |||
| string: 'string', | |||
| model_size: 'model_size', | |||
| learning_rate: 'learning_rate', | |||
| dataset_mark: 'dataset_mark', | |||
| }, | |||
| table: { | |||
| columnOptions: { | |||
| summary_dir: { | |||
| @@ -964,10 +972,10 @@ export default { | |||
| id: item, | |||
| checked: true, | |||
| }; | |||
| if (value && value.type === 'float') { | |||
| obj.type = 'float'; | |||
| } else if (value && value.type === 'int') { | |||
| obj.type = 'int'; | |||
| if (value && value.type === this.valueType.float) { | |||
| obj.type = this.valueType.float; | |||
| } else if (value && value.type === this.valueType.int) { | |||
| obj.type = this.valueType.int; | |||
| } | |||
| arrayTemp.push(obj); | |||
| }); | |||
| @@ -1006,14 +1014,14 @@ export default { | |||
| content.name === this.repeatTitle || | |||
| content.name === this.shuffleTitle || | |||
| content.id === this.deviceNum || | |||
| (content.type && content.type === 'int') | |||
| (content.type && content.type === this.valueType.int) | |||
| ) { | |||
| obj.scale = true; | |||
| obj.minInterval = 1; | |||
| this.setColorOfSelectedBar(selectedBarList, obj); | |||
| } else if ( | |||
| this.numberTypeIdList.includes(content.id) || | |||
| (content.type && content.type === 'float') | |||
| (content.type && content.type === this.valueType.float) | |||
| ) { | |||
| obj.scale = true; | |||
| this.setColorOfSelectedBar(selectedBarList, obj); | |||
| @@ -1024,7 +1032,7 @@ export default { | |||
| show: false, | |||
| }; | |||
| this.setColorOfSelectedBar(selectedBarList, obj); | |||
| if (content.id === 'dataset_mark') { | |||
| if (content.id === this.valueType.dataset_mark) { | |||
| obj.axisLabel = { | |||
| show: false, | |||
| }; | |||
| @@ -1073,13 +1081,16 @@ export default { | |||
| if (this.parallelEchart) { | |||
| this.parallelEchart.off('axisareaselected', null); | |||
| window.removeEventListener('resize', this.resizeChart, false); | |||
| } else { | |||
| this.parallelEchart = Echarts.init( | |||
| document.querySelector('#data-echart'), | |||
| ); | |||
| } | |||
| this.parallelEchart = Echarts.init( | |||
| document.querySelector('#data-echart'), | |||
| ); | |||
| this.parallelEchart.setOption(option, true); | |||
| window.addEventListener('resize', this.resizeChart, false); | |||
| this.chartEventsListen(parallelAxis); | |||
| }, | |||
| chartEventsListen(parallelAxis) { | |||
| this.parallelEchart.on('axisareaselected', (params) => { | |||
| this.recordsNumber = 0; | |||
| this.showNumber = 0; | |||
| @@ -1154,12 +1165,14 @@ export default { | |||
| } | |||
| const strs = val.split(''); | |||
| let str = ''; | |||
| if (val.length > 100) { | |||
| return val.substring(0, 12) + '...'; | |||
| const maxStringLength = 100; | |||
| const showStringLength = 12; | |||
| if (val.length > maxStringLength) { | |||
| return val.substring(0, showStringLength) + '...'; | |||
| } else { | |||
| for (let i = 0, s = ''; (s = strs[i++]); ) { | |||
| str += s; | |||
| if (!(i % 12)) { | |||
| if (!(i % showStringLength)) { | |||
| str += '\n'; | |||
| } | |||
| } | |||
| @@ -1204,20 +1217,25 @@ export default { | |||
| if (isNaN(value) || !value) { | |||
| return value; | |||
| } else { | |||
| if (key === 'learning_rate') { | |||
| let temp = value.toPrecision(4); | |||
| const numDigits = 4; | |||
| if (key === this.valueType.learning_rate) { | |||
| let temp = value.toPrecision(numDigits); | |||
| let row = 0; | |||
| while (temp < 1) { | |||
| temp = temp * 10; | |||
| row += 1; | |||
| } | |||
| temp = this.toFixedFun(temp, 4); | |||
| temp = this.toFixedFun(temp, numDigits); | |||
| return `${temp}${row ? `e-${row}` : ''}`; | |||
| } else if (key === 'model_size') { | |||
| } else if (key === this.valueType.model_size) { | |||
| return value + 'MB'; | |||
| } else { | |||
| if (value < 1000) { | |||
| return Math.round(value * Math.pow(10, 4)) / Math.pow(10, 4); | |||
| const num = 1000; | |||
| if (value < num) { | |||
| return ( | |||
| Math.round(value * Math.pow(10, numDigits)) / | |||
| Math.pow(10, numDigits) | |||
| ); | |||
| } else { | |||
| const reg = /(?=(\B)(\d{3})+$)/g; | |||
| return (value + '').replace(reg, ','); | |||
| @@ -1245,7 +1263,8 @@ export default { | |||
| * @param {Object} scope | |||
| */ | |||
| showDialogData(val, scope) { | |||
| if (typeof val !== 'string' || val === '{}') { | |||
| const emptyObjectStr = '{}'; | |||
| if (typeof val !== this.valueType.string || val === emptyObjectStr) { | |||
| return; | |||
| } else { | |||
| const isJson = this.isJSON(val); | |||
| @@ -1541,7 +1560,7 @@ export default { | |||
| hideDataMarkTableData() { | |||
| const result = []; | |||
| this.selectedBarList.forEach((item) => { | |||
| if (item !== 'dataset_mark') { | |||
| if (item !== this.valueType.dataset_mark) { | |||
| result.push(item); | |||
| } | |||
| }); | |||
| @@ -1906,10 +1925,6 @@ export default { | |||
| .el-color-alpha-slider { | |||
| display: none; | |||
| } | |||
| .el-select > .el-input { | |||
| width: 280px !important; | |||
| max-width: 500px !important; | |||
| } | |||
| .select-inner-input { | |||
| width: calc(100% - 140px); | |||
| margin: 2px 4px; | |||
| @@ -1958,6 +1973,10 @@ export default { | |||
| height: 100%; | |||
| overflow-y: auto; | |||
| position: relative; | |||
| .el-select > .el-input { | |||
| width: 280px !important; | |||
| max-width: 500px !important; | |||
| } | |||
| .el-table th.is-leaf { | |||
| background: #f5f7fa; | |||
| } | |||
| @@ -467,7 +467,7 @@ export default { | |||
| show: false, | |||
| info: '', | |||
| }, | |||
| scaleRange: [0.0001, 10000], // graph zooms in and zooms out. | |||
| scaleRange: [0.001, 1000], // graph zooms in and zooms out. | |||
| rightShow: true, // Check whether the right side bar is displayed. | |||
| fullScreen: false, // Display Full Screen | |||
| totalMemory: 16777216 * 2, // Memory size of the graph plug-in | |||
| @@ -583,29 +583,32 @@ export default { | |||
| * @param {String} dot dot statement encapsulated in graph data | |||
| */ | |||
| initGraph(dot) { | |||
| this.graphviz = d3 | |||
| .select('#graph') | |||
| .graphviz({useWorker: false, totalMemory: this.totalMemory}) | |||
| .zoomScaleExtent(this.scaleRange) | |||
| .dot(dot) | |||
| .attributer(this.attributer) | |||
| .render(() => { | |||
| this.initSvg(); | |||
| this.afterInitGraph(); | |||
| }); | |||
| try { | |||
| this.graphviz = d3 | |||
| .select('#graph') | |||
| .graphviz({useWorker: false, totalMemory: this.totalMemory}) | |||
| .zoomScaleExtent(this.scaleRange) | |||
| .dot(dot) | |||
| .attributer(this.attributer) | |||
| .render(() => { | |||
| this.initSvg(); | |||
| this.afterInitGraph(); | |||
| }); | |||
| } catch (error) { | |||
| const svg = document.querySelector('#graph svg'); | |||
| if (svg) { | |||
| svg.remove(); | |||
| } | |||
| this.initGraph(dot); | |||
| } | |||
| // Generate the dom of the submap. | |||
| if (!d3.select('#graphTemp').size()) { | |||
| d3.select('body') | |||
| .append('div') | |||
| .attr('id', 'graphTemp') | |||
| .attr('style', 'visibility: collapse'); | |||
| d3.select('body').append('div').attr('id', 'graphTemp'); | |||
| } | |||
| // Stores the dom of all the sorted subgraphs. | |||
| if (!d3.select('#subgraphTemp').size()) { | |||
| d3.select('body') | |||
| .append('div') | |||
| .attr('id', 'subgraphTemp') | |||
| .attr('style', 'visibility: collapse'); | |||
| d3.select('body').append('div').attr('id', 'subgraphTemp'); | |||
| } | |||
| }, | |||
| initSvg() { | |||
| @@ -654,10 +657,7 @@ export default { | |||
| this.$nextTick(() => { | |||
| this.loading.show = false; | |||
| }); | |||
| const elements = d3 | |||
| .select('#graph') | |||
| .selectAll('g.node, g.edge') | |||
| .nodes(); | |||
| const elements = d3.select('#graph').selectAll('g.node, g.edge').nodes(); | |||
| elements.forEach((ele) => { | |||
| if (!ele.hasAttribute('transform')) { | |||
| ele.setAttribute('transform', 'translate(0,0)'); | |||
| @@ -728,6 +728,7 @@ export default { | |||
| .parentNode.id; | |||
| name = parentId.replace('_unfold', ''); | |||
| this.allGraphData[name].index += changePage; | |||
| this.selectedNode.name = name; | |||
| } | |||
| if (unfoldFlag) { | |||
| this.dealDoubleClick(name); | |||
| @@ -928,26 +929,39 @@ export default { | |||
| * @param {Boolean} toUnfold Expand the namespace. | |||
| */ | |||
| layoutNamescope(name, toUnfold) { | |||
| setTimeout(() => { | |||
| this.$nextTick(() => { | |||
| const dotStr = this.packageNamescope(name); | |||
| this.graphvizTemp = d3 | |||
| .select('#graphTemp') | |||
| .graphviz({useWorker: false, totalMemory: this.totalMemory}) | |||
| .dot(dotStr) | |||
| .zoomScaleExtent(this.scaleRange) | |||
| .attributer((datum, index, nodes) => { | |||
| if ( | |||
| datum.tag === 'polygon' && | |||
| datum.attributes.stroke !== 'transparent' | |||
| ) { | |||
| datum.attributes.stroke = 'rgb(167, 167, 167)'; | |||
| } | |||
| }) | |||
| .render(() => { | |||
| this.fitGraph('graphTemp'); | |||
| this.dealNamescopeTempGraph(name); | |||
| }); | |||
| }, 20); | |||
| try { | |||
| this.graphvizTemp = d3 | |||
| .select('#graphTemp') | |||
| .graphviz({useWorker: false, totalMemory: this.totalMemory}) | |||
| .dot(dotStr) | |||
| .zoomScaleExtent(this.scaleRange) | |||
| .attributer((datum, index, nodes) => { | |||
| if ( | |||
| datum.tag === 'polygon' && | |||
| datum.attributes.stroke !== 'transparent' | |||
| ) { | |||
| datum.attributes.stroke = 'rgb(167, 167, 167)'; | |||
| } | |||
| }) | |||
| .render(() => { | |||
| this.fitGraph('graphTemp'); | |||
| this.dealNamescopeTempGraph(name); | |||
| }); | |||
| } catch (error) { | |||
| const graphTempSvg = document.querySelector('#graphTemp svg'); | |||
| if (graphTempSvg) { | |||
| graphTempSvg.remove(); | |||
| } | |||
| const subGraphTempSvg = document.querySelector('#subgraphTemp svg'); | |||
| if (subGraphTempSvg) { | |||
| subGraphTempSvg.remove(); | |||
| } | |||
| this.dealDoubleClick(this.selectedNode.name); | |||
| } | |||
| }); | |||
| }, | |||
| /** | |||
| * To obtain graph data, initialize and expand the namespace or aggregate nodes. | |||
| @@ -1665,10 +1679,7 @@ export default { | |||
| .attr('width', g.node().getBBox().width + this.frameSpace * 2) | |||
| .attr('height', g.node().getBBox().height + this.frameSpace * 2); | |||
| boxTemp = d3 | |||
| .select(`${idStr}g[id="${name}_unfold"]`) | |||
| .node() | |||
| .getBBox(); | |||
| boxTemp = d3.select(`${idStr}g[id="${name}_unfold"]`).node().getBBox(); | |||
| // After the namespace dom is successfully encapsulated, set the related data of the data object. | |||
| this.allGraphData[name].isUnfold = true; | |||
| this.allGraphData[name].size = [boxTemp.width / 72, boxTemp.height / 72]; | |||
| @@ -1680,8 +1691,9 @@ export default { | |||
| const node = document.querySelector(`#graphTemp g[id="${name}"]`); | |||
| const box = node.getBBox(); | |||
| const boxTemp = nodeTemp.getBBox(); | |||
| const translateStr = `translate(${box.x - boxTemp.x},${box.y - | |||
| boxTemp.y})`; | |||
| const translateStr = `translate(${box.x - boxTemp.x},${ | |||
| box.y - boxTemp.y | |||
| })`; | |||
| nodeTemp.setAttribute('transform', translateStr); | |||
| node.parentNode.appendChild(nodeTemp); | |||
| document.querySelector('#subgraphTemp svg').remove(); | |||
| @@ -1732,8 +1744,9 @@ export default { | |||
| if (node && nodeTemp) { | |||
| const box = node.getBBox(); | |||
| const boxTemp = nodeTemp.getBBox(); | |||
| const translateStr = `translate(${box.x - boxTemp.x},${box.y - | |||
| boxTemp.y})`; | |||
| const translateStr = `translate(${box.x - boxTemp.x},${ | |||
| box.y - boxTemp.y | |||
| })`; | |||
| nodeTemp.setAttribute('transform', translateStr); | |||
| node.parentNode.appendChild(nodeTemp); | |||
| node.remove(); | |||
| @@ -1809,10 +1822,7 @@ export default { | |||
| this.loading.show = true; | |||
| } | |||
| if (name.includes('/')) { | |||
| const subPath = name | |||
| .split('/') | |||
| .slice(0, -1) | |||
| .join('/'); | |||
| const subPath = name.split('/').slice(0, -1).join('/'); | |||
| this.layoutNamescope(subPath, true); | |||
| } else { | |||
| const svg = document.querySelector('#graph svg'); | |||
| @@ -2029,9 +2039,13 @@ export default { | |||
| selectedNode.type === 'name_scope' || | |||
| selectedNode.type === 'aggregation_scope'; | |||
| this.selectedNode.count = selectedNode.subnode_count; | |||
| this.selectedNode.info.attributes = JSON.parse( | |||
| JSON.stringify(selectedNode.attr), | |||
| ); | |||
| const attrTemp = JSON.parse(JSON.stringify(selectedNode.attr || {})); | |||
| this.selectedNode.info.attributes = Object.keys(attrTemp).map((key) => { | |||
| return { | |||
| name: key, | |||
| value: attrTemp[key], | |||
| }; | |||
| }); | |||
| Object.keys(selectedNode.input).forEach((key) => { | |||
| const value = this.getEdgeLabel(selectedNode.input[key]); | |||
| @@ -2288,10 +2302,7 @@ export default { | |||
| if (subPsth && this.allGraphData[subPsth]) { | |||
| // The virtual node and its subnodes need to return their namespaces. | |||
| if (this.allGraphData[subPsth].independent_layout) { | |||
| subPsth = subPsth | |||
| .split('/') | |||
| .slice(0, -1) | |||
| .join('/'); | |||
| subPsth = subPsth.split('/').slice(0, -1).join('/'); | |||
| } | |||
| } | |||
| return subPsth; | |||
| @@ -2615,7 +2626,7 @@ export default { | |||
| this.insideBox.height = this.smallResize.height; | |||
| this.insideBox.top = this.insideBox.left = 0; | |||
| this.styleSet('#inside-box', this.insideBox); | |||
| insideBox.style.cursor = 'not-allowed'; | |||
| this.insideBox.style.cursor = 'not-allowed'; | |||
| } else { | |||
| let transformString = ''; | |||
| const transTemp = this.graph.dom.attributes.transform || null; | |||
| @@ -2753,8 +2764,9 @@ export default { | |||
| `<svg xmlns="http://www.w3.org/2000/svg" ` + | |||
| `xmlns:xlink="http://www.w3.org/1999/xlink" width="100%" height="100%" ` + | |||
| `viewBox="0.00 0.00 ${this.svg.originSize.width} ${this.svg.originSize.height}"` + | |||
| `><g id="smallGraph" class="graph" transform="translate(4,${this.svg | |||
| .originSize.height - 4}) scale(1)"` + | |||
| `><g id="smallGraph" class="graph" transform="translate(4,${ | |||
| this.svg.originSize.height - 4 | |||
| }) scale(1)"` + | |||
| `>${this.graph.dom.innerHTML}</g></svg>`; | |||
| smallMap.innerHTML = svgOuterHtml; | |||
| @@ -3489,4 +3501,9 @@ export default { | |||
| padding-right: 32px; | |||
| } | |||
| } | |||
| #graphTemp, | |||
| #subgraphTemp { | |||
| position: absolute; | |||
| bottom: 0; | |||
| } | |||
| </style> | |||
| @@ -0,0 +1,981 @@ | |||
| <!-- | |||
| Copyright 2020 Huawei Technologies Co., Ltd.All Rights Reserved. | |||
| Licensed under the Apache License, Version 2.0 (the "License"); | |||
| you may not use this file except in compliance with the License. | |||
| You may obtain a copy of the License at | |||
| http://www.apache.org/licenses/LICENSE-2.0 | |||
| Unless required by applicable law or agreed to in writing, software | |||
| distributed under the License is distributed on an "AS IS" BASIS, | |||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| See the License for the specific language governing permissions and | |||
| limitations under the License. | |||
| --> | |||
| <template> | |||
| <div class="cl-hardware-visual"> | |||
| <div class="cl-hardware-content" | |||
| v-if="!(chipTableData.length === 0 && cpuList.length===0)"> | |||
| <div class="cl-hardware-top" | |||
| v-if="chipTableData.length"> | |||
| <div class="cl-hardware-left"> | |||
| <div class="cl-sub-title" | |||
| v-if="chipTableData.length"> | |||
| {{$t('hardwareVisual.processor')}} | |||
| </div> | |||
| <div class="cl-chip-wrap"> | |||
| <el-table v-if="chipTableData.length" | |||
| :data="chipTableData" | |||
| width="100%" | |||
| height="100%" | |||
| :row-class-name="tableRowClassName"> | |||
| <el-table-column width="120"> | |||
| <template slot="header"> | |||
| <span class="cl-text-center"> | |||
| Name | |||
| <el-tooltip class="item" | |||
| effect="light" | |||
| :content="$t('hardwareVisual.chipNameTip')" | |||
| placement="top-start"> | |||
| <i class="el-icon-info"></i> | |||
| </el-tooltip> | |||
| </span> | |||
| </template> | |||
| <template slot-scope="scope"> | |||
| <span class="cl-text-center">{{ scope.row.chip_name }}</span> | |||
| </template> | |||
| </el-table-column> | |||
| <el-table-column width="80"> | |||
| <template slot="header"> | |||
| <span class="cl-text-center"> | |||
| NPU | |||
| <el-tooltip class="item" | |||
| effect="light" | |||
| :content="$t('hardwareVisual.deviceIdTip')" | |||
| placement="top-start"> | |||
| <i class="el-icon-info"></i> | |||
| </el-tooltip> | |||
| </span> | |||
| </template> | |||
| <template slot-scope="scope"> | |||
| <span class="cl-text-center">{{ scope.row.device_id }}</span> | |||
| </template> | |||
| </el-table-column> | |||
| <el-table-column width="110"> | |||
| <template slot="header"> | |||
| <span class="cl-text-center"> | |||
| Available | |||
| <el-tooltip class="item" | |||
| effect="light" | |||
| :content="$t('hardwareVisual.availableTip')" | |||
| placement="top-start"> | |||
| <i class="el-icon-info"></i> | |||
| </el-tooltip> | |||
| </span> | |||
| </template> | |||
| <template slot-scope="scope"> | |||
| <span class="cl-text-center"> | |||
| <i class="el-icon-success" | |||
| v-if="scope.row.available" | |||
| :title="$t('hardwareVisual.availableFree')"></i> | |||
| <i class="el-icon-question" | |||
| :title="$t('hardwareVisual.availableBusy')" | |||
| v-else></i> | |||
| </span> | |||
| </template> | |||
| </el-table-column> | |||
| <el-table-column width="80"> | |||
| <template slot="header"> | |||
| <span class="cl-text-center"> | |||
| Health | |||
| <el-tooltip class="item" | |||
| effect="light" | |||
| :content="$t('hardwareVisual.healthTip')" | |||
| placement="top-start"> | |||
| <i class="el-icon-info"></i> | |||
| </el-tooltip> | |||
| </span> | |||
| </template> | |||
| <template slot-scope="scope"> | |||
| <span class="cl-text-center"> | |||
| <i class="el-icon-success" | |||
| v-if="scope.row.health===0" | |||
| :title="$t('hardwareVisual.normal')"></i> | |||
| <i class="el-icon-warning normal" | |||
| v-if="scope.row.health===1" | |||
| :title="$t('hardwareVisual.generalWarn')"></i> | |||
| <i class="el-icon-warning important" | |||
| v-if="scope.row.health===2" | |||
| :title="$t('hardwareVisual.importantWarn')"></i> | |||
| <i class="el-icon-warning emergency" | |||
| v-if="scope.row.health===3" | |||
| :title="$t('hardwareVisual.emergencyWarn')"></i> | |||
| <i class="el-icon-remove" | |||
| v-if="scope.row.health=== 0xffffffff" | |||
| :title="$t('hardwareVisual.noChip')"></i> | |||
| </span> | |||
| </template> | |||
| </el-table-column> | |||
| <el-table-column width="130"> | |||
| <template slot="header"> | |||
| <span class="cl-text-center"> | |||
| IP Address | |||
| <el-tooltip class="item" | |||
| effect="light" | |||
| :content="$t('hardwareVisual.ipTip')" | |||
| placement="top-start"> | |||
| <i class="el-icon-info"></i> | |||
| </el-tooltip> | |||
| </span> | |||
| </template> | |||
| <template slot-scope="scope"> | |||
| <span class="cl-text-center">{{ scope.row.ip_address }}</span> | |||
| </template> | |||
| </el-table-column> | |||
| <el-table-column prop="aicore"> | |||
| <template slot="header"> | |||
| AI Core(%) | |||
| <el-tooltip class="item" | |||
| effect="light" | |||
| :content="$t('hardwareVisual.aicoreTip')" | |||
| placement="top-start"> | |||
| <i class="el-icon-info"></i> | |||
| </el-tooltip> | |||
| </template> | |||
| <template slot-scope="scope"> | |||
| <div class="core-wrap"> | |||
| <el-progress :percentage="scope.row.aicore_rate===-1?0:scope.row.aicore_rate" | |||
| :format="format(scope.row.aicore_rate)"></el-progress> | |||
| </div> | |||
| </template> | |||
| </el-table-column> | |||
| <el-table-column prop="hbm_usage" | |||
| min-width="100"> | |||
| <template slot="header"> | |||
| HBM-Usage(MB) | |||
| <el-tooltip class="item" | |||
| effect="light" | |||
| :content="$t('hardwareVisual.hbmTip')" | |||
| placement="top-start"> | |||
| <i class="el-icon-info"></i> | |||
| </el-tooltip> | |||
| </template> | |||
| <template slot-scope="scope"> | |||
| <div class="hbs-wrap"> | |||
| <el-progress :percentage="scope.row.hbm_info.memory_size? | |||
| parseInt(scope.row.hbm_info.memory_usage/scope.row.hbm_info.memory_size*100):0" | |||
| :format="formatHbm(scope.row.hbm_info)"></el-progress> | |||
| </div> | |||
| </template> | |||
| </el-table-column> | |||
| <el-table-column prop="power"> | |||
| <template slot="header"> | |||
| Power(W) | |||
| <el-tooltip class="item" | |||
| effect="light" | |||
| :content="$t('hardwareVisual.powerTip')" | |||
| placement="top-start"> | |||
| <i class="el-icon-info"></i> | |||
| </el-tooltip> | |||
| </template> | |||
| <template slot-scope="scope"> | |||
| <div class="power-wrap"> | |||
| <div class="power" | |||
| :style="{width:`${scope.row.power/powerMax*100}%`}">{{scope.row.power}}</div> | |||
| </div> | |||
| </template> | |||
| </el-table-column> | |||
| <el-table-column prop="temp" | |||
| width="150"> | |||
| <template slot="header"> | |||
| Temp(℃) | |||
| <el-tooltip class="item" | |||
| effect="light" | |||
| :content="$t('hardwareVisual.temperatureTip')" | |||
| placement="top-start"> | |||
| <i class="el-icon-info"></i> | |||
| </el-tooltip> | |||
| </template> | |||
| <template slot-scope="scope"> | |||
| <div class="temp-wrap"> | |||
| <div class="circle" | |||
| :class="{zero:!scope.row.temperature}"></div> | |||
| <div class="process-wrap"> | |||
| <div class="process-cover" | |||
| :style="{width:temperatureMax?scope.row.temperature/temperatureMax*100+'%':0}"></div> | |||
| </div> | |||
| <span>{{scope.row.temperature}}</span> | |||
| </div> | |||
| </template> | |||
| </el-table-column> | |||
| </el-table> | |||
| <div class="image-noData" | |||
| v-if="chipTableData.length === 0"> | |||
| <div> | |||
| <img :src="require('@/assets/images/nodata.png')" | |||
| alt="" /> | |||
| </div> | |||
| <p>{{$t("hardwareVisual.noNpuInfo")}}</p> | |||
| </div> | |||
| </div> | |||
| </div> | |||
| </div> | |||
| <div class="cl-hardware-bottom" | |||
| :class="{noNpu:!chipTableData.length}"> | |||
| <div class="cl-hardware-left"> | |||
| <div class="cl-sub-title"> | |||
| CPU | |||
| </div> | |||
| <div class="cl-cpu-wrap"> | |||
| <div class="cpu-items"> | |||
| <div class="cpu-item" | |||
| v-for="(item,key) in cpuList" | |||
| :key="key"> | |||
| <div class="cpu" | |||
| :class="{selected:item.selected}" | |||
| :style="{backgroundColor:item.idle!==undefined? | |||
| `rgba(250,152,65,${(100-item.idle).toFixed(2)/100}`:'#ccc'}" | |||
| :title="item.idle!==undefined?`Core ${key}`:''" | |||
| @click="viewPerCpuInfo(key)"> | |||
| {{ item.idle!==undefined?(100-item.idle).toFixed(2):'' }} | |||
| </div> | |||
| </div> | |||
| </div> | |||
| <div class="cpu-detail"> | |||
| <div class="all-cpu-info"> | |||
| <span>{{$t('hardwareVisual.allCpu')}}</span> | |||
| <div class="info-item" | |||
| v-for="(item,index) in overallCpuInfo" | |||
| :key="index"> | |||
| <el-tooltip class="item" | |||
| effect="light" | |||
| :content="item.tips" | |||
| placement="top-start"> | |||
| <span> | |||
| <span class="label">{{item.label}}</span> | |||
| <span class="value">{{`${item.value}%`}}</span> | |||
| </span> | |||
| </el-tooltip> | |||
| </div> | |||
| </div> | |||
| <div class="selected-cpu-info" | |||
| v-if="selectedCpuIndex!==null"> | |||
| <span>{{$t('hardwareVisual.selectedCpu')}}</span> | |||
| <div class="info-item" | |||
| v-for="(item,index) in selectedCpuInfo" | |||
| :key="index"> | |||
| <el-tooltip class="item" | |||
| effect="light" | |||
| :content="item.tips" | |||
| placement="top-start"> | |||
| <span> | |||
| <span class="label">{{item.label}}</span> | |||
| <span class="value">{{`${item.value}%`}}</span> | |||
| </span> | |||
| </el-tooltip> | |||
| </div> | |||
| </div> | |||
| </div> | |||
| </div> | |||
| </div> | |||
| <div class="cl-hardware-right"> | |||
| <div class="cl-sub-title ram"> | |||
| {{$t('hardwareVisual.ram')}} | |||
| </div> | |||
| <div class="cl-ram-wrap"> | |||
| <div class="virtual-wrap"> | |||
| <div id="virtual"></div> | |||
| </div> | |||
| </div> | |||
| </div> | |||
| </div> | |||
| </div> | |||
| <div class="image-noData" | |||
| v-if="chipTableData.length === 0 && cpuList.length===0 && initOver"> | |||
| <div> | |||
| <img :src="require('@/assets/images/nodata.png')" | |||
| alt="" /> | |||
| </div> | |||
| <p>{{$t("public.noData")}}</p> | |||
| </div> | |||
| </div> | |||
| </template> | |||
| <script> | |||
| import echarts from 'echarts'; | |||
| import RequestService from '../../services/request-service'; | |||
| export default { | |||
| data() { | |||
| return { | |||
| chipTableData: [], | |||
| powerMax: null, | |||
| temperatureMax: null, | |||
| virtualChart: { | |||
| id: 'virtual', | |||
| chartDom: null, | |||
| data: [], | |||
| legend: [], | |||
| totalValue: null, | |||
| }, | |||
| defaultCpuNum: 96, | |||
| cpuList: [], | |||
| overallCpuInfo: [], | |||
| selectedCpuInfo: [], | |||
| selectedCpuIndex: null, | |||
| pieColorArr: ['#5e7ce0', '#ccc', '#a6dd82'], | |||
| autoUpdateTimer: null, // Automatic refresh timer | |||
| isReloading: false, // Manually refresh | |||
| legendSelected: {}, | |||
| initOver: false, | |||
| }; | |||
| }, | |||
| computed: { | |||
| /** | |||
| * Global refresh switch | |||
| * @return {Boolean} | |||
| */ | |||
| isReload() { | |||
| return this.$store.state.isReload; | |||
| }, | |||
| /** | |||
| * Automatic hardware refresh switch | |||
| * @return {Boolean} | |||
| */ | |||
| isHardwareTimeReload() { | |||
| return this.$store.state.isHardwareTimeReload; | |||
| }, | |||
| /** | |||
| * Automatic hardware refresh value | |||
| * @return {Boolean} | |||
| */ | |||
| hardwareTimeReloadValue() { | |||
| return this.$store.state.hardwareTimeReloadValue; | |||
| }, | |||
| }, | |||
| watch: { | |||
| /** | |||
| * Global refresh switch Listener | |||
| * @param {Boolean} newVal Value After Change | |||
| * @param {Boolean} oldVal Value Before Change | |||
| */ | |||
| isReload(newVal, oldVal) { | |||
| if (newVal) { | |||
| this.isReloading = true; | |||
| if (this.isHardwareTimeReload) { | |||
| this.autoUpdateSamples(); | |||
| } | |||
| this.init(); | |||
| } | |||
| }, | |||
| /** | |||
| * Automatic refresh switch Listener | |||
| * @param {Boolean} newVal Value After Change | |||
| * @param {Boolean} oldVal Value Before Change | |||
| */ | |||
| isHardwareTimeReload(newVal, oldVal) { | |||
| if (newVal) { | |||
| this.autoUpdateSamples(); | |||
| } else { | |||
| this.stopUpdateSamples(); | |||
| } | |||
| }, | |||
| /** | |||
| * The refresh time is changed. | |||
| */ | |||
| hardwareTimeReloadValue() { | |||
| this.autoUpdateSamples(); | |||
| }, | |||
| }, | |||
| destroyed() { | |||
| // Disable the automatic refresh function | |||
| if (this.autoUpdateTimer) { | |||
| clearInterval(this.autoUpdateTimer); | |||
| this.autoUpdateTimer = null; | |||
| } | |||
| // Stop Refreshing | |||
| if (this.isReloading) { | |||
| this.$store.commit('setIsReload', false); | |||
| this.isReloading = false; | |||
| } | |||
| }, | |||
| mounted() { | |||
| document.title = this.$t('summaryManage.hardwareVisual') + '-MindInsight'; | |||
| // Automatic refresh | |||
| if (this.isHardwareTimeReload) { | |||
| this.autoUpdateSamples(); | |||
| } | |||
| this.init(); | |||
| }, | |||
| methods: { | |||
| /** | |||
| * Initialization data | |||
| */ | |||
| init() { | |||
| RequestService.getMetricsData().then( | |||
| (res) => { | |||
| this.initOver = true; | |||
| if (this.isReloading) { | |||
| this.$store.commit('setIsReload', false); | |||
| this.isReloading = false; | |||
| } | |||
| if (res && res.data) { | |||
| this.chipTableData = res.data.npu || []; | |||
| if (this.chipTableData.length === 0) { | |||
| this.defaultCpuNum = 192; | |||
| } | |||
| this.powerMax = | |||
| Math.max(...this.chipTableData.map((val) => val.power)) * 1.2; | |||
| this.temperatureMax = | |||
| Math.max(...this.chipTableData.map((val) => val.temperature)) * | |||
| 1.2; | |||
| // 1.2 In order to Demonstrated effect | |||
| if (res.data.memory && res.data.memory.virtual) { | |||
| this.dealChartData(this.virtualChart, res.data.memory.virtual); | |||
| this.setOption(this.virtualChart); | |||
| } | |||
| if (res.data.cpu) { | |||
| const overall = res.data.cpu.overall || {}; | |||
| this.overallCpuInfo = Object.keys(overall).map((val) => { | |||
| return { | |||
| label: val, | |||
| value: overall[val], | |||
| }; | |||
| }); | |||
| this.addtips(this.overallCpuInfo); | |||
| this.cpuList = (res.data.cpu.percpu || []).map((val) => { | |||
| return {...val, selected: false}; | |||
| }); | |||
| while (this.cpuList.length < this.defaultCpuNum) { | |||
| this.cpuList.push({}); | |||
| } | |||
| if (this.selectedCpuIndex !== null) { | |||
| this.viewPerCpuInfo(this.selectedCpuIndex); | |||
| } else { | |||
| this.selectedCpuInfo = []; | |||
| } | |||
| this.$nextTick(() => { | |||
| const doms = document.querySelectorAll('.fail-row'); | |||
| if (doms) { | |||
| for (let i = 0; i < doms.length; i++) { | |||
| doms[i].setAttribute( | |||
| 'title', | |||
| this.$t('hardwareVisual.failQueryChip'), | |||
| ); | |||
| } | |||
| } | |||
| }); | |||
| } | |||
| } | |||
| }, | |||
| (err) => { | |||
| this.chipTableData = []; | |||
| this.cpuList = []; | |||
| this.initOver = true; | |||
| if (this.isReloading) { | |||
| this.$store.commit('setIsReload', false); | |||
| this.isReloading = false; | |||
| } | |||
| }, | |||
| ); | |||
| }, | |||
| tableRowClassName({row, rowIndex}) { | |||
| if (!row.success) { | |||
| return 'fail-row'; | |||
| } | |||
| return ''; | |||
| }, | |||
| /** | |||
| * add tips | |||
| * @param {Array} arr cpu Info | |||
| */ | |||
| addtips(arr) { | |||
| arr.forEach((val) => { | |||
| switch (val.label) { | |||
| case 'user': | |||
| val.tips = this.$t('hardwareVisual.cpuUserTip'); | |||
| break; | |||
| case 'nice': | |||
| val.tips = this.$t('hardwareVisual.cpuNiceTip'); | |||
| break; | |||
| case 'system': | |||
| val.tips = this.$t('hardwareVisual.cpuSystemTip'); | |||
| break; | |||
| case 'idle': | |||
| val.tips = this.$t('hardwareVisual.cpuIdleTip'); | |||
| break; | |||
| case 'iowait': | |||
| val.tips = this.$t('hardwareVisual.cpuIowaitTip'); | |||
| break; | |||
| case 'irq': | |||
| val.tips = this.$t('hardwareVisual.cpuIrqTip'); | |||
| break; | |||
| case 'softirq': | |||
| val.tips = this.$t('hardwareVisual.cpuSoftirqTip'); | |||
| break; | |||
| case 'steal': | |||
| val.tips = this.$t('hardwareVisual.cpuStealTip'); | |||
| break; | |||
| case 'guest': | |||
| val.tips = this.$t('hardwareVisual.cpuGuestTip'); | |||
| break; | |||
| case 'guest_nice': | |||
| val.tips = this.$t('hardwareVisual.cpuGuestniceTip'); | |||
| break; | |||
| case 'interrupt': | |||
| val.tips = this.$t('hardwareVisual.cpuInterruptTip'); | |||
| break; | |||
| case 'dpc': | |||
| val.tips = this.$t('hardwareVisual.cpuDpcTip'); | |||
| break; | |||
| } | |||
| }); | |||
| }, | |||
| /** | |||
| * View the information of each cpu | |||
| * @param {Number} index index | |||
| */ | |||
| viewPerCpuInfo(index) { | |||
| this.cpuList.forEach((val, key) => { | |||
| if (val.idle !== undefined) { | |||
| if (index === key) { | |||
| this.selectedCpuIndex = key; | |||
| val.selected = !val.selected; | |||
| if (val.selected) { | |||
| this.selectedCpuInfo = Object.keys(this.cpuList[index]).map( | |||
| (val) => { | |||
| return { | |||
| label: val, | |||
| value: this.cpuList[index][val], | |||
| }; | |||
| }, | |||
| ); | |||
| this.selectedCpuInfo.pop(); | |||
| } else { | |||
| this.selectedCpuIndex = null; | |||
| this.selectedCpuInfo = []; | |||
| } | |||
| } else { | |||
| if (this.cpuList[index].idle !== undefined) { | |||
| val.selected = false; | |||
| } | |||
| } | |||
| } | |||
| }); | |||
| this.addtips(this.selectedCpuInfo); | |||
| }, | |||
| /** | |||
| * Handling pie chart data | |||
| * @param {Object} chart chart obejct | |||
| * @param {Object} data chart data | |||
| */ | |||
| dealChartData(chart, data) { | |||
| if (data.others === 0) { | |||
| chart.legend = ['used', 'available']; | |||
| } else { | |||
| chart.legend = ['used', 'others', 'available']; | |||
| } | |||
| chart.data = chart.legend.map((val) => { | |||
| return { | |||
| value: data[val], | |||
| name: val, | |||
| }; | |||
| }); | |||
| chart.totalValue = 0; | |||
| chart.data.forEach((val) => { | |||
| chart.totalValue += val.value; | |||
| }); | |||
| }, | |||
| /** | |||
| * Data unit conversion | |||
| * @param {Number} n chart obejct | |||
| * @param {Boolean} type format type | |||
| * @return {String} | |||
| */ | |||
| bytesHuman(n, type) { | |||
| const symbols = 'KMG' | |||
| .split('') | |||
| .map((symbol, index) => [symbol, 1 << ((index + 1) * 10)]); | |||
| for (const [symbol, prefix] of symbols.reverse()) { | |||
| if (n >= prefix) { | |||
| if (type) { | |||
| return `${n}(${(n / prefix).toFixed(1)}${symbol})`; | |||
| } else { | |||
| return `${(n / prefix).toFixed(1)}${symbol}`; | |||
| } | |||
| } | |||
| } | |||
| return `${n}`; | |||
| }, | |||
| format(percentage, item) { | |||
| return () => { | |||
| return percentage === -1 | |||
| ? this.$t('hardwareVisual.faliQuery') | |||
| : `${percentage}`; | |||
| }; | |||
| }, | |||
| formatHbm(hbmInfo) { | |||
| return function() { | |||
| return `${hbmInfo.memory_usage}/${hbmInfo.memory_size}`; | |||
| }; | |||
| }, | |||
| /** | |||
| * Enable automatic hardware refresh | |||
| */ | |||
| autoUpdateSamples() { | |||
| if (this.autoUpdateTimer) { | |||
| clearInterval(this.autoUpdateTimer); | |||
| this.autoUpdateTimer = null; | |||
| } | |||
| this.autoUpdateTimer = setInterval(() => { | |||
| this.$store.commit('clearToken'); | |||
| this.init(); | |||
| }, this.hardwareTimeReloadValue * 1000); | |||
| }, | |||
| /** | |||
| * Disable automatic refresh | |||
| */ | |||
| stopUpdateSamples() { | |||
| if (this.autoUpdateTimer) { | |||
| clearInterval(this.autoUpdateTimer); | |||
| this.autoUpdateTimer = null; | |||
| } | |||
| }, | |||
| setOption(chart) { | |||
| const option = { | |||
| tooltip: { | |||
| trigger: 'item', | |||
| formatter: (params) => { | |||
| return `${params.name}<br> | |||
| ${params.marker}${this.bytesHuman(params.value, true)}`; | |||
| }, | |||
| confine: true, | |||
| }, | |||
| legend: { | |||
| orient: 'vertical', | |||
| left: '50%', | |||
| top: '35%', | |||
| icon: 'circle', | |||
| data: chart.legend, | |||
| formatter: (params) => { | |||
| let legendStr = ''; | |||
| for (let i = 0; i < chart.data.length; i++) { | |||
| if (chart.data[i].name === params) { | |||
| const name = chart.data[i].name; | |||
| legendStr = `{a|${this.bytesHuman( | |||
| chart.data[i].value, | |||
| true, | |||
| )}}\n{b|${name}}`; | |||
| } | |||
| } | |||
| return legendStr; | |||
| }, | |||
| selected: this.legendSelected, | |||
| textStyle: { | |||
| rich: { | |||
| a: { | |||
| fontSize: 14, | |||
| }, | |||
| b: { | |||
| color: '#aeb2bf', | |||
| }, | |||
| }, | |||
| }, | |||
| }, | |||
| series: [ | |||
| { | |||
| name: '', | |||
| center: ['25%', '50%'], | |||
| type: 'pie', | |||
| radius: this.chipTableData.length ? ['40%', '60%'] : ['30%', '40%'], | |||
| avoidLabelOverlap: false, | |||
| label: { | |||
| show: true, | |||
| formatter: () => { | |||
| return `{a|${this.bytesHuman(chart.totalValue)}}{b|All}`; | |||
| }, | |||
| position: 'center', | |||
| textStyle: { | |||
| rich: { | |||
| a: { | |||
| fontSize: 20, | |||
| color: '#000', | |||
| }, | |||
| b: { | |||
| color: '#aeb2bf', | |||
| }, | |||
| }, | |||
| }, | |||
| }, | |||
| labelLine: { | |||
| show: false, | |||
| }, | |||
| data: chart.data, | |||
| itemStyle: { | |||
| normal: { | |||
| color: (params) => { | |||
| return this.pieColorArr[params.dataIndex]; | |||
| }, | |||
| }, | |||
| }, | |||
| }, | |||
| ], | |||
| }; | |||
| this.$nextTick(() => { | |||
| const cpuDom = document.getElementById(chart.id); | |||
| if (cpuDom) { | |||
| chart.chartDom = echarts.init(cpuDom, null); | |||
| chart.chartDom.setOption(option, true); | |||
| chart.chartDom.resize(); | |||
| chart.chartDom.on('legendselectchanged', (obj) => { | |||
| this.legendSelected = obj.selected; | |||
| }); | |||
| } | |||
| }); | |||
| }, | |||
| }, | |||
| }; | |||
| </script> | |||
| <style lang="scss" > | |||
| .cl-hardware-visual { | |||
| height: 100%; | |||
| background-color: #fff; | |||
| .cl-hardware-content { | |||
| height: 100%; | |||
| padding: 0 24px 24px 24px; | |||
| .cl-hardware-top { | |||
| height: calc(100% - 372px); | |||
| padding-top: 16px; | |||
| & > div { | |||
| width: 100%; | |||
| .cl-text-center { | |||
| display: inline-block; | |||
| text-align: center; | |||
| width: 100%; | |||
| } | |||
| .el-table::before { | |||
| height: 0px; | |||
| } | |||
| } | |||
| } | |||
| .cl-hardware-bottom { | |||
| height: 360px; | |||
| .cl-hardware-left { | |||
| width: calc(100% - 466px); | |||
| margin-right: 16px; | |||
| } | |||
| .cl-hardware-right { | |||
| width: 450px; | |||
| } | |||
| } | |||
| & > div { | |||
| height: calc(50% - 8px); | |||
| margin-bottom: 16px; | |||
| & > div { | |||
| float: left; | |||
| height: 100%; | |||
| border: 1px solid #eee; | |||
| border-radius: 4px; | |||
| padding: 16px; | |||
| .cl-sub-title { | |||
| font-weight: bold; | |||
| font-size: 16px; | |||
| margin-bottom: 15px; | |||
| } | |||
| .cl-sub-title.ram { | |||
| margin-bottom: 10px; | |||
| } | |||
| .cl-chip-wrap { | |||
| height: calc(100% - 36px); | |||
| overflow: auto; | |||
| .el-icon-question::before { | |||
| color: #f06281; | |||
| } | |||
| .el-icon-success:before { | |||
| color: #57d7ac; | |||
| } | |||
| .el-icon-error:before { | |||
| color: #e37783; | |||
| } | |||
| .el-icon-warning.normal:before { | |||
| color: #6f81e4; | |||
| } | |||
| .el-icon-warning.important:before { | |||
| color: #faa048; | |||
| } | |||
| .el-icon-warning.emergency:before { | |||
| color: #f06281; | |||
| } | |||
| .el-icon-remove:before { | |||
| color: #8b8e95; | |||
| } | |||
| .temp-wrap { | |||
| .circle { | |||
| width: 10px; | |||
| height: 10px; | |||
| border-radius: 5px; | |||
| background: #ffaa00; | |||
| display: inline-block; | |||
| position: absolute; | |||
| left: 1px; | |||
| top: 50%; | |||
| margin-top: -4px; | |||
| } | |||
| .circle.zero { | |||
| background: #e6ebf5; | |||
| } | |||
| .process-wrap { | |||
| background: #e6ebf5; | |||
| width: calc(100% - 50px); | |||
| height: 6px; | |||
| display: inline-block; | |||
| border-top-right-radius: 50px; | |||
| border-bottom-right-radius: 50px; | |||
| margin-right: 5px; | |||
| .process-cover { | |||
| height: 6px; | |||
| border-top-right-radius: 50px; | |||
| border-bottom-right-radius: 50px; | |||
| background: #ff5100; | |||
| background-image: linear-gradient(to right, #ffaa00, #ff5100); | |||
| } | |||
| } | |||
| } | |||
| .hbs-wrap { | |||
| .el-progress-bar { | |||
| padding-right: 140px; | |||
| margin-right: -145px; | |||
| } | |||
| } | |||
| .core-wrap { | |||
| .el-progress-bar { | |||
| padding-right: 80px; | |||
| margin-right: -85px; | |||
| } | |||
| } | |||
| .power { | |||
| background: #e5f6f6; | |||
| padding-left: 10px; | |||
| } | |||
| } | |||
| .cl-ram-wrap { | |||
| height: calc(100% - 36px); | |||
| .virtual-wrap { | |||
| height: 100%; | |||
| overflow: auto; | |||
| #virtual { | |||
| height: 100%; | |||
| overflow: hidden; | |||
| } | |||
| } | |||
| } | |||
| .cl-disk-wrap { | |||
| height: calc(100% - 36px); | |||
| overflow: auto; | |||
| } | |||
| .cl-cpu-wrap { | |||
| height: 201px; | |||
| .cpu-items { | |||
| height: 100%; | |||
| overflow: auto; | |||
| background: url('../../assets/images/cpu-bg.svg') repeat; | |||
| padding: 3px 0 0 3px; | |||
| .cpu-item { | |||
| float: left; | |||
| width: calc(6.25% - 3px); | |||
| height: 30px; | |||
| text-align: center; | |||
| background: #fff; | |||
| margin-right: 3px; | |||
| margin-bottom: 3px; | |||
| cursor: pointer; | |||
| .cpu { | |||
| height: 100%; | |||
| line-height: 30px; | |||
| } | |||
| .cpu.selected { | |||
| line-height: 30px; | |||
| outline: 3px solid #00a5a7; | |||
| } | |||
| } | |||
| } | |||
| .cpu-detail { | |||
| & > div { | |||
| margin-top: 10px; | |||
| & > span { | |||
| margin-right: 5px; | |||
| color: #b2b4bb; | |||
| } | |||
| & > div { | |||
| display: inline-block; | |||
| padding: 0 7px; | |||
| border-right: 1px solid #ccc; | |||
| &:last-child { | |||
| border-right: none; | |||
| } | |||
| .label { | |||
| margin-right: 5px; | |||
| cursor: pointer; | |||
| } | |||
| .value { | |||
| display: inline-block; | |||
| width: 40px; | |||
| text-align: right; | |||
| cursor: pointer; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| .cl-hardware-bottom.noNpu { | |||
| padding-top: 16px; | |||
| height: 570px; | |||
| .cl-cpu-wrap { | |||
| height: 399px; | |||
| } | |||
| } | |||
| .el-table thead tr { | |||
| background: #f0f3fa; | |||
| } | |||
| .el-table th.is-leaf .cell { | |||
| border-left: 1px solid #d4d9e6; | |||
| } | |||
| .el-table th.is-leaf:first-child .cell { | |||
| border-left: none; | |||
| } | |||
| .el-pagination { | |||
| margin: 7px 0; | |||
| float: right; | |||
| } | |||
| } | |||
| .el-table th { | |||
| height: 32px; | |||
| } | |||
| .image-noData { | |||
| width: 100%; | |||
| height: 100%; | |||
| display: flex; | |||
| justify-content: center; | |||
| align-items: center; | |||
| flex-direction: column; | |||
| p { | |||
| font-size: 16px; | |||
| padding-top: 10px; | |||
| } | |||
| } | |||
| .el-icon-info:before { | |||
| color: #6c7280; | |||
| } | |||
| .el-table .fail-row { | |||
| opacity: 0.24; | |||
| filter: grayscale(1); | |||
| } | |||
| } | |||
| </style> | |||
| @@ -128,7 +128,7 @@ limitations under the License. | |||
| :prop="key" | |||
| :label="table.columnOptions[key].label.substring(3)" | |||
| show-overflow-tooltip | |||
| min-width="150" | |||
| min-width="120" | |||
| sortable="custom"> | |||
| <template slot="header" | |||
| slot-scope="scope"> | |||
| @@ -152,7 +152,7 @@ limitations under the License. | |||
| :prop="key" | |||
| :label="table.columnOptions[key].label.substring(3)" | |||
| show-overflow-tooltip | |||
| min-width="150" | |||
| min-width="120" | |||
| sortable="custom"> | |||
| <template slot="header" | |||
| slot-scope="scope"> | |||
| @@ -426,6 +426,26 @@ export default { | |||
| metric: 'metric/', | |||
| userDefined: 'user_defined/', | |||
| }, | |||
| valueType: { | |||
| int: 'int', | |||
| str: 'str', | |||
| mixed: 'mixed', | |||
| category: 'category', | |||
| model_size: 'model_size', | |||
| dataset_mark: 'dataset_mark', | |||
| }, | |||
| valueName: { | |||
| userDefined: 'userDefined', | |||
| metric: 'metric', | |||
| UserDefined: 'UserDefined', | |||
| Metric: 'Metric', | |||
| }, | |||
| labelValue: { | |||
| loss: 'loss', | |||
| batch_size: 'batch_size', | |||
| epoch: 'epoch', | |||
| learning_rate: 'learning_rate', | |||
| }, | |||
| }; | |||
| }, | |||
| computed: {}, | |||
| @@ -479,8 +499,9 @@ export default { | |||
| } | |||
| this.addIconBorder(row); | |||
| this.tagDialogShow = true; | |||
| const dialogHeight = 130; | |||
| document.getElementById('tag-dialog').style.top = | |||
| window.event.clientY - 130 + 'px'; | |||
| window.event.clientY - dialogHeight + 'px'; | |||
| }, | |||
| /** | |||
| @@ -790,7 +811,7 @@ export default { | |||
| required: true, | |||
| }, | |||
| loss: { | |||
| label: 'loss', | |||
| label: this.labelValue.loss, | |||
| required: true, | |||
| }, | |||
| network: { | |||
| @@ -814,11 +835,11 @@ export default { | |||
| required: false, | |||
| }, | |||
| epoch: { | |||
| label: 'epoch', | |||
| label: this.labelValue.epoch, | |||
| required: false, | |||
| }, | |||
| batch_size: { | |||
| label: 'batch_size', | |||
| label: this.labelValue.batch_size, | |||
| required: false, | |||
| }, | |||
| device_num: { | |||
| @@ -909,9 +930,9 @@ export default { | |||
| } else if (item.indexOf('user_defined/') === 0) { | |||
| userDefinedArray.push(item); | |||
| } else if ( | |||
| item === 'epoch' || | |||
| item === 'batch_size' || | |||
| item === 'learning_rate' | |||
| item === this.labelValue.epoch || | |||
| item === this.labelValue.batch_size || | |||
| item === this.labelValue.learning_rate | |||
| ) { | |||
| hyperArray.push(item); | |||
| } else { | |||
| @@ -965,7 +986,9 @@ export default { | |||
| .then( | |||
| (res) => { | |||
| if (res && res.data && res.data.object) { | |||
| const list = this.setDataOfModel(res.data.object); | |||
| const listTemp = this.setDataOfModel(res.data.object); | |||
| const list = JSON.parse(JSON.stringify(listTemp)); | |||
| const tempEchartData = JSON.parse(JSON.stringify(listTemp)); | |||
| if (allData) { | |||
| let customized = {}; | |||
| if (res.data.customized) { | |||
| @@ -973,17 +996,17 @@ export default { | |||
| const customizedKeys = Object.keys(customized); | |||
| if (customizedKeys.length) { | |||
| customizedKeys.forEach((i) => { | |||
| if (customized[i].type === 'int') { | |||
| if (customized[i].type === this.valueType.int) { | |||
| this.keysOfIntValue.push(i); | |||
| } else if (customized[i].type === 'str') { | |||
| } else if (customized[i].type === this.valueType.str) { | |||
| this.keysOfStringValue.push(i); | |||
| } else if (customized[i].type === 'mixed') { | |||
| } else if (customized[i].type === this.valueType.mixed) { | |||
| // list of type mixed | |||
| this.keysOfMixed.push(i); | |||
| this.keysOfStringValue.push(i); | |||
| } | |||
| if (i.startsWith(this.replaceStr.userDefined)) { | |||
| this.labelObj.userDefined = 'userDefined'; | |||
| this.labelObj.userDefined = this.valueName.userDefined; | |||
| customized[i].label = customized[i].label.replace( | |||
| this.replaceStr.userDefined, | |||
| '[U]', | |||
| @@ -997,7 +1020,7 @@ export default { | |||
| this.replaceStr.metric, | |||
| '[M]', | |||
| ); | |||
| this.labelObj.metric = 'metric'; | |||
| this.labelObj.metric = this.valueName.metric; | |||
| const metricObject = {value: '', label: ''}; | |||
| metricObject.value = customized[i].label; | |||
| metricObject.label = customized[i].label; | |||
| @@ -1033,7 +1056,7 @@ export default { | |||
| ]; | |||
| if (this.labelObj.metric) { | |||
| const metricTemp = { | |||
| label: 'Metric', | |||
| label: this.valueName.Metric, | |||
| options: this.metricOptions, | |||
| }; | |||
| this.checkOptions.push(metricTemp); | |||
| @@ -1041,7 +1064,7 @@ export default { | |||
| } | |||
| if (this.labelObj.userDefined) { | |||
| const userTemp = { | |||
| label: 'UserDefined', | |||
| label: this.valueName.UserDefined, | |||
| options: this.userOptions, | |||
| }; | |||
| this.checkOptions.push(userTemp); | |||
| @@ -1049,19 +1072,19 @@ export default { | |||
| } | |||
| Object.keys(this.table.columnOptions).forEach((item) => { | |||
| if ( | |||
| item !== 'epoch' && | |||
| item !== 'learning_rate' && | |||
| item !== 'batch_size' | |||
| item !== this.labelValue.epoch && | |||
| item !== this.labelValue.learning_rate && | |||
| item !== this.labelValue.batch_size | |||
| ) { | |||
| const index = this.table.optionsNotInCheckbox.indexOf( | |||
| const haveItem = this.table.optionsNotInCheckbox.includes( | |||
| item, | |||
| ); | |||
| if (index < 0) { | |||
| if (!haveItem) { | |||
| const otherType = {value: '', label: ''}; | |||
| otherType.value = this.table.columnOptions[item].label; | |||
| otherType.label = this.table.columnOptions[item].label; | |||
| if ( | |||
| otherType.value === 'loss' || | |||
| otherType.value === this.labelValue.loss || | |||
| otherType.value === | |||
| this.$t('modelTraceback.network') || | |||
| otherType.value === | |||
| @@ -1119,7 +1142,6 @@ export default { | |||
| this.noData = !res.data.object.length; | |||
| this.showEchartPic = !!res.data.object.length; | |||
| if (this.hidenDirChecked.length) { | |||
| const tempEchartData = this.setDataOfModel(res.data.object); | |||
| this.hidenDirChecked.forEach((dir) => { | |||
| tempEchartData.forEach((item, index) => { | |||
| if (item.summary_dir === dir) { | |||
| @@ -1230,8 +1252,9 @@ export default { | |||
| ? item.added_info.tag | |||
| : 0; | |||
| const modelData = JSON.parse(JSON.stringify(item.model_lineage)); | |||
| const byteNum = 1024; | |||
| modelData.model_size = parseFloat( | |||
| ((modelData.model_size || 0) / 1024 / 1024).toFixed(2), | |||
| ((modelData.model_size || 0) / byteNum / byteNum).toFixed(2), | |||
| ); | |||
| const keys = Object.keys(modelData.metric || {}); | |||
| if (keys.length) { | |||
| @@ -1512,9 +1535,9 @@ export default { | |||
| values[i[key].toString()] = i[key].toString(); | |||
| } | |||
| }); | |||
| obj.type = 'category'; | |||
| obj.type = this.valueType.category; | |||
| obj.data = Object.keys(values); | |||
| if (key === 'dataset_mark') { | |||
| if (key === this.valueType.dataset_mark) { | |||
| obj.axisLabel = { | |||
| show: false, | |||
| }; | |||
| @@ -1612,15 +1635,15 @@ export default { | |||
| if (this.echart.chart) { | |||
| this.echart.chart.off('axisareaselected', null); | |||
| window.removeEventListener('resize', this.resizeChart, false); | |||
| } else { | |||
| this.echart.chart = Echarts.init(document.querySelector('#echart')); | |||
| } | |||
| this.echart.chart = Echarts.init(document.querySelector('#echart')); | |||
| this.echart.chart.setOption(echartOption, true); | |||
| window.addEventListener('resize', this.resizeChart, false); | |||
| // select use api | |||
| this.chartEventsListen(parallelAxis); | |||
| }, | |||
| chartEventsListen(parallelAxis) { | |||
| this.echart.chart.on('axisareaselected', (params) => { | |||
| // key of mixed item | |||
| this.recordsNumber = 0; | |||
| this.showNumber = 0; | |||
| const key = params.parallelAxisId; | |||
| @@ -1649,15 +1672,16 @@ export default { | |||
| const [axisData] = parallelAxis.filter((i) => { | |||
| return i.id === key; | |||
| }); | |||
| if (axisData && range.length === 2) { | |||
| if (axisData && axisData.id === 'model_size') { | |||
| const lineLength = 2; | |||
| if (axisData && range.length === lineLength) { | |||
| if (axisData && axisData.id === this.valueType.model_size) { | |||
| const byteNum = 1024; | |||
| range = [ | |||
| parseInt(range[0] * 1024 * 1024, 0), | |||
| parseInt(range[1] * 1024 * 1024, 0), | |||
| parseInt(range[0] * byteNum * byteNum, 0), | |||
| parseInt(range[1] * byteNum * byteNum, 0), | |||
| ]; | |||
| } | |||
| if (axisData.type === 'category') { | |||
| if (axisData.type === this.valueType.category) { | |||
| const rangeData = {}; | |||
| for (let i = range[0]; i <= range[1]; i++) { | |||
| rangeData[axisData.data[i]] = axisData.data[i]; | |||
| @@ -1720,11 +1744,11 @@ export default { | |||
| ]; | |||
| this.keysOfMixed = []; | |||
| customizedKeys.forEach((i) => { | |||
| if (customized[i].type === 'int') { | |||
| if (customized[i].type === this.valueType.int) { | |||
| this.keysOfIntValue.push(i); | |||
| } else if (customized[i].type === 'str') { | |||
| } else if (customized[i].type === this.valueType.str) { | |||
| this.keysOfStringValue.push(i); | |||
| } else if (customized[i].type === 'mixed') { | |||
| } else if (customized[i].type === this.valueType.mixed) { | |||
| // list of type mixed | |||
| this.keysOfMixed.push(i); | |||
| this.keysOfStringValue.push(i); | |||
| @@ -1858,20 +1882,25 @@ export default { | |||
| if (isNaN(value) || !value) { | |||
| return value; | |||
| } else { | |||
| if (key === 'learning_rate') { | |||
| let temp = value.toPrecision(4); | |||
| const numDigits = 4; | |||
| if (key === this.labelValue.learning_rate) { | |||
| let temp = value.toPrecision(numDigits); | |||
| let row = 0; | |||
| while (temp < 1) { | |||
| temp = temp * 10; | |||
| row += 1; | |||
| } | |||
| temp = this.toFixedFun(temp, 4); | |||
| temp = this.toFixedFun(temp, numDigits); | |||
| return `${temp}${row ? `e-${row}` : ''}`; | |||
| } else if (key === 'model_size') { | |||
| } else if (key === this.valueType.model_size) { | |||
| return value + 'MB'; | |||
| } else { | |||
| if (value < 1000) { | |||
| return Math.round(value * Math.pow(10, 4)) / Math.pow(10, 4); | |||
| const num = 1000; | |||
| if (value < num) { | |||
| return ( | |||
| Math.round(value * Math.pow(10, numDigits)) / | |||
| Math.pow(10, numDigits) | |||
| ); | |||
| } else { | |||
| const reg = /(?=(\B)(\d{3})+$)/g; | |||
| return (value + '').replace(reg, ','); | |||
| @@ -1883,7 +1912,9 @@ export default { | |||
| * Resizing Chart | |||
| */ | |||
| resizeChart() { | |||
| this.echart.chart.resize(); | |||
| if (this.echart && this.echart.chart) { | |||
| this.echart.chart.resize(); | |||
| } | |||
| }, | |||
| }, | |||
| /** | |||
| @@ -1927,11 +1958,6 @@ export default { | |||
| .el-tag.el-tag--info .el-tag__close { | |||
| color: #fff; | |||
| } | |||
| // select | |||
| .el-select > .el-input { | |||
| min-width: 280px !important; | |||
| max-width: 500px !important; | |||
| } | |||
| .select-inner-input { | |||
| width: calc(100% - 140px); | |||
| margin: 2px 4px; | |||
| @@ -2091,7 +2117,11 @@ export default { | |||
| -webkit-box-shadow: 0 1px 0 0 rgba(200, 200, 200, 0.5); | |||
| box-shadow: 0 1px 0 0 rgba(200, 200, 200, 0.5); | |||
| overflow: hidden; | |||
| // select | |||
| .el-select > .el-input { | |||
| min-width: 180px !important; | |||
| max-width: 500px !important; | |||
| } | |||
| .top-area { | |||
| margin: 24px 32px 12px; | |||
| display: flex; | |||
| @@ -22,6 +22,7 @@ limitations under the License. | |||
| <el-tab-pane label="AI CORE" | |||
| name="core"> | |||
| <div class="cl-profiler-top" | |||
| :class="{fullScreen:fullScreen}" | |||
| v-if="coreCharts.data.length"> | |||
| <div> | |||
| <span class="profiler-title"> | |||
| @@ -46,10 +47,15 @@ limitations under the License. | |||
| </div> | |||
| </div> | |||
| <div class="cl-profiler-bottom" | |||
| :class="{fullScreen:fullScreen}" | |||
| v-if="coreCharts.data.length"> | |||
| <span class="profiler-title"> | |||
| {{ $t('operator.operatorStatistics') }} | |||
| </span> | |||
| <img src="../../assets/images/full-screen.png" | |||
| :title="$t('graph.fullScreen')" | |||
| class="fullScreen" | |||
| @click="fullScreenControl()"> | |||
| <div> | |||
| <el-radio-group v-model="statisticType" | |||
| @change="coreTableChange" | |||
| @@ -103,7 +109,7 @@ limitations under the License. | |||
| :width="(ele==='avg_execution_time'|| ele==='subgraph' || | |||
| ele==='op_name'|| ele==='op_type')?'220':''" | |||
| show-overflow-tooltip | |||
| :label="ele==='avg_execution_time'?`${ele} (ms)`:ele"> | |||
| :label="ele==='avg_execution_time'?`${ele} (${$t('profiling.unit')})`:ele"> | |||
| </el-table-column> | |||
| </el-table> | |||
| <el-pagination :current-page="props.row.opDetailPage.offset + 1" | |||
| @@ -120,7 +126,7 @@ limitations under the License. | |||
| :property="item" | |||
| :key="$index" | |||
| sortable | |||
| :label="item==='execution_time'?`${item} (ms)`:item"> | |||
| :label="item==='execution_time'?`${item} (${$t('profiling.unit')})`:item"> | |||
| </el-table-column> | |||
| </el-table> | |||
| <el-table v-show="statisticType && opAllTypeList.opDetailCol && opAllTypeList.opDetailCol.length" | |||
| @@ -135,7 +141,7 @@ limitations under the License. | |||
| <el-table-column v-for="(item, $index) in opAllTypeList.opDetailCol" | |||
| :property="item" | |||
| :key="$index" | |||
| :label="item==='avg_execution_time'?`${item} (ms)`:item" | |||
| :label="item==='avg_execution_time'?`${item} (${$t('profiling.unit')})`:item" | |||
| :sortable="item === 'op_info' ? false : 'custom'" | |||
| :width="(item==='avg_execution_time'|| item==='subgraph' || | |||
| item==='op_name'|| item==='op_type')?'220':''" | |||
| @@ -198,7 +204,8 @@ limitations under the License. | |||
| <el-table-column v-for="(item, $index) in opCpuList.opDetailCol" | |||
| :property="item" | |||
| :key="$index" | |||
| :label="(item==='total_time' || item==='dispatch_time')?`${item} (ms)`:item" | |||
| :label="(item==='total_time' || item==='dispatch_time')? | |||
| `${item} (${$t('profiling.unit')})`:item" | |||
| sortable="custom" | |||
| show-overflow-tooltip> | |||
| </el-table-column> | |||
| @@ -318,6 +325,7 @@ export default { | |||
| childProp: null, | |||
| childOrder: null, | |||
| }, | |||
| fullScreen: false, | |||
| }; | |||
| }, | |||
| watch: { | |||
| @@ -347,6 +355,14 @@ export default { | |||
| }, 300); | |||
| } | |||
| }, | |||
| fullScreenControl() { | |||
| this.fullScreen = !this.fullScreen; | |||
| if (this.coreCharts.chartDom && !this.fullScreen) { | |||
| this.$nextTick(() => { | |||
| this.coreCharts.chartDom.resize(); | |||
| }); | |||
| } | |||
| }, | |||
| /** | |||
| * Current device change | |||
| */ | |||
| @@ -1106,13 +1122,25 @@ export default { | |||
| .cl-search-box { | |||
| float: right; | |||
| margin-bottom: 10px; | |||
| margin-right: 20px; | |||
| } | |||
| .cl-profiler-top { | |||
| height: 45%; | |||
| } | |||
| .cl-profiler-top.fullScreen { | |||
| display: none; | |||
| } | |||
| .cl-profiler-bottom { | |||
| height: 55%; | |||
| padding-top: 10px; | |||
| .fullScreen { | |||
| float: right; | |||
| margin-top: 5px; | |||
| cursor: pointer; | |||
| } | |||
| } | |||
| .cl-profiler-bottom.fullScreen { | |||
| height: 100%; | |||
| } | |||
| .cpu-tab { | |||
| .cl-profiler-top { | |||
| @@ -73,8 +73,8 @@ limitations under the License. | |||
| markerHeight="8" | |||
| orient="auto"> | |||
| <path d="M1,1 L1,7 L9,4 z" | |||
| fill="#E6EBF5" | |||
| stroke="#E6EBF5"></path> | |||
| fill="#6c7280" | |||
| stroke="#6c7280"></path> | |||
| </marker> | |||
| <marker id="marker_start" | |||
| refX="5" | |||
| @@ -83,14 +83,14 @@ limitations under the License. | |||
| markerHeight="8" | |||
| orient="auto"> | |||
| <path d="M9,1 L9,7 L1,4 z" | |||
| fill="#E6EBF5" | |||
| stroke="#E6EBF5"></path> | |||
| fill="#6c7280" | |||
| stroke="#6c7280"></path> | |||
| </marker> | |||
| </defs> | |||
| </svg> | |||
| </div> | |||
| <div class="image-noData" | |||
| v-if="svg.noData"> | |||
| v-if="svg.noData && svg.initOver"> | |||
| <div> | |||
| <img :src="require('@/assets/images/nodata.png')" | |||
| alt="" /> | |||
| @@ -236,7 +236,7 @@ limitations under the License. | |||
| </div> | |||
| </div> | |||
| <div class="image-noData" | |||
| v-if="processSummary.noData"> | |||
| v-if="processSummary.noData && processSummary.initOver"> | |||
| <div> | |||
| <img :src="require('@/assets/images/nodata.png')" | |||
| alt="" /> | |||
| @@ -257,7 +257,7 @@ limitations under the License. | |||
| </div> | |||
| </div> | |||
| <div class="image-noData" | |||
| v-if="pieChart.noData && pieChart.data.length === 0"> | |||
| v-if="pieChart.noData && pieChart.data.length === 0 && pieChart.initOver"> | |||
| <div> | |||
| <img :src="require('@/assets/images/nodata.png')" | |||
| alt="" /> | |||
| @@ -281,7 +281,7 @@ limitations under the License. | |||
| <span class="time"> | |||
| <span class="bar" | |||
| :style="{width: item.time / pieChart.topN[0].time * 100 + '%'}"></span> | |||
| <span class="value">{{item.time}}ms</span> | |||
| <span class="value">{{item.time + $t('profiling.unit')}}</span> | |||
| </span> | |||
| </li> | |||
| </ul> | |||
| @@ -337,7 +337,7 @@ limitations under the License. | |||
| </div> | |||
| <div class="image-noData" | |||
| v-if="timelineInfo.noData"> | |||
| v-if="timelineInfo.noData && timelineInfo.initOver"> | |||
| <div> | |||
| <img :src="require('@/assets/images/nodata.png')" | |||
| alt="" /> | |||
| @@ -372,19 +372,27 @@ export default { | |||
| svgPadding: 20, | |||
| totalWidth: 0, | |||
| totalTime: 0, | |||
| rowHeight: 60, | |||
| cellHeight: 40, | |||
| cellPadding: 0, | |||
| rowPadding: 20, | |||
| rowMargin: 10, | |||
| totalHeight: 0, | |||
| markerPadding: 4, | |||
| minRate: 0.05, | |||
| minRate: 0.1, | |||
| minTime: 0, | |||
| minWidth: 1, | |||
| fontSize: 12, | |||
| textMargin: 21, | |||
| namespaceURI: 'http://www.w3.org/2000/svg', | |||
| resizeTimer: null, | |||
| colorList: [ | |||
| ['#A6DD82', '#edf8e6'], | |||
| ['#6CBFFF', '#e2f2ff'], | |||
| ['#fa8e5b', '#fff4de'], | |||
| ['#01a5a7', '#cceded'], | |||
| ], | |||
| colorIndex: 0, | |||
| colors: { | |||
| iteration_interval: ['#A6DD82', '#edf8e6'], | |||
| fp_and_bp: ['#6CBFFF', '#e2f2ff'], | |||
| tail: ['#fa8e5b', '#fff4de'], | |||
| stream_parallel: ['#01a5a7', '#cceded'], | |||
| }, | |||
| noData: false, | |||
| initOver: false, | |||
| }, | |||
| trainingJobId: this.$route.query.id, | |||
| summaryPath: this.$route.query.dir, | |||
| @@ -396,6 +404,7 @@ export default { | |||
| noData: false, | |||
| topN: [], | |||
| colorList: ['#6C92FA', '#6CBFFF', '#4EDED2', '#7ADFA0', '#A6DD82'], | |||
| initOver: false, | |||
| }, | |||
| timeLine: { | |||
| data: null, | |||
| @@ -407,6 +416,7 @@ export default { | |||
| opNum: 0, | |||
| opTimes: 0, | |||
| noData: true, | |||
| initOver: false, | |||
| }, | |||
| processSummary: { | |||
| noData: true, | |||
| @@ -422,6 +432,7 @@ export default { | |||
| full: 0, | |||
| total: 0, | |||
| }, | |||
| initOver: false, | |||
| }, | |||
| }; | |||
| }, | |||
| @@ -474,6 +485,7 @@ export default { | |||
| device_id: this.currentCard, | |||
| }; | |||
| RequestService.queryProcessSummary(params).then((resp) => { | |||
| this.processSummary.initOver = true; | |||
| if (resp && resp.data) { | |||
| const data = JSON.parse(JSON.stringify(resp.data)); | |||
| this.processSummary.count = Object.keys(data).length; | |||
| @@ -498,6 +510,7 @@ export default { | |||
| } | |||
| } else { | |||
| this.dealProcess(null); | |||
| this.processSummary.initOver = true; | |||
| } | |||
| }); | |||
| }, | |||
| @@ -573,6 +586,7 @@ export default { | |||
| }; | |||
| RequestService.getProfilerOpData(params) | |||
| .then((res) => { | |||
| this.pieChart.initOver = true; | |||
| if (res && res.data) { | |||
| if (res.data.object) { | |||
| this.pieChart.data = []; | |||
| @@ -614,6 +628,7 @@ export default { | |||
| }) | |||
| .catch(() => { | |||
| this.pieChart.noData = true; | |||
| this.pieChart.initOver = true; | |||
| }); | |||
| }, | |||
| queryTrainingTrace() { | |||
| @@ -624,21 +639,20 @@ export default { | |||
| }; | |||
| RequestService.queryTrainingTrace(params).then( | |||
| (res) => { | |||
| this.svg.initOver = true; | |||
| if ( | |||
| res.data && | |||
| res.data.training_trace_graph && | |||
| res.data.training_trace_graph.length | |||
| ) { | |||
| this.svg.noData = false; | |||
| document.querySelector('#trace').style.height = `${res.data | |||
| .training_trace_graph.length * this.svg.rowHeight}px`; | |||
| this.svg.data = JSON.parse( | |||
| JSON.stringify(res.data.training_trace_graph), | |||
| ); | |||
| this.removeTrace(); | |||
| setTimeout(() => { | |||
| this.dealTraceData(); | |||
| }, 100); | |||
| this.$nextTick(() => { | |||
| this.packageTraceData( | |||
| JSON.parse(JSON.stringify(res.data.training_trace_graph)), | |||
| ); | |||
| }); | |||
| if (res.data.summary) { | |||
| this.fp_and_bp_percent = res.data.summary.fp_and_bp_percent; | |||
| this.iteration_interval_percent = | |||
| @@ -664,44 +678,86 @@ export default { | |||
| document.querySelector('#trace').style.height = '0px'; | |||
| this.svg.noData = true; | |||
| this.svg.data = []; | |||
| this.svg.initOver = true; | |||
| this.removeTrace(); | |||
| }, | |||
| ); | |||
| }, | |||
| packageTraceData(traceGraph) { | |||
| this.svg.totalTime = 0; | |||
| this.svg.minTime = 0; | |||
| this.svg.totalHeight = 0; | |||
| const data = []; | |||
| if (traceGraph && traceGraph[0] && traceGraph[0][0]) { | |||
| this.svg.totalTime = traceGraph[0][0].duration; | |||
| this.svg.minTime = this.svg.minRate * this.svg.totalTime; | |||
| traceGraph.forEach((row, index) => { | |||
| const rowObj = { | |||
| rowCount: 0, | |||
| data: [], | |||
| height: 0, | |||
| startY: this.svg.totalHeight, | |||
| }; | |||
| let obj = []; | |||
| for (let i = 0; i < row.length; i++) { | |||
| if (row[i].duration < this.svg.minTime) { | |||
| if (obj.length) { | |||
| rowObj.data.push(obj); | |||
| obj = []; | |||
| rowObj.rowCount++; | |||
| } | |||
| rowObj.data.push([row[i]]); | |||
| rowObj.rowCount++; | |||
| } else { | |||
| obj.push(row[i]); | |||
| } | |||
| if (i === row.length - 1 && obj.length) { | |||
| rowObj.data.push(obj); | |||
| obj = []; | |||
| rowObj.rowCount++; | |||
| } | |||
| } | |||
| rowObj.height = | |||
| rowObj.rowCount * this.svg.cellHeight + | |||
| (rowObj.rowCount - 1) * this.svg.cellPadding + | |||
| (index ? this.svg.rowPadding * 2 : 0); | |||
| this.svg.totalHeight += rowObj.height + this.svg.rowMargin; | |||
| data.push(rowObj); | |||
| }); | |||
| this.svg.totalHeight += this.svg.rowPadding; | |||
| document.querySelector( | |||
| '#trace', | |||
| ).style.height = `${this.svg.totalHeight}px`; | |||
| this.svg.data = JSON.parse(JSON.stringify(data)); | |||
| this.$nextTick(() => { | |||
| this.dealTraceData(); | |||
| }); | |||
| } | |||
| }, | |||
| dealTraceData() { | |||
| const traceDom = document.querySelector('#trace'); | |||
| if (traceDom) { | |||
| this.svg.totalWidth = traceDom.offsetWidth - this.svg.svgPadding * 2; | |||
| if (this.svg.data[0] && this.svg.data[0].length) { | |||
| if (this.svg.data[0] && this.svg.data[0].data.length) { | |||
| const svg = traceDom.querySelector('svg'); | |||
| this.svg.totalTime = this.svg.data[0][0].duration; | |||
| if (this.svg.totalTime) { | |||
| this.svg.colorIndex = 0; | |||
| const minTime = this.svg.minRate * this.svg.totalTime; | |||
| this.svg.data.forEach((row, index) => { | |||
| if (row && row.length) { | |||
| const dashedLine = this.addDashedLine(index); | |||
| svg.insertBefore(dashedLine, svg.querySelector('g')); | |||
| row.forEach((i) => { | |||
| if (i.duration) { | |||
| if (i.name) { | |||
| const tempDom = this.createRect(i, index); | |||
| const tempStr = `g${ | |||
| i.duration > minTime ? '' : '.arrow' | |||
| }`; | |||
| svg.insertBefore(tempDom, svg.querySelector(tempStr)); | |||
| } else { | |||
| const tempDom = this.createArrow(i, index); | |||
| svg.appendChild(tempDom); | |||
| } | |||
| } | |||
| }); | |||
| this.svg.data.forEach((item, index) => { | |||
| let itemDom = {}; | |||
| if (index) { | |||
| itemDom = this.createMultipleRowContainer(item); | |||
| } else { | |||
| itemDom = this.createRowContainer(item.data, item.startY); | |||
| } | |||
| svg.appendChild(itemDom); | |||
| }); | |||
| } | |||
| } else { | |||
| @@ -709,40 +765,69 @@ export default { | |||
| } | |||
| } | |||
| }, | |||
| addDashedLine(index) { | |||
| const x1 = this.svg.svgPadding; | |||
| const x2 = this.svg.svgPadding + this.svg.totalWidth; | |||
| const y = index * this.svg.rowHeight; | |||
| const line = document.createElementNS(this.svg.namespaceURI, 'line'); | |||
| line.setAttribute('x1', x1); | |||
| line.setAttribute('y1', y); | |||
| line.setAttribute('x2', x2); | |||
| line.setAttribute('y2', y); | |||
| line.setAttribute('style', 'stroke:#E2E2E2;stroke-width:1'); | |||
| line.setAttribute('stroke-dasharray', '5 5'); | |||
| createMultipleRowContainer(item) { | |||
| const rectContainer = document.createElementNS( | |||
| this.svg.namespaceURI, | |||
| 'g', | |||
| ); | |||
| rectContainer.setAttribute('class', 'container'); | |||
| const rect = document.createElementNS(this.svg.namespaceURI, 'rect'); | |||
| rect.setAttribute('x', this.svg.svgPadding); | |||
| rect.setAttribute('y', item.startY + this.svg.rowPadding); | |||
| rect.setAttribute('height', item.height); | |||
| rect.setAttribute('width', this.svg.totalWidth); | |||
| rect.setAttribute('style', 'fill:#edf0f5;stroke:#E2E2E2;stroke-width:1'); | |||
| rectContainer.appendChild(rect); | |||
| const temp = this.createRowContainer( | |||
| item.data, | |||
| item.startY + this.svg.rowPadding, | |||
| ); | |||
| rectContainer.appendChild(temp); | |||
| return rectContainer; | |||
| }, | |||
| createRowContainer(data, startY) { | |||
| const g = document.createElementNS(this.svg.namespaceURI, 'g'); | |||
| g.setAttribute('class', 'dashedLine'); | |||
| g.appendChild(line); | |||
| data.forEach((row, index) => { | |||
| const y = | |||
| startY + | |||
| this.svg.rowPadding + | |||
| index * (this.svg.cellPadding + this.svg.cellHeight); | |||
| row.forEach((i) => { | |||
| if (i.duration) { | |||
| let temp; | |||
| if (i.name) { | |||
| temp = this.createRect(i, y); | |||
| g.insertBefore(temp, g.querySelector('g')); | |||
| } else { | |||
| temp = this.createArrow(i, y); | |||
| g.appendChild(temp); | |||
| } | |||
| } | |||
| }); | |||
| }); | |||
| return g; | |||
| }, | |||
| createRect(data, rowIndex) { | |||
| const color = this.svg.colorList[ | |||
| rowIndex > 1 ? 3 : this.svg.colorIndex++ % 4 | |||
| ]; | |||
| const height = 40; | |||
| const width = (data.duration / this.svg.totalTime) * this.svg.totalWidth; | |||
| const fontSize = 12; | |||
| const normalRect = data.duration > this.svg.minRate * this.svg.totalTime; | |||
| createRect(data, startY) { | |||
| const color = | |||
| data.name && this.svg.colors[data.name] | |||
| ? this.svg.colors[data.name] | |||
| : this.svg.colors.stream_parallel; | |||
| const x1 = | |||
| (data.start / this.svg.totalTime) * this.svg.totalWidth + | |||
| this.svg.svgPadding; | |||
| const y1 = | |||
| rowIndex * this.svg.rowHeight + (this.svg.rowHeight - height) / 2; | |||
| const g = document.createElementNS(this.svg.namespaceURI, 'g'); | |||
| g.setAttribute('class', 'rect'); | |||
| const gChild = document.createElementNS(this.svg.namespaceURI, 'g'); | |||
| const width = Math.max( | |||
| this.svg.minWidth, | |||
| (data.duration / this.svg.totalTime) * this.svg.totalWidth, | |||
| ); | |||
| let name = ''; | |||
| switch (data.name) { | |||
| case 'iteration_interval': | |||
| @@ -759,102 +844,117 @@ export default { | |||
| break; | |||
| } | |||
| const textContent = `${name}: ${data.duration.toFixed(4)}ms`; | |||
| const textWidth = this.getTextWidth(textContent); | |||
| const normalSize = data.duration >= this.svg.minTime; | |||
| const g = document.createElementNS(this.svg.namespaceURI, 'g'); | |||
| g.setAttribute('class', 'rect'); | |||
| const rect = document.createElementNS(this.svg.namespaceURI, 'rect'); | |||
| rect.setAttribute('x', x1); | |||
| rect.setAttribute('y', y1); | |||
| rect.setAttribute('height', height); | |||
| rect.setAttribute('y', startY); | |||
| rect.setAttribute('height', this.svg.cellHeight); | |||
| rect.setAttribute('width', width); | |||
| rect.setAttribute('style', `fill:${color[1]};stroke:${color[1]};`); | |||
| rect.setAttribute('style', `fill:${color[1]};stroke:${color[0]};`); | |||
| const foreignObject = document.createElementNS( | |||
| this.svg.namespaceURI, | |||
| 'foreignObject', | |||
| ); | |||
| foreignObject.textContent = `${name}: ${data.duration.toFixed(4)}ms`; | |||
| const textWidth = this.getTextWidth(foreignObject.textContent); | |||
| foreignObject.textContent = textContent; | |||
| foreignObject.setAttribute( | |||
| 'x', | |||
| normalRect | |||
| normalSize | |||
| ? x1 | |||
| : Math.min( | |||
| this.svg.svgPadding * 2 + this.svg.totalWidth - textWidth, | |||
| Math.max(0, x1 + width / 2 - textWidth / 2), | |||
| this.svg.svgPadding * 2 + | |||
| this.svg.totalWidth - | |||
| textWidth - | |||
| this.svg.textMargin, | |||
| Math.max(this.svg.textMargin, x1 + width / 2 - textWidth / 2), | |||
| ), | |||
| ); | |||
| foreignObject.setAttribute( | |||
| 'y', | |||
| y1 + (height - fontSize) / 2 + (normalRect ? 0 : fontSize), | |||
| ); | |||
| foreignObject.setAttribute('height', fontSize); | |||
| foreignObject.setAttribute('y', startY); | |||
| foreignObject.setAttribute('height', this.svg.cellHeight); | |||
| foreignObject.setAttribute('width', width); | |||
| foreignObject.setAttribute('style', `color:${color[0]}`); | |||
| foreignObject.setAttribute( | |||
| 'class', | |||
| `content${normalRect ? '' : ' content-mini'}`, | |||
| `content${normalSize ? '' : ' content-mini'}`, | |||
| ); | |||
| const title = document.createElementNS(this.svg.namespaceURI, 'title'); | |||
| title.textContent = `${name}: ${data.duration.toFixed(4)}ms`; | |||
| title.textContent = textContent; | |||
| gChild.appendChild(rect); | |||
| gChild.appendChild(foreignObject); | |||
| gChild.appendChild(title); | |||
| g.appendChild(gChild); | |||
| g.appendChild(rect); | |||
| g.appendChild(foreignObject); | |||
| g.appendChild(title); | |||
| return g; | |||
| }, | |||
| createArrow(data, rowIndex) { | |||
| createArrow(data, startY) { | |||
| const width = (data.duration / this.svg.totalTime) * this.svg.totalWidth; | |||
| const x1 = | |||
| (data.start / this.svg.totalTime) * this.svg.totalWidth + | |||
| this.svg.markerPadding + | |||
| this.svg.svgPadding; | |||
| const x2 = x1 + width - this.svg.markerPadding * 2; | |||
| const y = rowIndex * this.svg.rowHeight + this.svg.rowHeight / 2; | |||
| const centerY = startY + this.svg.cellHeight / 2; | |||
| const g = document.createElementNS(this.svg.namespaceURI, 'g'); | |||
| g.setAttribute('class', 'arrow'); | |||
| const line = document.createElementNS(this.svg.namespaceURI, 'line'); | |||
| line.setAttribute('x1', x1); | |||
| line.setAttribute('y1', y); | |||
| line.setAttribute('x2', x2); | |||
| line.setAttribute('y2', y); | |||
| line.setAttribute('style', 'stroke:#E6EBF5;stroke-width:1'); | |||
| line.setAttribute('marker-end', 'url(#marker_end)'); | |||
| line.setAttribute('marker-start', 'url(#marker_start)'); | |||
| line.setAttribute('y1', centerY); | |||
| line.setAttribute('y2', centerY); | |||
| line.setAttribute('style', 'stroke:#6c7280;stroke-width:1'); | |||
| if (width > this.svg.markerPadding) { | |||
| line.setAttribute('x1', x1 + this.svg.markerPadding); | |||
| line.setAttribute('x2', x1 + width - this.svg.markerPadding); | |||
| line.setAttribute('marker-end', 'url(#marker_end)'); | |||
| line.setAttribute('marker-start', 'url(#marker_start)'); | |||
| } else { | |||
| line.setAttribute('x1', x1); | |||
| line.setAttribute('x2', x1 + width); | |||
| } | |||
| const text = document.createElementNS(this.svg.namespaceURI, 'text'); | |||
| text.textContent = `${ | |||
| rowIndex === 0 ? this.$t('profiling.approximateTime') : '' | |||
| data.duration === this.svg.totalTime | |||
| ? this.$t('profiling.approximateTime') | |||
| : '' | |||
| }${data.duration.toFixed(4)}ms`; | |||
| const textWidth = this.getTextWidth(text.textContent); | |||
| const textWidth = text.textContent | |||
| ? this.getTextWidth(text.textContent) | |||
| : 0; | |||
| text.setAttribute( | |||
| 'x', | |||
| Math.min( | |||
| this.svg.svgPadding * 2 + this.svg.totalWidth - textWidth, | |||
| Math.max(0, (x2 - x1) / 2 + x1 - textWidth / 2), | |||
| this.svg.svgPadding * 2 + | |||
| this.svg.totalWidth - | |||
| textWidth - | |||
| this.svg.textMargin, | |||
| Math.max(this.svg.textMargin, width / 2 + x1 - textWidth / 2), | |||
| ), | |||
| ); | |||
| text.setAttribute('y', y - 6); | |||
| text.setAttribute('font-size', 12); | |||
| text.setAttribute('fill', '#6c7280'); | |||
| text.setAttribute('y', centerY - this.svg.fontSize / 2); | |||
| text.setAttribute('font-size', this.svg.fontSize); | |||
| text.setAttribute('fill', 'black'); | |||
| const startLine = document.createElementNS(this.svg.namespaceURI, 'line'); | |||
| startLine.setAttribute('x1', x1 - this.svg.markerPadding); | |||
| startLine.setAttribute('y1', y - this.svg.rowHeight / 4); | |||
| startLine.setAttribute('x2', x1 - this.svg.markerPadding); | |||
| startLine.setAttribute('y2', y + this.svg.rowHeight / 4); | |||
| startLine.setAttribute('style', 'stroke:#E6EBF5;stroke-width:1'); | |||
| startLine.setAttribute('x1', x1); | |||
| startLine.setAttribute('y1', startY); | |||
| startLine.setAttribute('x2', x1); | |||
| startLine.setAttribute('y2', startY + this.svg.cellHeight); | |||
| startLine.setAttribute('style', 'stroke:#6c7280;stroke-width:1'); | |||
| g.appendChild(startLine); | |||
| const endLine = document.createElementNS(this.svg.namespaceURI, 'line'); | |||
| endLine.setAttribute('x1', x1 + width - this.svg.markerPadding); | |||
| endLine.setAttribute('y1', y - this.svg.rowHeight / 4); | |||
| endLine.setAttribute('x2', x1 + width - this.svg.markerPadding); | |||
| endLine.setAttribute('y2', y + this.svg.rowHeight / 4); | |||
| endLine.setAttribute('style', 'stroke:#E6EBF5;stroke-width:1'); | |||
| endLine.setAttribute('x1', x1 + width); | |||
| endLine.setAttribute('y1', startY); | |||
| endLine.setAttribute('x2', x1 + width); | |||
| endLine.setAttribute('y2', startY + this.svg.cellHeight); | |||
| endLine.setAttribute('style', 'stroke:#6c7280;stroke-width:1'); | |||
| g.appendChild(endLine); | |||
| g.appendChild(line); | |||
| g.appendChild(text); | |||
| @@ -901,12 +1001,14 @@ export default { | |||
| return new Uint8Array(arr); | |||
| }, | |||
| queryTimeline() { | |||
| this.timeLine.waiting = true; | |||
| const params = { | |||
| dir: this.relativePath, | |||
| device_id: this.currentCard, | |||
| }; | |||
| RequestService.queryTimlineInfo(params) | |||
| .then((res) => { | |||
| this.timelineInfo.initOver = true; | |||
| if (res && res.data) { | |||
| this.timelineInfo.noData = false; | |||
| this.timelineInfo.totalTime = res.data.total_time.toFixed(4); | |||
| @@ -919,8 +1021,8 @@ export default { | |||
| }) | |||
| .catch(() => { | |||
| this.timelineInfo.noData = true; | |||
| this.timelineInfo.initOver = true; | |||
| }); | |||
| this.timeLine.waiting = true; | |||
| RequestService.queryTimeline(params) | |||
| .then((res) => { | |||
| if (res && res.data && res.data.length) { | |||
| @@ -1093,7 +1195,7 @@ export default { | |||
| margin-bottom: 15px; | |||
| .trace-container { | |||
| width: 100%; | |||
| height: calc(100% - 50px); | |||
| height: calc(100% - 54px); | |||
| overflow: auto; | |||
| .training-trace { | |||
| position: relative; | |||
| @@ -1104,7 +1206,7 @@ export default { | |||
| text-overflow: ellipsis; | |||
| white-space: nowrap; | |||
| font-size: 12px; | |||
| line-height: 12px; | |||
| line-height: 40px; | |||
| } | |||
| .content-mini { | |||
| overflow: visible; | |||
| @@ -222,6 +222,31 @@ limitations under the License. | |||
| </span> | |||
| </el-dialog> | |||
| <el-dialog :title="$t('scalar.info')" | |||
| :visible.sync="delThresholdVisible" | |||
| custom-class="delDialog" | |||
| :close-on-click-modal="false" | |||
| @close="delThresholdCancel" | |||
| top="35vh" | |||
| width="425px"> | |||
| <div class="delThresholdItem"> | |||
| <span class="delThresholdIcon el-icon-warning"></span> | |||
| <span class="delThresholdInfo">{{$t('scalar.isDelete')}}</span> | |||
| </div> | |||
| <div class="delThresholdItem"> | |||
| <span class="delThresholdIcon"> | |||
| <el-switch v-model="delThresholdSwitch"></el-switch> | |||
| </span> | |||
| <span class="delThresholdInfo">{{$t('scalar.applyAllSelectTag')}}</span> | |||
| </div> | |||
| <span slot="footer" | |||
| class="dialog-footer"> | |||
| <el-button @click="delThresholdCancel">{{$t('public.cancel')}}</el-button> | |||
| <el-button type="primary" | |||
| @click="delThresholdCommit">{{$t('public.sure')}}</el-button> | |||
| </span> | |||
| </el-dialog> | |||
| </div> | |||
| </template> | |||
| <script> | |||
| @@ -262,9 +287,9 @@ export default { | |||
| yAxisScaleTimer: null, // yAxis scale timer | |||
| compare: false, // Comparison Page | |||
| scalarCompare: this.$t('scalar')['comparison'], | |||
| abort: false, // charts that have not been drawn. | |||
| trainingJobId: this.$route.query.train_id, // ID of the current training job | |||
| thresholdDialogVisible: false, | |||
| delThresholdVisible: false, | |||
| currentTagName: '', | |||
| currentSample: {}, | |||
| thresholdErrorMsg: '', | |||
| @@ -285,6 +310,7 @@ export default { | |||
| ], | |||
| thresholdLocal: null, | |||
| thresholdSwitch: false, | |||
| delThresholdSwitch: false, | |||
| thresholdColor: '#f00', | |||
| decodeTrainingJobId: '', | |||
| }; | |||
| @@ -579,6 +605,10 @@ export default { | |||
| .then((res) => { | |||
| // error | |||
| if (!res || !res.data || !res.data.metadatas) { | |||
| // canceled | |||
| if (res.toString() === 'false') { | |||
| return; | |||
| } | |||
| if (sampleObject.charObj) { | |||
| sampleObject.charObj.clear(); | |||
| sampleObject.onePoint = false; | |||
| @@ -666,8 +696,6 @@ export default { | |||
| // Draw chart | |||
| if (!this.compare) { | |||
| this.updateOrCreateChar(sampleIndex, true); | |||
| } else { | |||
| this.abort = true; | |||
| } | |||
| }); | |||
| }) | |||
| @@ -844,7 +872,6 @@ export default { | |||
| scale: true, | |||
| nameGap: 30, | |||
| minInterval: this.isActive === 0 ? 1 : 0, | |||
| axisLine: { | |||
| lineStyle: { | |||
| color: '#E6EBF5', | |||
| @@ -1263,68 +1290,65 @@ export default { | |||
| clearTimeout(this.axisBenchChangeTimer); | |||
| this.axisBenchChangeTimer = null; | |||
| } | |||
| switch (val) { | |||
| case this.$t('scalar.step'): | |||
| this.curBenchX = 'stepData'; | |||
| this.curAxisName = this.$t('scalar.step'); | |||
| this.isActive = 0; | |||
| break; | |||
| case this.$t('scalar.relativeTime'): | |||
| this.curBenchX = 'relativeData'; | |||
| this.curAxisName = this.$t('scalar.relativeTime'); | |||
| this.isActive = 1; | |||
| break; | |||
| case this.$t('scalar.absoluteTime'): | |||
| this.curBenchX = 'absData'; | |||
| this.curAxisName = this.$t('scalar.absoluteTime'); | |||
| this.isActive = 2; | |||
| break; | |||
| default: | |||
| this.curBenchX = 'stepData'; | |||
| this.curAxisName = this.$t('scalar.step'); | |||
| this.isActive = 0; | |||
| break; | |||
| } | |||
| this.axisBenchChangeTimer = setTimeout(() => { | |||
| switch (val) { | |||
| case this.$t('scalar.step'): | |||
| this.curBenchX = 'stepData'; | |||
| this.curAxisName = this.$t('scalar.step'); | |||
| this.isActive = 0; | |||
| break; | |||
| case this.$t('scalar.relativeTime'): | |||
| this.curBenchX = 'relativeData'; | |||
| this.curAxisName = this.$t('scalar.relativeTime'); | |||
| this.isActive = 1; | |||
| break; | |||
| case this.$t('scalar.absoluteTime'): | |||
| this.curBenchX = 'absData'; | |||
| this.curAxisName = this.$t('scalar.absoluteTime'); | |||
| this.isActive = 2; | |||
| break; | |||
| default: | |||
| this.curBenchX = 'stepData'; | |||
| this.curAxisName = this.$t('scalar.step'); | |||
| this.isActive = 0; | |||
| break; | |||
| } | |||
| // Update the horizontal benchmark of the default data | |||
| this.curPageArr.forEach((sampleObject) => { | |||
| if (sampleObject.charObj) { | |||
| sampleObject.charData.oriData.forEach((originData, index) => { | |||
| const seriesData = sampleObject.charData.charOption.series; | |||
| const oriIndexData = sampleObject.charData.oriData[index]; | |||
| if (sampleObject.log) { | |||
| sampleObject.charData.charOption.series[ | |||
| index * 2 | |||
| ].data = this.formateSmoothData( | |||
| sampleObject.charData.oriData[index].logData[this.curBenchX], | |||
| seriesData[index * 2].data = this.formateSmoothData( | |||
| oriIndexData.logData[this.curBenchX], | |||
| ); | |||
| sampleObject.charData.charOption.series[index * 2 + 1].data = | |||
| sampleObject.charData.oriData[index].logData[this.curBenchX]; | |||
| seriesData[index * 2 + 1].data = | |||
| oriIndexData.logData[this.curBenchX]; | |||
| } else { | |||
| sampleObject.charData.charOption.series[ | |||
| index * 2 | |||
| ].data = this.formateSmoothData( | |||
| sampleObject.charData.oriData[index].valueData[this.curBenchX], | |||
| seriesData[index * 2].data = this.formateSmoothData( | |||
| oriIndexData.valueData[this.curBenchX], | |||
| ); | |||
| sampleObject.charData.charOption.series[index * 2 + 1].data = | |||
| sampleObject.charData.oriData[index].valueData[ | |||
| this.curBenchX | |||
| ]; | |||
| seriesData[index * 2 + 1].data = | |||
| oriIndexData.valueData[this.curBenchX]; | |||
| } | |||
| }); | |||
| sampleObject.charData.charOption.xAxis.minInterval = | |||
| this.isActive === 0 ? 1 : 0; | |||
| sampleObject.charData.charOption.xAxis.axisLabel.rotate = | |||
| this.isActive === 2 ? 0 : 90; | |||
| const optionxAxis = sampleObject.charData.charOption.xAxis; | |||
| const seriesData = sampleObject.charData.charOption.series[0]; | |||
| optionxAxis.minInterval = this.isActive === 0 ? 1 : 0; | |||
| optionxAxis.axisLabel.rotate = this.isActive === 2 ? 0 : 90; | |||
| sampleObject.updateFlag = true; | |||
| sampleObject.charObj.clear(); | |||
| if (sampleObject.charData.charOption.series[0].data.length === 1) { | |||
| sampleObject.charData.charOption.series[0].showSymbol = true; | |||
| if (seriesData.data.length === 1) { | |||
| seriesData.showSymbol = true; | |||
| sampleObject.onePoint = true; | |||
| } else { | |||
| sampleObject.charData.charOption.series[0].showSymbol = false; | |||
| seriesData.showSymbol = false; | |||
| sampleObject.onePoint = false; | |||
| } | |||
| this.updateOrCreateChar(sampleObject.sampleIndex); | |||
| this.updateOrCreateChar(sampleObject.sampleIndex, true); | |||
| } | |||
| }); | |||
| }, 500); | |||
| @@ -1763,40 +1787,35 @@ export default { | |||
| return; | |||
| } | |||
| this.yAxisScaleTimer = setTimeout(() => { | |||
| const tempOption = sampleObject.charData.charOption; | |||
| const tempOriData = sampleObject.charData.oriData; | |||
| const log = !sampleObject.log; | |||
| if (log) { | |||
| sampleObject.charData.charOption.toolbox.feature.myTool2.iconStyle.borderColor = | |||
| '#3E98C5'; | |||
| sampleObject.charData.charOption.yAxis.type = 'log'; | |||
| tempOption.toolbox.feature.myTool2.iconStyle.borderColor = '#3E98C5'; | |||
| tempOption.yAxis.type = 'log'; | |||
| } else { | |||
| sampleObject.charData.charOption.yAxis.type = 'value'; | |||
| sampleObject.charData.charOption.toolbox.feature.myTool2.iconStyle.borderColor = | |||
| '#666'; | |||
| tempOption.yAxis.type = 'value'; | |||
| tempOption.toolbox.feature.myTool2.iconStyle.borderColor = '#666'; | |||
| } | |||
| sampleObject.charData.oriData.forEach((originData, index) => { | |||
| tempOriData.forEach((originData, index) => { | |||
| if (log) { | |||
| sampleObject.charData.charOption.series[ | |||
| index * 2 | |||
| ].data = this.formateSmoothData( | |||
| sampleObject.charData.oriData[index].logData[this.curBenchX], | |||
| tempOption.series[index * 2].data = this.formateSmoothData( | |||
| tempOriData[index].logData[this.curBenchX], | |||
| ); | |||
| sampleObject.charData.charOption.series[index * 2 + 1].data = | |||
| sampleObject.charData.oriData[index].logData[this.curBenchX]; | |||
| tempOption.series[index * 2 + 1].data = | |||
| tempOriData[index].logData[this.curBenchX]; | |||
| } else { | |||
| sampleObject.charData.charOption.series[ | |||
| index * 2 | |||
| ].data = this.formateSmoothData( | |||
| sampleObject.charData.oriData[index].valueData[this.curBenchX], | |||
| tempOption.series[index * 2].data = this.formateSmoothData( | |||
| tempOriData[index].valueData[this.curBenchX], | |||
| ); | |||
| sampleObject.charData.charOption.series[index * 2 + 1].data = | |||
| sampleObject.charData.oriData[index].valueData[this.curBenchX]; | |||
| tempOption.series[index * 2 + 1].data = | |||
| tempOriData[index].valueData[this.curBenchX]; | |||
| } | |||
| }); | |||
| sampleObject.log = log; | |||
| sampleObject.updateFlag = true; | |||
| sampleObject.charObj.clear(); | |||
| const tempOption = sampleObject.charData.charOption; | |||
| const dataObj = tempOption.series[0]; | |||
| // one point | |||
| @@ -1834,19 +1853,12 @@ export default { | |||
| } else { | |||
| this.scalarCompare = this.$t('scalar.comparison'); | |||
| if (this.abort) { | |||
| this.curPageArr.forEach((sampleObject) => { | |||
| this.$nextTick(() => { | |||
| // Draw chart | |||
| if (!this.compare) { | |||
| this.updateOrCreateChar(sampleObject.sampleIndex); | |||
| } else { | |||
| this.abort = true; | |||
| } | |||
| }); | |||
| }); | |||
| this.abort = false; | |||
| } | |||
| this.curPageArr.forEach((sampleObject) => { | |||
| // Draw chart | |||
| if (!sampleObject.charObj) { | |||
| this.updateOrCreateChar(sampleObject.sampleIndex); | |||
| } | |||
| }); | |||
| this.$nextTick(() => { | |||
| this.resizeCallback(); | |||
| @@ -1896,49 +1908,9 @@ export default { | |||
| delThreshold(sampleItem) { | |||
| this.stopUpdateSamples(); | |||
| this.$confirm(this.$t('scalar.isDelete'), this.$t('scalar.info'), { | |||
| confirmButtonText: this.$t('public.sure'), | |||
| cancelButtonText: this.$t('public.cancel'), | |||
| type: 'warning', | |||
| }) | |||
| .then(() => { | |||
| this.getCache(); | |||
| if ( | |||
| this.thresholdLocal && | |||
| this.thresholdLocal[this.decodeTrainingJobId] && | |||
| this.thresholdLocal[this.decodeTrainingJobId][sampleItem.tagName] | |||
| ) { | |||
| delete this.thresholdLocal[this.decodeTrainingJobId][ | |||
| sampleItem.tagName | |||
| ]; | |||
| this.clearCache(); | |||
| localStorage.setItem( | |||
| 'thresholdCache', | |||
| JSON.stringify(this.thresholdLocal), | |||
| ); | |||
| } | |||
| sampleItem.pieceStr = ''; | |||
| const tempCharOption = sampleItem.charData.charOption; | |||
| if ( | |||
| tempCharOption.visualMap && | |||
| tempCharOption.visualMap['pieces'] && | |||
| tempCharOption.visualMap['pieces'].length > 0 | |||
| ) { | |||
| tempCharOption.visualMap = null; | |||
| tempCharOption.series[0].markLine = null; | |||
| tempCharOption.series[0].lineStyle['color'] = sampleItem.colors; | |||
| } | |||
| sampleItem.charObj.setOption(tempCharOption, false); | |||
| if (this.isTimeReload) { | |||
| this.autoUpdateSamples(); | |||
| } | |||
| }) | |||
| .catch(() => { | |||
| if (this.isTimeReload) { | |||
| this.autoUpdateSamples(); | |||
| } | |||
| }); | |||
| this.currentTagName = sampleItem.tagName; | |||
| this.currentSample = sampleItem; | |||
| this.delThresholdVisible = true; | |||
| }, | |||
| /** | |||
| @@ -2325,6 +2297,90 @@ export default { | |||
| this.autoUpdateSamples(); | |||
| } | |||
| }, | |||
| /** | |||
| * delete threshold cancel | |||
| */ | |||
| delThresholdCancel() { | |||
| this.currentTagName = ''; | |||
| this.currentSample = {}; | |||
| this.delThresholdSwitch = false; | |||
| this.delThresholdVisible = false; | |||
| if (this.isTimeReload) { | |||
| this.autoUpdateSamples(); | |||
| } | |||
| }, | |||
| /** | |||
| * delete threshold commit | |||
| */ | |||
| delThresholdCommit() { | |||
| this.getCache(); | |||
| if (this.delThresholdSwitch) { | |||
| this.originDataArr.forEach((sampleObject) => { | |||
| if (this.multiSelectedTagNames[sampleObject.tagName]) { | |||
| if ( | |||
| this.thresholdLocal && | |||
| this.thresholdLocal[this.decodeTrainingJobId] && | |||
| this.thresholdLocal[this.decodeTrainingJobId][ | |||
| sampleObject.tagName | |||
| ] | |||
| ) { | |||
| delete this.thresholdLocal[this.decodeTrainingJobId][ | |||
| sampleObject.tagName | |||
| ]; | |||
| sampleObject.pieceStr = ''; | |||
| const tempCharOption = sampleObject.charData.charOption; | |||
| if ( | |||
| tempCharOption.visualMap && | |||
| tempCharOption.visualMap['pieces'] && | |||
| tempCharOption.visualMap['pieces'].length > 0 | |||
| ) { | |||
| tempCharOption.visualMap = null; | |||
| tempCharOption.series[0].markLine = null; | |||
| tempCharOption.series[0].lineStyle['color'] = | |||
| sampleObject.colors; | |||
| } | |||
| if (sampleObject.charObj) { | |||
| sampleObject.charObj.setOption(tempCharOption, false); | |||
| } | |||
| } | |||
| } | |||
| }); | |||
| } else { | |||
| if ( | |||
| this.thresholdLocal && | |||
| this.thresholdLocal[this.decodeTrainingJobId] && | |||
| this.thresholdLocal[this.decodeTrainingJobId][this.currentTagName] | |||
| ) { | |||
| delete this.thresholdLocal[this.decodeTrainingJobId][ | |||
| this.currentTagName | |||
| ]; | |||
| this.currentSample.pieceStr = ''; | |||
| const tempCharOption = this.currentSample.charData.charOption; | |||
| if ( | |||
| tempCharOption.visualMap && | |||
| tempCharOption.visualMap['pieces'] && | |||
| tempCharOption.visualMap['pieces'].length > 0 | |||
| ) { | |||
| tempCharOption.visualMap = null; | |||
| tempCharOption.series[0].markLine = null; | |||
| tempCharOption.series[0].lineStyle[ | |||
| 'color' | |||
| ] = this.currentSample.colors; | |||
| } | |||
| this.currentSample.charObj.setOption(tempCharOption, false); | |||
| } | |||
| } | |||
| this.clearCache(); | |||
| localStorage.setItem( | |||
| 'thresholdCache', | |||
| JSON.stringify(this.thresholdLocal), | |||
| ); | |||
| this.delThresholdVisible = false; | |||
| }, | |||
| }, | |||
| components: { | |||
| ScalarButton, | |||
| @@ -2601,7 +2657,7 @@ export default { | |||
| span { | |||
| cursor: pointer; | |||
| width: 80px; | |||
| width: auto; | |||
| height: 39px; | |||
| display: inline-block; | |||
| } | |||
| @@ -2702,7 +2758,7 @@ export default { | |||
| .fs16 { | |||
| font-size: 16px; | |||
| color: #6c7280; | |||
| width: 160px; | |||
| width: 180px; | |||
| } | |||
| } | |||
| .tooltip-show-content { | |||
| @@ -2711,4 +2767,34 @@ export default { | |||
| .cl-title-right { | |||
| padding-right: 20px; | |||
| } | |||
| .delDialog { | |||
| .el-dialog__header { | |||
| padding: 15px 15px 10px; | |||
| } | |||
| .el-dialog__title { | |||
| font-weight: normal; | |||
| line-height: 18px; | |||
| } | |||
| .el-dialog__body { | |||
| padding: 10px 15px; | |||
| } | |||
| .delThresholdItem { | |||
| display: flex; | |||
| margin-bottom: 10px; | |||
| } | |||
| .delThresholdIcon { | |||
| color: #e6a23c; | |||
| font-size: 24px; | |||
| width: 40px; | |||
| margin-right: 10px; | |||
| } | |||
| .delThresholdInfo { | |||
| line-height: 24px; | |||
| height: 24px; | |||
| } | |||
| } | |||
| </style> | |||
| @@ -59,10 +59,6 @@ limitations under the License. | |||
| <div id="trace-container"> | |||
| <div id="trace" | |||
| class="training-trace"> | |||
| <div :title="$t('graph.downloadPic')" | |||
| class="download-button" | |||
| @click="downloadSVG"> | |||
| </div> | |||
| <svg version="1.1" | |||
| xmlns="http://www.w3.org/2000/svg" | |||
| height="100%" | |||
| @@ -75,8 +71,8 @@ limitations under the License. | |||
| markerHeight="8" | |||
| orient="auto"> | |||
| <path d="M1,1 L1,7 L9,4 z" | |||
| fill="#E6EBF5" | |||
| stroke="#E6EBF5"></path> | |||
| fill="#6c7280" | |||
| stroke="#6c7280"></path> | |||
| </marker> | |||
| <marker id="marker_start" | |||
| refX="5" | |||
| @@ -85,14 +81,14 @@ limitations under the License. | |||
| markerHeight="8" | |||
| orient="auto"> | |||
| <path d="M9,1 L9,7 L1,4 z" | |||
| fill="#E6EBF5" | |||
| stroke="#E6EBF5"></path> | |||
| fill="#6c7280" | |||
| stroke="#6c7280"></path> | |||
| </marker> | |||
| </defs> | |||
| </svg> | |||
| </div> | |||
| <div class="image-noData svg" | |||
| v-if="svg.data.length === 0"> | |||
| v-if="svg.data.length === 0 && svg.initOver"> | |||
| <div> | |||
| <img :src="require('@/assets/images/nodata.png')" | |||
| alt="" /> | |||
| @@ -162,19 +158,27 @@ export default { | |||
| svgPadding: 20, | |||
| totalWidth: 0, | |||
| totalTime: 0, | |||
| rowHeight: 60, | |||
| cellHeight: 40, | |||
| cellPadding: 0, | |||
| rowPadding: 20, | |||
| rowMargin: 10, | |||
| totalHeight: 0, | |||
| markerPadding: 4, | |||
| minRate: 0.05, | |||
| minRate: 0.1, | |||
| minTime: 0, | |||
| minWidth: 1, | |||
| fontSize: 12, | |||
| textMargin: 21, | |||
| namespaceURI: 'http://www.w3.org/2000/svg', | |||
| resizeTimer: null, | |||
| colorList: [ | |||
| ['#A6DD82', '#edf8e6'], | |||
| ['#6CBFFF', '#e2f2ff'], | |||
| ['#fa8e5b', '#fff4de'], | |||
| ['#01a5a7', '#cceded'], | |||
| ], | |||
| colorIndex: 0, | |||
| colors: { | |||
| iteration_interval: ['#A6DD82', '#edf8e6'], | |||
| fp_and_bp: ['#6CBFFF', '#e2f2ff'], | |||
| tail: ['#fa8e5b', '#fff4de'], | |||
| stream_parallel: ['#01a5a7', '#cceded'], | |||
| }, | |||
| noData: false, | |||
| initOver: false, | |||
| }, | |||
| deviceId: 0, | |||
| radio: this.$t('profiling.lterationGap'), | |||
| @@ -270,7 +274,7 @@ export default { | |||
| this.queryTrainingTrace(0); | |||
| }, | |||
| changeStep(value) { | |||
| if (value === 0) { | |||
| if (value === 0 || (!this.steps.step && this.steps.step !== 0)) { | |||
| this.steps.step = null; | |||
| this.steps.trueStep = null; | |||
| this.queryTrainingTrace(0); | |||
| @@ -421,6 +425,7 @@ export default { | |||
| }; | |||
| RequestService.queryTrainingTrace(params).then( | |||
| (res) => { | |||
| this.svg.initOver = true; | |||
| if ( | |||
| res.data && | |||
| res.data.training_trace_graph && | |||
| @@ -438,15 +443,13 @@ export default { | |||
| this.fp_start = '--'; | |||
| this.bp_end = '--'; | |||
| } | |||
| document.querySelector('#trace').style.height = `${res.data | |||
| .training_trace_graph.length * this.svg.rowHeight}px`; | |||
| this.svg.data = JSON.parse( | |||
| JSON.stringify(res.data.training_trace_graph), | |||
| ); | |||
| this.removeTrace(); | |||
| setTimeout(() => { | |||
| this.dealTraceData(); | |||
| }, 100); | |||
| this.$nextTick(() => { | |||
| this.packageTraceData( | |||
| JSON.parse(JSON.stringify(res.data.training_trace_graph)), | |||
| ); | |||
| }); | |||
| } else { | |||
| this.fp_start = '--'; | |||
| this.bp_end = '--'; | |||
| @@ -460,44 +463,85 @@ export default { | |||
| this.bp_end = '--'; | |||
| this.svg.data = []; | |||
| this.svg.noData = true; | |||
| this.svg.initOver = true; | |||
| this.removeTrace(); | |||
| }, | |||
| ); | |||
| }, | |||
| packageTraceData(traceGraph) { | |||
| this.svg.totalTime = 0; | |||
| this.svg.minTime = 0; | |||
| this.svg.totalHeight = 0; | |||
| const data = []; | |||
| if (traceGraph && traceGraph[0] && traceGraph[0][0]) { | |||
| this.svg.totalTime = traceGraph[0][0].duration; | |||
| this.svg.minTime = this.svg.minRate * this.svg.totalTime; | |||
| traceGraph.forEach((row, index) => { | |||
| const rowObj = { | |||
| rowCount: 0, | |||
| data: [], | |||
| height: 0, | |||
| startY: this.svg.totalHeight, | |||
| }; | |||
| let obj = []; | |||
| for (let i = 0; i < row.length; i++) { | |||
| if (row[i].duration < this.svg.minTime) { | |||
| if (obj.length) { | |||
| rowObj.data.push(obj); | |||
| obj = []; | |||
| rowObj.rowCount++; | |||
| } | |||
| rowObj.data.push([row[i]]); | |||
| rowObj.rowCount++; | |||
| } else { | |||
| obj.push(row[i]); | |||
| } | |||
| if (i === row.length - 1 && obj.length) { | |||
| rowObj.data.push(obj); | |||
| obj = []; | |||
| rowObj.rowCount++; | |||
| } | |||
| } | |||
| rowObj.height = | |||
| rowObj.rowCount * this.svg.cellHeight + | |||
| (rowObj.rowCount - 1) * this.svg.cellPadding + | |||
| (index ? this.svg.rowPadding * 2 : 0); | |||
| this.svg.totalHeight += rowObj.height + this.svg.rowMargin; | |||
| data.push(rowObj); | |||
| }); | |||
| this.svg.totalHeight += this.svg.rowPadding; | |||
| document.querySelector( | |||
| '#trace', | |||
| ).style.height = `${this.svg.totalHeight}px`; | |||
| this.svg.data = JSON.parse(JSON.stringify(data)); | |||
| this.$nextTick(() => { | |||
| this.dealTraceData(); | |||
| }); | |||
| } | |||
| }, | |||
| dealTraceData() { | |||
| const traceDom = document.querySelector('#trace'); | |||
| if (traceDom) { | |||
| this.svg.totalWidth = traceDom.offsetWidth - this.svg.svgPadding * 2; | |||
| if (this.svg.data[0] && this.svg.data[0].length) { | |||
| if (this.svg.data[0] && this.svg.data[0].data.length) { | |||
| const svg = traceDom.querySelector('svg'); | |||
| this.svg.totalTime = this.svg.data[0][0].duration; | |||
| if (this.svg.totalTime) { | |||
| this.svg.colorIndex = 0; | |||
| const minTime = this.svg.minRate * this.svg.totalTime; | |||
| this.svg.data.forEach((row, index) => { | |||
| if (row && row.length) { | |||
| const dashedLine = this.addDashedLine(index); | |||
| svg.insertBefore(dashedLine, svg.querySelector('g')); | |||
| row.forEach((i) => { | |||
| if (i.duration) { | |||
| if (i.name) { | |||
| const tempDom = this.createRect(i, index); | |||
| const tempStr = `g${ | |||
| i.duration > minTime ? '' : '.arrow' | |||
| }`; | |||
| svg.insertBefore(tempDom, svg.querySelector(tempStr)); | |||
| } else { | |||
| const tempDom = this.createArrow(i, index); | |||
| svg.appendChild(tempDom); | |||
| } | |||
| } | |||
| }); | |||
| this.svg.data.forEach((item, index) => { | |||
| let itemDom = {}; | |||
| if (index) { | |||
| itemDom = this.createMultipleRowContainer(item); | |||
| } else { | |||
| itemDom = this.createRowContainer(item.data, item.startY); | |||
| } | |||
| svg.appendChild(itemDom); | |||
| }); | |||
| } | |||
| } else { | |||
| @@ -505,40 +549,69 @@ export default { | |||
| } | |||
| } | |||
| }, | |||
| addDashedLine(index) { | |||
| const x1 = this.svg.svgPadding; | |||
| const x2 = this.svg.svgPadding + this.svg.totalWidth; | |||
| const y = index * this.svg.rowHeight; | |||
| const line = document.createElementNS(this.svg.namespaceURI, 'line'); | |||
| line.setAttribute('x1', x1); | |||
| line.setAttribute('y1', y); | |||
| line.setAttribute('x2', x2); | |||
| line.setAttribute('y2', y); | |||
| line.setAttribute('style', 'stroke:#E2E2E2;stroke-width:1'); | |||
| line.setAttribute('stroke-dasharray', '5 5'); | |||
| createMultipleRowContainer(item) { | |||
| const rectContainer = document.createElementNS( | |||
| this.svg.namespaceURI, | |||
| 'g', | |||
| ); | |||
| rectContainer.setAttribute('class', 'container'); | |||
| const rect = document.createElementNS(this.svg.namespaceURI, 'rect'); | |||
| rect.setAttribute('x', this.svg.svgPadding); | |||
| rect.setAttribute('y', item.startY + this.svg.rowPadding); | |||
| rect.setAttribute('height', item.height); | |||
| rect.setAttribute('width', this.svg.totalWidth); | |||
| rect.setAttribute('style', 'fill:#edf0f5;stroke:#E2E2E2;stroke-width:1'); | |||
| rectContainer.appendChild(rect); | |||
| const temp = this.createRowContainer( | |||
| item.data, | |||
| item.startY + this.svg.rowPadding, | |||
| ); | |||
| rectContainer.appendChild(temp); | |||
| return rectContainer; | |||
| }, | |||
| createRowContainer(data, startY) { | |||
| const g = document.createElementNS(this.svg.namespaceURI, 'g'); | |||
| g.setAttribute('class', 'dashedLine'); | |||
| g.appendChild(line); | |||
| data.forEach((row, index) => { | |||
| const y = | |||
| startY + | |||
| this.svg.rowPadding + | |||
| index * (this.svg.cellPadding + this.svg.cellHeight); | |||
| row.forEach((i) => { | |||
| if (i.duration) { | |||
| let temp; | |||
| if (i.name) { | |||
| temp = this.createRect(i, y); | |||
| g.insertBefore(temp, g.querySelector('g')); | |||
| } else { | |||
| temp = this.createArrow(i, y); | |||
| g.appendChild(temp); | |||
| } | |||
| } | |||
| }); | |||
| }); | |||
| return g; | |||
| }, | |||
| createRect(data, rowIndex) { | |||
| const color = this.svg.colorList[ | |||
| rowIndex > 1 ? 3 : this.svg.colorIndex++ % 4 | |||
| ]; | |||
| const height = 40; | |||
| const width = (data.duration / this.svg.totalTime) * this.svg.totalWidth; | |||
| const fontSize = 12; | |||
| const normalRect = data.duration > this.svg.minRate * this.svg.totalTime; | |||
| createRect(data, startY) { | |||
| const color = | |||
| data.name && this.svg.colors[data.name] | |||
| ? this.svg.colors[data.name] | |||
| : this.svg.colors.stream_parallel; | |||
| const x1 = | |||
| (data.start / this.svg.totalTime) * this.svg.totalWidth + | |||
| this.svg.svgPadding; | |||
| const y1 = | |||
| rowIndex * this.svg.rowHeight + (this.svg.rowHeight - height) / 2; | |||
| const g = document.createElementNS(this.svg.namespaceURI, 'g'); | |||
| g.setAttribute('class', 'rect'); | |||
| const gChild = document.createElementNS(this.svg.namespaceURI, 'g'); | |||
| const width = Math.max( | |||
| this.svg.minWidth, | |||
| (data.duration / this.svg.totalTime) * this.svg.totalWidth, | |||
| ); | |||
| let name = ''; | |||
| switch (data.name) { | |||
| case 'iteration_interval': | |||
| @@ -555,102 +628,117 @@ export default { | |||
| break; | |||
| } | |||
| const textContent = `${name}: ${data.duration.toFixed(4)}ms`; | |||
| const textWidth = this.getTextWidth(textContent); | |||
| const normalSize = data.duration >= this.svg.minTime; | |||
| const g = document.createElementNS(this.svg.namespaceURI, 'g'); | |||
| g.setAttribute('class', 'rect'); | |||
| const rect = document.createElementNS(this.svg.namespaceURI, 'rect'); | |||
| rect.setAttribute('x', x1); | |||
| rect.setAttribute('y', y1); | |||
| rect.setAttribute('height', height); | |||
| rect.setAttribute('y', startY); | |||
| rect.setAttribute('height', this.svg.cellHeight); | |||
| rect.setAttribute('width', width); | |||
| rect.setAttribute('style', `fill:${color[1]};stroke:${color[1]};`); | |||
| rect.setAttribute('style', `fill:${color[1]};stroke:${color[0]};`); | |||
| const foreignObject = document.createElementNS( | |||
| this.svg.namespaceURI, | |||
| 'foreignObject', | |||
| ); | |||
| foreignObject.textContent = `${name}: ${data.duration.toFixed(4)}ms`; | |||
| const textWidth = this.getTextWidth(foreignObject.textContent); | |||
| foreignObject.textContent = textContent; | |||
| foreignObject.setAttribute( | |||
| 'x', | |||
| normalRect | |||
| normalSize | |||
| ? x1 | |||
| : Math.min( | |||
| this.svg.svgPadding * 2 + this.svg.totalWidth - textWidth, | |||
| Math.max(0, x1 + width / 2 - textWidth / 2), | |||
| this.svg.svgPadding * 2 + | |||
| this.svg.totalWidth - | |||
| textWidth - | |||
| this.svg.textMargin, | |||
| Math.max(this.svg.textMargin, x1 + width / 2 - textWidth / 2), | |||
| ), | |||
| ); | |||
| foreignObject.setAttribute( | |||
| 'y', | |||
| y1 + (height - fontSize) / 2 + (normalRect ? 0 : fontSize), | |||
| ); | |||
| foreignObject.setAttribute('height', fontSize); | |||
| foreignObject.setAttribute('y', startY); | |||
| foreignObject.setAttribute('height', this.svg.cellHeight); | |||
| foreignObject.setAttribute('width', width); | |||
| foreignObject.setAttribute('style', `color:${color[0]}`); | |||
| foreignObject.setAttribute( | |||
| 'class', | |||
| `content${normalRect ? '' : ' content-mini'}`, | |||
| `content${normalSize ? '' : ' content-mini'}`, | |||
| ); | |||
| const title = document.createElementNS(this.svg.namespaceURI, 'title'); | |||
| title.textContent = `${name}: ${data.duration.toFixed(4)}ms`; | |||
| title.textContent = textContent; | |||
| gChild.appendChild(rect); | |||
| gChild.appendChild(foreignObject); | |||
| gChild.appendChild(title); | |||
| g.appendChild(gChild); | |||
| g.appendChild(rect); | |||
| g.appendChild(foreignObject); | |||
| g.appendChild(title); | |||
| return g; | |||
| }, | |||
| createArrow(data, rowIndex) { | |||
| createArrow(data, startY) { | |||
| const width = (data.duration / this.svg.totalTime) * this.svg.totalWidth; | |||
| const x1 = | |||
| (data.start / this.svg.totalTime) * this.svg.totalWidth + | |||
| this.svg.markerPadding + | |||
| this.svg.svgPadding; | |||
| const x2 = x1 + width - this.svg.markerPadding * 2; | |||
| const y = rowIndex * this.svg.rowHeight + this.svg.rowHeight / 2; | |||
| const centerY = startY + this.svg.cellHeight / 2; | |||
| const g = document.createElementNS(this.svg.namespaceURI, 'g'); | |||
| g.setAttribute('class', 'arrow'); | |||
| const line = document.createElementNS(this.svg.namespaceURI, 'line'); | |||
| line.setAttribute('x1', x1); | |||
| line.setAttribute('y1', y); | |||
| line.setAttribute('x2', x2); | |||
| line.setAttribute('y2', y); | |||
| line.setAttribute('style', 'stroke:#E6EBF5;stroke-width:1'); | |||
| line.setAttribute('marker-end', 'url(#marker_end)'); | |||
| line.setAttribute('marker-start', 'url(#marker_start)'); | |||
| line.setAttribute('y1', centerY); | |||
| line.setAttribute('y2', centerY); | |||
| line.setAttribute('style', 'stroke:#6c7280;stroke-width:1'); | |||
| if (width > this.svg.markerPadding) { | |||
| line.setAttribute('x1', x1 + this.svg.markerPadding); | |||
| line.setAttribute('x2', x1 + width - this.svg.markerPadding); | |||
| line.setAttribute('marker-end', 'url(#marker_end)'); | |||
| line.setAttribute('marker-start', 'url(#marker_start)'); | |||
| } else { | |||
| line.setAttribute('x1', x1); | |||
| line.setAttribute('x2', x1 + width); | |||
| } | |||
| const text = document.createElementNS(this.svg.namespaceURI, 'text'); | |||
| text.textContent = `${ | |||
| rowIndex === 0 ? this.$t('profiling.approximateTime') : '' | |||
| data.duration === this.svg.totalTime | |||
| ? this.$t('profiling.approximateTime') | |||
| : '' | |||
| }${data.duration.toFixed(4)}ms`; | |||
| const textWidth = this.getTextWidth(text.textContent); | |||
| const textWidth = text.textContent | |||
| ? this.getTextWidth(text.textContent) | |||
| : 0; | |||
| text.setAttribute( | |||
| 'x', | |||
| Math.min( | |||
| this.svg.svgPadding * 2 + this.svg.totalWidth - textWidth, | |||
| Math.max(0, (x2 - x1) / 2 + x1 - textWidth / 2), | |||
| this.svg.svgPadding * 2 + | |||
| this.svg.totalWidth - | |||
| textWidth - | |||
| this.svg.textMargin, | |||
| Math.max(this.svg.textMargin, width / 2 + x1 - textWidth / 2), | |||
| ), | |||
| ); | |||
| text.setAttribute('y', y - 6); | |||
| text.setAttribute('font-size', 12); | |||
| text.setAttribute('fill', '#6c7280'); | |||
| text.setAttribute('y', centerY - this.svg.fontSize / 2); | |||
| text.setAttribute('font-size', this.svg.fontSize); | |||
| text.setAttribute('fill', 'black'); | |||
| const startLine = document.createElementNS(this.svg.namespaceURI, 'line'); | |||
| startLine.setAttribute('x1', x1 - this.svg.markerPadding); | |||
| startLine.setAttribute('y1', y - this.svg.rowHeight / 4); | |||
| startLine.setAttribute('x2', x1 - this.svg.markerPadding); | |||
| startLine.setAttribute('y2', y + this.svg.rowHeight / 4); | |||
| startLine.setAttribute('style', 'stroke:#E6EBF5;stroke-width:1'); | |||
| startLine.setAttribute('x1', x1); | |||
| startLine.setAttribute('y1', startY); | |||
| startLine.setAttribute('x2', x1); | |||
| startLine.setAttribute('y2', startY + this.svg.cellHeight); | |||
| startLine.setAttribute('style', 'stroke:#6c7280;stroke-width:1'); | |||
| g.appendChild(startLine); | |||
| const endLine = document.createElementNS(this.svg.namespaceURI, 'line'); | |||
| endLine.setAttribute('x1', x1 + width - this.svg.markerPadding); | |||
| endLine.setAttribute('y1', y - this.svg.rowHeight / 4); | |||
| endLine.setAttribute('x2', x1 + width - this.svg.markerPadding); | |||
| endLine.setAttribute('y2', y + this.svg.rowHeight / 4); | |||
| endLine.setAttribute('style', 'stroke:#E6EBF5;stroke-width:1'); | |||
| endLine.setAttribute('x1', x1 + width); | |||
| endLine.setAttribute('y1', startY); | |||
| endLine.setAttribute('x2', x1 + width); | |||
| endLine.setAttribute('y2', startY + this.svg.cellHeight); | |||
| endLine.setAttribute('style', 'stroke:#6c7280;stroke-width:1'); | |||
| g.appendChild(endLine); | |||
| g.appendChild(line); | |||
| g.appendChild(text); | |||
| @@ -689,15 +777,6 @@ export default { | |||
| this.svg.resizeTimer = null; | |||
| }, 500); | |||
| }, | |||
| downloadSVG() { | |||
| const svgDom = document.querySelector('svg').outerHTML; | |||
| const src = `data:image/svg+xml;base64, | |||
| ${window.btoa(unescape(encodeURIComponent(svgDom)))}`; | |||
| const a = document.createElement('a'); | |||
| a.href = src; | |||
| a.download = new Date().valueOf(); | |||
| a.click(); | |||
| }, | |||
| }, | |||
| destroyed() { | |||
| window.removeEventListener('resize', this.resizeTrace, false); | |||
| @@ -747,8 +826,8 @@ export default { | |||
| } | |||
| } | |||
| .step-message { | |||
| height: 24px; | |||
| line-height: 24px; | |||
| height: 32px; | |||
| line-height: 16px; | |||
| margin-top: 6px; | |||
| margin-left: 14px; | |||
| overflow-y: auto; | |||
| @@ -765,7 +844,7 @@ export default { | |||
| font-weight: bold; | |||
| } | |||
| .pf-content-middle { | |||
| padding: 15px 15px 0; | |||
| padding: 10px 15px 0; | |||
| height: calc(100% - 62px); | |||
| #trace-container { | |||
| width: 100%; | |||
| @@ -775,23 +854,13 @@ export default { | |||
| .training-trace { | |||
| position: relative; | |||
| height: 0; | |||
| .download-button { | |||
| display: none; | |||
| position: absolute; | |||
| width: 12px; | |||
| height: 12px; | |||
| right: 10px; | |||
| top: 10px; | |||
| cursor: pointer; | |||
| background-image: url('../../assets/images/download.png'); | |||
| } | |||
| .content { | |||
| overflow: hidden; | |||
| text-align: center; | |||
| text-overflow: ellipsis; | |||
| white-space: nowrap; | |||
| font-size: 12px; | |||
| line-height: 12px; | |||
| line-height: 40px; | |||
| } | |||
| .content-mini { | |||
| overflow: visible; | |||
| @@ -707,13 +707,14 @@ export default { | |||
| this.$nextTick(() => { | |||
| elementItem = this.$refs[sampleItem.ref]; | |||
| if (elementItem) { | |||
| elementItem[0].updateGridData(); | |||
| if (showLimitError) { | |||
| elementItem[0].showRequestErrorMessage( | |||
| errorMsg, | |||
| sampleItem.formateData.value.dims, | |||
| sampleItem.filterStr, | |||
| ); | |||
| } else { | |||
| elementItem[0].updateGridData(); | |||
| } | |||
| } | |||
| }); | |||
| @@ -21,6 +21,9 @@ limitations under the License. | |||
| <div class="cl-dashboard-top-title"> | |||
| {{$t('trainingDashboard.trainingDashboardTitle')}} | |||
| </div> | |||
| <div :title="$t('trainingDashboard.loadingTip')" | |||
| v-if="trainJobCached" | |||
| class="el-icon-loading loading-icon"></div> | |||
| <div class="path-message"> | |||
| <span>{{$t('symbols.leftbracket')}}</span> | |||
| <span>{{$t('trainingDashboard.summaryDirPath')}}</span> | |||
| @@ -234,6 +237,12 @@ export default { | |||
| mousedown: 'mousedown', | |||
| mouseup: 'mouseup', | |||
| }, | |||
| trainJobCached: false, | |||
| cacheKey: { | |||
| notInCache: 'NOT_IN_CACHE', | |||
| caching: 'CACHING', | |||
| cached: 'CACHED', | |||
| }, | |||
| }; | |||
| }, | |||
| computed: { | |||
| @@ -262,6 +271,7 @@ export default { | |||
| } | |||
| this.getDatavisualPlugins(true); | |||
| this.queryDatasetGraph(); | |||
| this.queryTrainJobCacheState(); | |||
| setTimeout(() => { | |||
| this.$store.commit('setIsReload', false); | |||
| }, this.reloadStopTime); | |||
| @@ -349,6 +359,7 @@ export default { | |||
| this.startAutoUpdate(); | |||
| } | |||
| this.queryDatasetGraph(); | |||
| this.queryTrainJobCacheState(); | |||
| }, | |||
| /** | |||
| @@ -504,6 +515,7 @@ export default { | |||
| if (!Object.keys(this.allDatasetGraphData).length) { | |||
| this.queryDatasetGraph(); | |||
| } | |||
| this.queryTrainJobCacheState(); | |||
| }, this.timeReloadValue * 1000); | |||
| }, | |||
| /** | |||
| @@ -990,9 +1002,10 @@ export default { | |||
| this.$nextTick(() => { | |||
| const elementItem = this.$refs.tensorChart; | |||
| if (elementItem) { | |||
| elementItem.updateGridData(); | |||
| if (showLimitError) { | |||
| elementItem.showRequestErrorMessage(errorMsg); | |||
| } else { | |||
| elementItem.updateGridData(); | |||
| } | |||
| } | |||
| }); | |||
| @@ -1940,6 +1953,31 @@ export default { | |||
| .selectAll('title') | |||
| .remove(); | |||
| }, | |||
| /** | |||
| * Query the cachee status of training jonb | |||
| */ | |||
| queryTrainJobCacheState() { | |||
| const params = { | |||
| train_id: this.trainingJobId, | |||
| }; | |||
| RequestService.querySummaryList(params, true).then((response) => { | |||
| if ( | |||
| response && | |||
| response.data && | |||
| response.data.train_jobs && | |||
| response.data.train_jobs.length | |||
| ) { | |||
| const curTrain = response.data.train_jobs[0]; | |||
| if (curTrain.cache_status !== this.cacheKey.cached) { | |||
| this.trainJobCached = true; | |||
| } else { | |||
| this.trainJobCached = false; | |||
| } | |||
| } else { | |||
| this.trainJobCached = false; | |||
| } | |||
| }); | |||
| }, | |||
| }, | |||
| }; | |||
| </script> | |||
| @@ -1962,6 +2000,9 @@ export default { | |||
| padding: 18px 16px; | |||
| font-weight: bold; | |||
| } | |||
| .loading-icon { | |||
| margin-left: 5px; | |||
| } | |||
| .cl-dashboard-top-title { | |||
| float: left; | |||
| color: #000000; | |||
| @@ -0,0 +1,265 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Compute resource manager.""" | |||
| import fractions | |||
| import math | |||
| import threading | |||
| import multiprocessing | |||
| from concurrent import futures | |||
| from mindinsight.utils.log import utils_logger as logger | |||
| from mindinsight.utils.constant import GeneralErrors | |||
| from mindinsight.utils.exceptions import MindInsightException | |||
| _MP_CONTEXT = multiprocessing.get_context(method="forkserver") | |||
| class ComputingResourceManager: | |||
| """ | |||
| Manager for computing resources. | |||
| This class provides executors for computing tasks. Executors can only be used once. | |||
| Args: | |||
| executors_cnt (int): Number of executors to be provided by this class. | |||
| max_processes_cnt (int): Max number of processes to be used for computing. | |||
| """ | |||
| def __init__(self, executors_cnt, max_processes_cnt): | |||
| self._max_processes_cnt = max_processes_cnt | |||
| self._executors_cnt = executors_cnt | |||
| self._lock = threading.Lock() | |||
| self._executors = { | |||
| ind: Executor( | |||
| self, executor_id=ind, | |||
| available_workers=fractions.Fraction(self._max_processes_cnt, self._executors_cnt)) | |||
| for ind in range(self._executors_cnt) | |||
| } | |||
| self._remaining_executors = len(self._executors) | |||
| self._backend = futures.ProcessPoolExecutor(max_workers=max_processes_cnt, mp_context=_MP_CONTEXT) | |||
| logger.info("Initialized ComputingResourceManager with executors_cnt=%s, max_processes_cnt=%s.", | |||
| executors_cnt, max_processes_cnt) | |||
| def __enter__(self): | |||
| """This method is not thread safe.""" | |||
| return self | |||
| def __exit__(self, exc_type, exc_val, exc_tb): | |||
| """ | |||
| This should not block because every executor have waited. If it blocks, there may be some problem. | |||
| This method is not thread safe. | |||
| """ | |||
| self._backend.shutdown() | |||
| def get_executor(self): | |||
| """ | |||
| Get an executor. | |||
| Returns: | |||
| Executor, which can be used for submitting tasks. | |||
| Raises: | |||
| ComputeResourceManagerException: when no more executor is available. | |||
| """ | |||
| with self._lock: | |||
| self._remaining_executors -= 1 | |||
| if self._remaining_executors < 0: | |||
| raise ComputingResourceManagerException("No more executors.") | |||
| return self._executors[self._remaining_executors] | |||
| def destroy_executor(self, executor_id): | |||
| """ | |||
| Destroy an executor to reuse it's workers. | |||
| Args: | |||
| executor_id (int): Id of the executor to be destroyed. | |||
| """ | |||
| with self._lock: | |||
| released_workers = self._executors[executor_id].available_workers | |||
| self._executors.pop(executor_id) | |||
| remaining_executors = len(self._executors) | |||
| logger.info("Destroy executor %s. Will release %s worker(s). Remaining executors: %s.", | |||
| executor_id, released_workers, remaining_executors) | |||
| if not remaining_executors: | |||
| return | |||
| for executor in self._executors.values(): | |||
| executor.add_worker( | |||
| fractions.Fraction( | |||
| released_workers.numerator, | |||
| released_workers.denominator * remaining_executors)) | |||
| def submit(self, *args, **kwargs): | |||
| """ | |||
| Submit a task. | |||
| See concurrent.futures.Executor.submit() for details. | |||
| This method should only be called by Executor. Users should not call this method directly. | |||
| """ | |||
| with self._lock: | |||
| return self._backend.submit(*args, **kwargs) | |||
| class ComputingResourceManagerException(MindInsightException): | |||
| """ | |||
| Indicates a computing resource error has occurred. | |||
| This exception should not be presented to end users. | |||
| Args: | |||
| msg (str): Exception message. | |||
| """ | |||
| def __init__(self, msg): | |||
| super().__init__(error=GeneralErrors.COMPUTING_RESOURCE_ERROR, message=msg) | |||
| class WrappedFuture: | |||
| """ | |||
| Wrap Future objects with custom logics to release compute slots. | |||
| Args: | |||
| executor (Executor): The executor which generates this future. | |||
| original_future (futures.Future): Original future object. | |||
| """ | |||
| def __init__(self, executor, original_future: futures.Future): | |||
| self._original_future = original_future | |||
| self._executor = executor | |||
| def add_done_callback(self, callback): | |||
| """ | |||
| Add done callback. | |||
| See futures.Future.add_done_callback() for details. | |||
| """ | |||
| def _wrapped_callback(*args, **kwargs): | |||
| logger.debug("Future callback called.") | |||
| try: | |||
| return callback(*args, **kwargs) | |||
| finally: | |||
| self._executor.release_slot() | |||
| self._executor.remove_done_future(self._original_future) | |||
| self._original_future.add_done_callback(_wrapped_callback) | |||
| class Executor: | |||
| """ | |||
| Task executor. | |||
| Args: | |||
| mgr (ComputingResourceManager): The ComputingResourceManager that generates this executor. | |||
| executor_id (int): Executor id. | |||
| available_workers (fractions.Fraction): Available workers. | |||
| """ | |||
| def __init__(self, mgr: ComputingResourceManager, executor_id, available_workers): | |||
| self._mgr = mgr | |||
| self.closed = False | |||
| self._available_workers = available_workers | |||
| self._effective_workers = self._calc_effective_workers(self._available_workers) | |||
| self._slots = threading.Semaphore(value=self._effective_workers) | |||
| self._id = executor_id | |||
| self._futures = set() | |||
| self._lock = threading.Lock() | |||
| logger.debug("Available workers: %s.", available_workers) | |||
| def __enter__(self): | |||
| """This method is not thread safe.""" | |||
| if self.closed: | |||
| raise ComputingResourceManagerException("Can not reopen closed executor.") | |||
| return self | |||
| def __exit__(self, exc_type, exc_val, exc_tb): | |||
| """This method is not thread safe.""" | |||
| self._close() | |||
| def submit(self, *args, **kwargs): | |||
| """ | |||
| Submit task. | |||
| See concurrent.futures.Executor.submit() for details. This method is not thread safe. | |||
| """ | |||
| logger.debug("Task submitted to executor %s.", self._id) | |||
| if self.closed: | |||
| raise ComputingResourceManagerException("Cannot submit task to a closed executor.") | |||
| # Thread will wait on acquire(). | |||
| self._slots.acquire() | |||
| future = self._mgr.submit(*args, **kwargs) | |||
| # set.add is atomic in c-python. | |||
| self._futures.add(future) | |||
| return WrappedFuture(self, future) | |||
| def release_slot(self): | |||
| """ | |||
| Release a slot for new tasks to be submitted. | |||
| Semaphore is itself thread safe, so no lock is needed. | |||
| This method should only be called by ExecutorFuture. | |||
| """ | |||
| self._slots.release() | |||
| def remove_done_future(self, future): | |||
| """ | |||
| Remove done futures so the executor will not track them. | |||
| This method should only be called by WrappedFuture. | |||
| """ | |||
| # set.remove is atomic in c-python so no lock is needed. | |||
| self._futures.remove(future) | |||
| @staticmethod | |||
| def _calc_effective_workers(available_workers): | |||
| return 1 if available_workers <= 1 else math.floor(available_workers) | |||
| def _close(self): | |||
| self.closed = True | |||
| logger.debug("Executor is being closed, futures to wait: %s", self._futures) | |||
| futures.wait(self._futures) | |||
| logger.debug("Executor wait futures completed.") | |||
| self._mgr.destroy_executor(self._id) | |||
| logger.debug("Executor is closed.") | |||
| @property | |||
| def available_workers(self): | |||
| """Get available workers.""" | |||
| with self._lock: | |||
| return self._available_workers | |||
| def add_worker(self, added_available_workers): | |||
| """This method should only be called by ComputeResourceManager.""" | |||
| logger.debug("Add worker: %s", added_available_workers) | |||
| with self._lock: | |||
| self._available_workers += added_available_workers | |||
| new_effective_workers = self._calc_effective_workers(self._available_workers) | |||
| if new_effective_workers > self._effective_workers: | |||
| for _ in range(new_effective_workers - self._effective_workers): | |||
| self._slots.release() | |||
| self._effective_workers = new_effective_workers | |||
| def wait_all_tasks_finish(self): | |||
| """ | |||
| Wait all tasks finish. | |||
| This method is not thread safe. | |||
| """ | |||
| futures.wait(self._futures) | |||
| @@ -31,6 +31,7 @@ class MindInsightModules(Enum): | |||
| DATAVISUAL = 5 | |||
| PROFILERMGR = 6 | |||
| SCRIPTCONVERTER = 7 | |||
| SYSMETRIC = 8 | |||
| class GeneralErrors(Enum): | |||
| @@ -43,6 +44,7 @@ class GeneralErrors(Enum): | |||
| FILE_SYSTEM_PERMISSION_ERROR = 8 | |||
| PORT_NOT_AVAILABLE_ERROR = 9 | |||
| URL_DECODE_ERROR = 10 | |||
| COMPUTING_RESOURCE_ERROR = 11 | |||
| class ProfilerMgrErrors(Enum): | |||
| @@ -71,7 +73,14 @@ class DataVisualErrors(Enum): | |||
| HISTOGRAM_NOT_EXIST = 15 | |||
| TRAIN_JOB_DETAIL_NOT_IN_CACHE = 16 | |||
| QUERY_STRING_CONTAINS_NULL_BYTE = 17 | |||
| TENSOR_NOT_EXIST = 18 | |||
| MAX_RESPONSE_DATA_EXCEEDED_ERROR = 19 | |||
| STEP_TENSOR_DATA_NOT_IN_CACHE = 20 | |||
| class ScriptConverterErrors(Enum): | |||
| """Enum definition for mindconverter errors.""" | |||
| class SysmetricErrors(Enum): | |||
| """Enum definition for sysmetric errors.""" | |||
| DSMI_QUERYING_NONZERO = 1 | |||
| @@ -224,3 +224,6 @@ def setup_logger(sub_module, log_name, **kwargs): | |||
| logger.addHandler(logfile_handler) | |||
| return logger | |||
| utils_logger = setup_logger("utils", "utils") | |||
| @@ -15,31 +15,11 @@ | |||
| """The st config.""" | |||
| import os | |||
| import shutil | |||
| import sys | |||
| import tempfile | |||
| import pytest | |||
| from tests.st.func.profiler import RAW_DATA_BASE | |||
| from tests.utils import mindspore | |||
| sys.modules['mindspore'] = mindspore | |||
| BASE_SUMMARY_DIR = tempfile.mkdtemp(prefix='test_profiler_summary_dir_base_') | |||
| @pytest.fixture(scope="session") | |||
| def create_summary_dir(): | |||
| """Create summary directory for profiler module.""" | |||
| try: | |||
| if os.path.exists(BASE_SUMMARY_DIR): | |||
| shutil.rmtree(BASE_SUMMARY_DIR) | |||
| permissions = os.R_OK | os.W_OK | os.X_OK | |||
| mode = permissions << 6 | |||
| if not os.path.exists(BASE_SUMMARY_DIR): | |||
| os.mkdir(BASE_SUMMARY_DIR, mode=mode) | |||
| yield | |||
| finally: | |||
| if os.path.exists(BASE_SUMMARY_DIR): | |||
| shutil.rmtree(BASE_SUMMARY_DIR) | |||
| BASE_SUMMARY_DIR = os.path.realpath(os.path.join(RAW_DATA_BASE, "run_1")) | |||
| @@ -21,19 +21,16 @@ Usage: | |||
| """ | |||
| import os | |||
| from unittest import mock, TestCase | |||
| from unittest import TestCase | |||
| import pytest | |||
| from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory | |||
| from mindinsight.profiler.common.exceptions.exceptions import StepNumNotSupportedException, \ | |||
| ProfilerParamValueErrorException | |||
| from mindinsight.profiler.profiling import Profiler, FrameworkParser | |||
| from tests.st.func.profiler import RAW_DATA_BASE | |||
| from tests.st.func.profiler.conftest import BASE_SUMMARY_DIR | |||
| @pytest.mark.usefixtures('create_summary_dir') | |||
| class TestProfilerAnalyse(TestCase): | |||
| """Test Converter module.""" | |||
| JOB_ID = 'JOB3' | |||
| @@ -42,26 +39,14 @@ class TestProfilerAnalyse(TestCase): | |||
| def setup_class(cls): | |||
| """Generate parsed files.""" | |||
| cls.step_trace_file = 'step_trace_raw_1_detail_time.csv' | |||
| cls.generate_parsed_files() | |||
| cls.summary_dir = os.path.join(BASE_SUMMARY_DIR, 'normal_run') | |||
| cls.profiler = os.path.join(cls.summary_dir, 'profiler') | |||
| def setUp(self): | |||
| """Setup before each test.""" | |||
| self.step_trace_analyser = AnalyserFactory.instance().get_analyser( | |||
| 'step_trace', self.profiler, '1') | |||
| @classmethod | |||
| def generate_parsed_files(cls): | |||
| """Test parse raw info about profiler.""" | |||
| cls.summary_dir = os.path.join(BASE_SUMMARY_DIR, 'normal_run') | |||
| cls.profiler = os.path.join(cls.summary_dir, 'profiler') | |||
| FrameworkParser._raw_data_dir = RAW_DATA_BASE | |||
| if not os.path.exists(cls.summary_dir): | |||
| os.makedirs(cls.summary_dir) | |||
| Profiler._base_profiling_container_path = os.path.join(RAW_DATA_BASE, 'container') | |||
| with mock.patch('mindinsight.profiler.profiling.PROFILING_LOG_BASE_PATH', RAW_DATA_BASE): | |||
| profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, | |||
| output_path=cls.summary_dir, job_id=cls.JOB_ID) | |||
| profiler.analyse() | |||
| @pytest.mark.level0 | |||
| @pytest.mark.env_single | |||
| @@ -19,19 +19,13 @@ Usage: | |||
| pytest tests/st/func/profiler | |||
| """ | |||
| import os | |||
| import shutil | |||
| from unittest import mock | |||
| import pytest | |||
| from mindinsight.profiler import Profiler | |||
| from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory | |||
| from mindinsight.profiler.parser.framework_parser import FrameworkParser | |||
| from tests.st.func.profiler.conftest import BASE_SUMMARY_DIR | |||
| from tests.ut.profiler import RAW_DATA_BASE | |||
| @pytest.mark.usefixtures('create_summary_dir') | |||
| class TestMinddataPipelineAnalyser: | |||
| """Test minddata pipeline analyser module.""" | |||
| JOB_ID = 'JOB3' | |||
| @@ -39,29 +33,14 @@ class TestMinddataPipelineAnalyser: | |||
| @classmethod | |||
| def setup_class(cls): | |||
| """Generate parsed files.""" | |||
| cls.generate_parsed_files() | |||
| cls.summary_dir = os.path.join(BASE_SUMMARY_DIR, 'normal_run') | |||
| cls.profiler = os.path.join(cls.summary_dir, 'profiler') | |||
| def setup_method(self): | |||
| """Create analyser.""" | |||
| self._analyser = AnalyserFactory.instance().get_analyser( | |||
| 'minddata_pipeline', self.profiler, '1') | |||
| @classmethod | |||
| def generate_parsed_files(cls): | |||
| """Test parse raw info about profiler.""" | |||
| cls.summary_dir = os.path.join(BASE_SUMMARY_DIR, 'normal_run') | |||
| cls.profiler = os.path.join(cls.summary_dir, 'profiler') | |||
| FrameworkParser._raw_data_dir = RAW_DATA_BASE | |||
| if not os.path.exists(cls.summary_dir): | |||
| os.makedirs(cls.summary_dir) | |||
| os.makedirs(cls.profiler, exist_ok=True) | |||
| pipeline_path = os.path.join(RAW_DATA_BASE, 'profiler', 'pipeline_profiling_1.json') | |||
| shutil.copy(pipeline_path, cls.profiler) | |||
| Profiler._base_profiling_container_path = os.path.join(RAW_DATA_BASE, 'container') | |||
| with mock.patch('mindinsight.profiler.profiling.PROFILING_LOG_BASE_PATH', RAW_DATA_BASE): | |||
| profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, | |||
| output_path=cls.summary_dir, job_id=cls.JOB_ID) | |||
| profiler.analyse() | |||
| @pytest.mark.level0 | |||
| @pytest.mark.env_single | |||
| @@ -19,16 +19,11 @@ Usage: | |||
| pytest tests/st/func/profiler | |||
| """ | |||
| import os | |||
| from unittest import mock | |||
| import pytest | |||
| from mindinsight.profiler import Profiler | |||
| from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory | |||
| from mindinsight.profiler.parser.framework_parser import FrameworkParser | |||
| from tests.st.func.profiler.conftest import BASE_SUMMARY_DIR | |||
| from tests.ut.profiler import RAW_DATA_BASE | |||
| OP_GATHER_V2_INFO = { | |||
| 'col_name': [ | |||
| @@ -84,7 +79,6 @@ OP_GATHER_V2_INFO = { | |||
| } | |||
| @pytest.mark.usefixtures('create_summary_dir') | |||
| class TestOpAnalyser: | |||
| """Test AICORE and AICPU analyser module.""" | |||
| JOB_ID = 'JOB3' | |||
| @@ -92,7 +86,8 @@ class TestOpAnalyser: | |||
| @classmethod | |||
| def setup_class(cls): | |||
| """Generate parsed files.""" | |||
| cls.generate_parsed_files() | |||
| cls.summary_dir = os.path.join(BASE_SUMMARY_DIR, 'normal_run') | |||
| cls.profiler = os.path.join(cls.summary_dir, 'profiler') | |||
| def setup_method(self): | |||
| """Create analyser.""" | |||
| @@ -101,20 +96,6 @@ class TestOpAnalyser: | |||
| self._analyser_aicore_detail = AnalyserFactory.instance().get_analyser( | |||
| 'aicore_detail', self.profiler, '1') | |||
| @classmethod | |||
| def generate_parsed_files(cls): | |||
| """Test parse raw info about profiler.""" | |||
| cls.summary_dir = os.path.join(BASE_SUMMARY_DIR, 'normal_run') | |||
| cls.profiler = os.path.join(cls.summary_dir, 'profiler') | |||
| FrameworkParser._raw_data_dir = RAW_DATA_BASE | |||
| if not os.path.exists(cls.summary_dir): | |||
| os.makedirs(cls.summary_dir) | |||
| Profiler._base_profiling_container_path = os.path.join(RAW_DATA_BASE, 'container') | |||
| with mock.patch('mindinsight.profiler.profiling.PROFILING_LOG_BASE_PATH', RAW_DATA_BASE): | |||
| profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, | |||
| output_path=cls.summary_dir, job_id=cls.JOB_ID) | |||
| profiler.analyse() | |||
| @pytest.mark.level0 | |||
| @pytest.mark.env_single | |||
| @pytest.mark.platform_x86_cpu | |||
| @@ -15,28 +15,15 @@ | |||
| """ | |||
| Description: This file is used for some common util. | |||
| """ | |||
| from unittest.mock import Mock | |||
| import pytest | |||
| from flask import Response | |||
| from mindinsight.backend import datavisual | |||
| from mindinsight.datavisual.utils import tools | |||
| from mindinsight.backend.application import APP | |||
| @pytest.fixture | |||
| def client(): | |||
| """This fixture is flask client.""" | |||
| mock_data_manager = Mock() | |||
| mock_data_manager.start_load_data = Mock() | |||
| datavisual.DATA_MANAGER = mock_data_manager | |||
| packages = ["mindinsight.backend.data_visual"] | |||
| mock_obj = Mock(return_value=packages) | |||
| tools.find_app_package = mock_obj | |||
| from mindinsight.backend.application import APP | |||
| APP.response_class = Response | |||
| app_client = APP.test_client() | |||
| @@ -22,12 +22,10 @@ from unittest.mock import patch | |||
| from werkzeug.exceptions import MethodNotAllowed, NotFound | |||
| from mindinsight.datavisual.processors import scalars_processor | |||
| from mindinsight.datavisual.processors.scalars_processor import ScalarsProcessor | |||
| from ....utils.tools import get_url | |||
| from ...backend.datavisual.conftest import TRAIN_ROUTES | |||
| from ..mock import MockLogger | |||
| class TestErrorHandler: | |||
| @@ -36,7 +34,6 @@ class TestErrorHandler: | |||
| @patch.object(ScalarsProcessor, 'get_metadata_list') | |||
| def test_handle_http_exception_error_not_found(self, mock_scalar_processor, client): | |||
| """Test handle http exception error not found.""" | |||
| scalars_processor.logger = MockLogger | |||
| text = 'Test Message' | |||
| # NotFound | |||
| @@ -59,7 +56,6 @@ class TestErrorHandler: | |||
| @patch.object(ScalarsProcessor, 'get_metadata_list') | |||
| def test_handle_http_exception_error_method_not_allowed(self, mock_scalar_processor, client): | |||
| """Test handling http exception error method not allowed.""" | |||
| scalars_processor.logger = MockLogger | |||
| text = 'Test Message' | |||
| # MethodNotAllowed | |||
| @@ -82,7 +78,6 @@ class TestErrorHandler: | |||
| @patch.object(ScalarsProcessor, 'get_metadata_list') | |||
| def test_handle_http_exception_error_method_other_errors(self, mock_scalar_processor, client): | |||
| """Test handling http exception error method other errors.""" | |||
| scalars_processor.logger = MockLogger | |||
| text = 'Test Message' | |||
| # Other errors | |||
| @@ -1,45 +0,0 @@ | |||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| Description: This file is used for some common util. | |||
| """ | |||
| from unittest.mock import Mock | |||
| import pytest | |||
| from flask import Response | |||
| from mindinsight.backend import datavisual | |||
| from mindinsight.datavisual import utils | |||
| @pytest.fixture | |||
| def client(): | |||
| """This fixture is flask client.""" | |||
| mock_data_manager = Mock() | |||
| mock_data_manager.start_load_data = Mock() | |||
| datavisual.DATA_MANAGER = mock_data_manager | |||
| packages = ["mindinsight.backend.raw_dataset", | |||
| "mindinsight.backend.train_dataset", | |||
| "mindinsight.backend.data_visual"] | |||
| mock_obj = Mock(return_value=packages) | |||
| utils.find_app_package = mock_obj | |||
| from mindinsight.backend.application import APP | |||
| APP.response_class = Response | |||
| app_client = APP.test_client() | |||
| yield app_client | |||
| @@ -27,6 +27,7 @@ import pytest | |||
| from mindinsight.datavisual.common.exceptions import SummaryLogPathInvalid | |||
| from mindinsight.datavisual.data_transform import data_loader | |||
| from mindinsight.datavisual.data_transform.data_loader import DataLoader | |||
| from mindinsight.utils.computing_resource_mgr import ComputingResourceManager | |||
| from ..mock import MockLogger | |||
| @@ -57,7 +58,7 @@ class TestDataLoader: | |||
| """Test loading method with empty file list.""" | |||
| loader = DataLoader(self._summary_dir) | |||
| with pytest.raises(SummaryLogPathInvalid): | |||
| loader.load() | |||
| loader.load(ComputingResourceManager(1, 1)) | |||
| assert 'No valid files can be loaded' in str(MockLogger.log_msg['warning']) | |||
| def test_load_with_invalid_file_list(self): | |||
| @@ -66,7 +67,7 @@ class TestDataLoader: | |||
| self._generate_files(self._summary_dir, file_list) | |||
| loader = DataLoader(self._summary_dir) | |||
| with pytest.raises(SummaryLogPathInvalid): | |||
| loader.load() | |||
| loader.load(ComputingResourceManager(1, 1)) | |||
| assert 'No valid files can be loaded' in str(MockLogger.log_msg['warning']) | |||
| def test_load_success(self): | |||
| @@ -77,6 +78,6 @@ class TestDataLoader: | |||
| file_list = ['summary.001', 'summary.002'] | |||
| self._generate_files(dir_path, file_list) | |||
| dataloader = DataLoader(dir_path) | |||
| dataloader.load() | |||
| dataloader.load(ComputingResourceManager(1, 1)) | |||
| assert dataloader._loader is not None | |||
| shutil.rmtree(dir_path) | |||
| @@ -81,8 +81,9 @@ class TestDataManager: | |||
| def test_start_load_data_success(self): | |||
| """Test start_load_data method success.""" | |||
| summary_base_dir = tempfile.mkdtemp() | |||
| dir_num = 3 | |||
| train_ids = [] | |||
| for i in range(3): | |||
| for i in range(dir_num): | |||
| log_path = os.path.join(summary_base_dir, f'dir{i}') | |||
| self._make_path_and_file_list(log_path) | |||
| train_ids.append(f'./dir{i}') | |||
| @@ -215,7 +216,7 @@ class TestDataManager: | |||
| expected_loader_ids = expected_loader_ids[-MAX_DATA_LOADER_SIZE:] | |||
| # Make sure to finish loading, make it init. | |||
| mock_data_manager._status = DataManagerStatus.INIT | |||
| mock_data_manager._detail_cache._status = DataManagerStatus.INIT.value | |||
| mock_generate_loaders.return_value = loader_dict | |||
| mock_data_manager.start_load_data(reload_interval=0) | |||
| check_loading_done(mock_data_manager) | |||
| @@ -29,9 +29,9 @@ class TestHistogram: | |||
| mocked_bucket.width = 1 | |||
| mocked_bucket.count = 1 | |||
| mocked_input.buckets = [mocked_bucket] | |||
| histogram = hist.HistogramContainer(mocked_input) | |||
| histogram.set_visual_range(max_val=1, min_val=0, bins=1) | |||
| buckets = histogram.buckets() | |||
| histogram_container = hist.HistogramContainer(mocked_input) | |||
| histogram_container.histogram.set_visual_range(max_val=1, min_val=0, bins=1) | |||
| buckets = histogram_container.buckets() | |||
| assert buckets == ((0.0, 1.0, 1),) | |||
| def test_re_sample_buckets_split_original(self): | |||
| @@ -42,9 +42,9 @@ class TestHistogram: | |||
| mocked_bucket.width = 1 | |||
| mocked_bucket.count = 1 | |||
| mocked_input.buckets = [mocked_bucket] | |||
| histogram = hist.HistogramContainer(mocked_input) | |||
| histogram.set_visual_range(max_val=1, min_val=0, bins=3) | |||
| buckets = histogram.buckets() | |||
| histogram_container = hist.HistogramContainer(mocked_input) | |||
| histogram_container.histogram.set_visual_range(max_val=1, min_val=0, bins=3) | |||
| buckets = histogram_container.buckets() | |||
| assert buckets == ((0.0, 0.3333333333333333, 1), (0.3333333333333333, 0.3333333333333333, 1), | |||
| (0.6666666666666666, 0.3333333333333333, 1)) | |||
| @@ -60,9 +60,9 @@ class TestHistogram: | |||
| mocked_bucket2.width = 1 | |||
| mocked_bucket2.count = 2 | |||
| mocked_input.buckets = [mocked_bucket, mocked_bucket2] | |||
| histogram = hist.HistogramContainer(mocked_input) | |||
| histogram.set_visual_range(max_val=3, min_val=-1, bins=4) | |||
| buckets = histogram.buckets() | |||
| histogram_container = hist.HistogramContainer(mocked_input) | |||
| histogram_container.histogram.set_visual_range(max_val=3, min_val=-1, bins=4) | |||
| buckets = histogram_container.buckets() | |||
| assert buckets == ((-1.0, 1.0, 0), (0.0, 1.0, 1), (1.0, 1.0, 2), (2.0, 1.0, 0)) | |||
| def test_re_sample_buckets_merge_bucket(self): | |||
| @@ -77,9 +77,9 @@ class TestHistogram: | |||
| mocked_bucket2.width = 1 | |||
| mocked_bucket2.count = 10 | |||
| mocked_input.buckets = [mocked_bucket, mocked_bucket2] | |||
| histogram = hist.HistogramContainer(mocked_input) | |||
| histogram.set_visual_range(max_val=3, min_val=-1, bins=5) | |||
| buckets = histogram.buckets() | |||
| histogram_container = hist.HistogramContainer(mocked_input) | |||
| histogram_container.histogram.set_visual_range(max_val=3, min_val=-1, bins=5) | |||
| buckets = histogram_container.buckets() | |||
| assert buckets == ( | |||
| (-1.0, 0.8, 0), (-0.19999999999999996, 0.8, 1), (0.6000000000000001, 0.8, 5), (1.4000000000000004, 0.8, 6), | |||
| (2.2, 0.8, 0)) | |||
| @@ -96,9 +96,9 @@ class TestHistogram: | |||
| mocked_bucket2.width = 0 | |||
| mocked_bucket2.count = 2 | |||
| mocked_input.buckets = [mocked_bucket, mocked_bucket2] | |||
| histogram = hist.HistogramContainer(mocked_input) | |||
| histogram.set_visual_range(max_val=2, min_val=0, bins=3) | |||
| buckets = histogram.buckets() | |||
| histogram_container = hist.HistogramContainer(mocked_input) | |||
| histogram_container.histogram.set_visual_range(max_val=2, min_val=0, bins=3) | |||
| buckets = histogram_container.buckets() | |||
| assert buckets == ( | |||
| (0.0, 0.6666666666666666, 1), | |||
| (0.6666666666666666, 0.6666666666666666, 3), | |||
| @@ -30,6 +30,7 @@ from mindinsight.datavisual.data_transform.ms_data_loader import MSDataLoader | |||
| from mindinsight.datavisual.data_transform.ms_data_loader import _PbParser | |||
| from mindinsight.datavisual.data_transform.events_data import TensorEvent | |||
| from mindinsight.datavisual.common.enums import PluginNameEnum | |||
| from mindinsight.utils.computing_resource_mgr import ComputingResourceManager | |||
| from ..mock import MockLogger | |||
| from ....utils.log_generators.graph_pb_generator import create_graph_pb_file | |||
| @@ -85,7 +86,7 @@ class TestMsDataLoader: | |||
| write_file(file1, SCALAR_RECORD) | |||
| ms_loader = MSDataLoader(summary_dir) | |||
| ms_loader._latest_summary_filename = 'summary.00' | |||
| ms_loader.load() | |||
| ms_loader.load(ComputingResourceManager(1, 1)) | |||
| shutil.rmtree(summary_dir) | |||
| tag = ms_loader.get_events_data().list_tags_by_plugin('scalar') | |||
| tensors = ms_loader.get_events_data().tensors(tag[0]) | |||
| @@ -98,7 +99,7 @@ class TestMsDataLoader: | |||
| file2 = os.path.join(summary_dir, 'summary.02') | |||
| write_file(file2, SCALAR_RECORD) | |||
| ms_loader = MSDataLoader(summary_dir) | |||
| ms_loader.load() | |||
| ms_loader.load(ComputingResourceManager(1, 1)) | |||
| shutil.rmtree(summary_dir) | |||
| assert 'Check crc faild and ignore this file' in str(MockLogger.log_msg['warning']) | |||
| @@ -124,7 +125,7 @@ class TestMsDataLoader: | |||
| summary_dir = tempfile.mkdtemp() | |||
| create_graph_pb_file(output_dir=summary_dir, filename=filename) | |||
| ms_loader = MSDataLoader(summary_dir) | |||
| ms_loader.load() | |||
| ms_loader.load(ComputingResourceManager(1, 1)) | |||
| events_data = ms_loader.get_events_data() | |||
| plugins = events_data.list_tags_by_plugin(PluginNameEnum.GRAPH.value) | |||
| shutil.rmtree(summary_dir) | |||
| @@ -69,7 +69,7 @@ class TestTrainTaskManager: | |||
| def load_data(self): | |||
| """Load data.""" | |||
| log_operation = LogOperations() | |||
| self._plugins_id_map = {'image': [], 'scalar': [], 'graph': [], 'histogram': []} | |||
| self._plugins_id_map = {'image': [], 'scalar': [], 'graph': [], 'histogram': [], 'tensor': []} | |||
| self._events_names = [] | |||
| self._train_id_list = [] | |||
| @@ -1,74 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Test the aicpu parser.""" | |||
| import os | |||
| import tempfile | |||
| import shutil | |||
| from unittest import TestCase | |||
| from mindinsight.profiler.parser.aicpu_data_parser import DataPreProcessParser | |||
| def get_result(file_path): | |||
| """ | |||
| Get result from the aicpu file. | |||
| Args: | |||
| file_path (str): The aicpu file path. | |||
| Returns: | |||
| list[list], the parsed aicpu information. | |||
| """ | |||
| result = [] | |||
| try: | |||
| file = open(file_path, 'r') | |||
| result.append(file.read()) | |||
| return result | |||
| finally: | |||
| if file: | |||
| file.close() | |||
| class TestAicpuParser(TestCase): | |||
| """Test the class of Aicpu Parser.""" | |||
| def setUp(self) -> None: | |||
| """Initialization before test case execution.""" | |||
| self.profiling_dir = os.path.realpath(os.path.join(os.path.dirname(__file__), | |||
| '../../../utils/resource/' | |||
| 'JOB_AICPU/data')) | |||
| self.expect_dir = os.path.realpath(os.path.join(os.path.dirname(__file__), | |||
| '../../../utils/resource/' | |||
| 'JOB_AICPU/expect')) | |||
| self.output_path = tempfile.mkdtemp(prefix='output_data_preprocess_aicpu_') | |||
| self.output_file = os.path.join(self.output_path, 'output_data_preprocess_aicpu_0.txt') | |||
| self.expect_file = os.path.join(self.expect_dir, 'output_data_preprocess_aicpu_0.txt') | |||
| def test_aicpu_parser(self): | |||
| """Test the class of Aicpu Parser.""" | |||
| data = DataPreProcessParser(self.profiling_dir, self.output_file) | |||
| data.execute() | |||
| expect_result = get_result(self.expect_file) | |||
| result = get_result(self.output_file) | |||
| shutil.rmtree(self.output_path) | |||
| assert expect_result == result | |||
| def test_aicpu_parser_file_not_exist(self): | |||
| """Test the class of Aicpu Parser.""" | |||
| profiling_dir = os.path.realpath(os.path.join(self.profiling_dir, 'data')) | |||
| data = DataPreProcessParser(profiling_dir, self.output_file) | |||
| data.execute() | |||
| shutil.rmtree(self.output_path) | |||
| @@ -1,158 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Test the framework parser module.""" | |||
| import csv | |||
| import os | |||
| import shutil | |||
| import tempfile | |||
| from unittest import mock | |||
| import pytest | |||
| from marshmallow import ValidationError | |||
| from mindinsight.profiler.common.exceptions.exceptions import \ | |||
| ProfilerPathErrorException, ProfilerDirNotFoundException, \ | |||
| ProfilerFileNotFoundException | |||
| from mindinsight.profiler.parser.framework_parser import FrameworkParser | |||
| from tests.ut.profiler import PROFILER_DIR, RAW_DATA_BASE | |||
| def get_framework_result(file_path): | |||
| """ | |||
| Get framework result from the framework file. | |||
| Args: | |||
| file_path (str): The framework file path. | |||
| Returns: | |||
| list[list], the parsed framework information. | |||
| """ | |||
| result = [] | |||
| with open(file_path, 'r') as file: | |||
| csv_reader = csv.reader(file) | |||
| for row in csv_reader: | |||
| result.append(row) | |||
| return result | |||
| class TestFrameworkParser: | |||
| """Test the class of `FrameworkParser`.""" | |||
| def setup_method(self): | |||
| """Initialization before test case execution.""" | |||
| FrameworkParser._raw_data_dir = RAW_DATA_BASE | |||
| self._output_path_1 = tempfile.mkdtemp(prefix='test_framework_parser_') | |||
| self._parser_1 = FrameworkParser('JOB1', '0', self._output_path_1) | |||
| self._output_path_2 = tempfile.mkdtemp(prefix='test_framework_parser_') | |||
| self._parser_2 = FrameworkParser('JOB2', '0', self._output_path_2) | |||
| self._output_path_4 = tempfile.mkdtemp(prefix='test_framework_parser_') | |||
| self._parser_4 = FrameworkParser('JOB4', '0', self._output_path_4) | |||
| def teardown_method(self) -> None: | |||
| """Clear up after test case execution.""" | |||
| shutil.rmtree(self._output_path_1) | |||
| shutil.rmtree(self._output_path_2) | |||
| shutil.rmtree(self._output_path_4) | |||
| FrameworkParser._raw_data_dir = '/var/log/npu/profiling' | |||
| def test_save_path(self): | |||
| """Test the querying save path function.""" | |||
| expect_result = os.path.join(self._output_path_1, 'framework_raw_0.csv') | |||
| assert expect_result == self._parser_1.save_path | |||
| expect_result = os.path.join(self._output_path_2, 'framework_raw_0.csv') | |||
| assert expect_result == self._parser_2.save_path | |||
| def test_point_info(self): | |||
| """Test the querying point info function.""" | |||
| expect_result = { | |||
| 1: 'Default/Cast-op6', | |||
| 2: 'Default/TransData-op7' | |||
| } | |||
| assert expect_result == self._parser_4.point_info | |||
| def test_to_task_id_full_op_name_dict(self): | |||
| """Test the querying task id and full operator name dict function.""" | |||
| expect_result = { | |||
| '51517': 'Default/Cast-op6', | |||
| '51518': 'Default/TransData-op7', | |||
| '51519': 'Default/network-WithLossCell/_backbone-ResNet/conv1-Conv2d/Cast-op5', | |||
| '51522': 'Default/network-WithLossCell/_backbone-ResNet/' | |||
| 'layer1-SequentialCell/0-ResidualBlock/conv1-Conv2d/Cast-op28' | |||
| } | |||
| assert expect_result == self._parser_1.to_task_id_full_op_name_dict() | |||
| assert expect_result == self._parser_2.to_task_id_full_op_name_dict() | |||
| expect_result = { | |||
| '0_1': 'Default/Cast-op6', | |||
| '0_2': 'Default/TransData-op7', | |||
| '0_3': 'Default/network-WithLossCell/_backbone-ResNet/conv1-Conv2d/Cast-op5', | |||
| '0_4': 'Default/network-WithLossCell/_backbone-ResNet/layer1-SequentialCell/' | |||
| '0-ResidualBlock/conv1-Conv2d/Cast-op28' | |||
| } | |||
| assert expect_result == self._parser_4.to_task_id_full_op_name_dict() | |||
| def test_parse(self): | |||
| """Test the parse function.""" | |||
| expect_framework_file = os.path.join(PROFILER_DIR, 'framework_raw_0.csv') | |||
| expect_framework_file = os.path.realpath(expect_framework_file) | |||
| expect_result = get_framework_result(expect_framework_file) | |||
| self._parser_1.parse() | |||
| framework_file = os.path.join(self._output_path_1, 'framework_raw_0.csv') | |||
| result = get_framework_result(framework_file) | |||
| assert expect_result == result | |||
| self._parser_2.parse() | |||
| framework_file = os.path.join(self._output_path_2, 'framework_raw_0.csv') | |||
| result = get_framework_result(framework_file) | |||
| assert expect_result == result | |||
| @mock.patch('mindinsight.profiler.parser.framework_parser.validate_and_normalize_path') | |||
| def test_create_framework_parser_fail_1(self, *args): | |||
| """Test the function of fail to create framework parser.""" | |||
| args[0].side_effect = ValidationError({'profiler': {"The path is invalid!"}}) | |||
| with pytest.raises(ProfilerPathErrorException) as exc_info: | |||
| FrameworkParser('JOB1', '0') | |||
| assert exc_info.value.error_code == '50546081' | |||
| assert exc_info.value.message == 'Path error. Profiling path is invalid.' | |||
| @mock.patch('os.path.isdir') | |||
| def test_create_framework_parser_fail_2(self, *args): | |||
| """Test the function of fail to create framework parser.""" | |||
| args[0].return_value = False | |||
| FrameworkParser._raw_data_dir = '/var/log/npu/profiling' | |||
| with pytest.raises(ProfilerDirNotFoundException) as exc_info: | |||
| FrameworkParser('JOB1', '0') | |||
| assert exc_info.value.error_code == '50546083' | |||
| assert exc_info.value.message == \ | |||
| 'The dir </var/log/npu/profiling/JOB1> not found.' | |||
| @mock.patch('os.listdir') | |||
| @mock.patch('os.path.isdir') | |||
| def test_create_framework_parser_fail_3(self, *args): | |||
| """Test the function of fail to create framework parser.""" | |||
| args[0].return_value = True | |||
| args[1].return_value = [] | |||
| FrameworkParser._raw_data_dir = '/var/log/npu/profiling' | |||
| with pytest.raises(ProfilerFileNotFoundException) as exc_info: | |||
| FrameworkParser('JOB1', '0') | |||
| assert exc_info.value.error_code == '50546084' | |||
| assert exc_info.value.message == 'The file <Framework> not found.' | |||
| @@ -1,93 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Test the minddata pipeline parser module.""" | |||
| import csv | |||
| import os | |||
| import shutil | |||
| import tempfile | |||
| from mindinsight.profiler.parser.minddata_pipeline_parser import \ | |||
| MinddataPipelineParser | |||
| from tests.ut.profiler import PROFILER_DIR, RAW_DATA, RAW_DATA_JOB2 | |||
| def get_minddata_pipeline_result(file_path): | |||
| """ | |||
| Get minddata pipeline result from the minddata pipeline file. | |||
| Args: | |||
| file_path (str): The minddata pipeline file path. | |||
| Returns: | |||
| list[list], the parsed minddata pipeline information. | |||
| """ | |||
| result = [] | |||
| with open(file_path, 'r') as file: | |||
| csv_reader = csv.reader(file) | |||
| for row in csv_reader: | |||
| result.append(row) | |||
| return result | |||
| class TestMinddataPipelineParser: | |||
| """Test the class of `MinddataPipelineParser`.""" | |||
| def setup_method(self): | |||
| """Initialization before test case execution.""" | |||
| self._output_path_1 = tempfile.mkdtemp( | |||
| prefix='test_minddata_pipeline_parser_' | |||
| ) | |||
| self._parser_1 = MinddataPipelineParser( | |||
| RAW_DATA, '0', self._output_path_1 | |||
| ) | |||
| self._output_path_2 = tempfile.mkdtemp( | |||
| prefix='test_minddata_pipeline_parser_' | |||
| ) | |||
| self._parser_2 = MinddataPipelineParser( | |||
| RAW_DATA_JOB2, '0', self._output_path_2 | |||
| ) | |||
| def teardown_method(self) -> None: | |||
| """Clear up after test case execution.""" | |||
| shutil.rmtree(self._output_path_1) | |||
| shutil.rmtree(self._output_path_2) | |||
| def test_save_path(self): | |||
| """Test the querying save path function.""" | |||
| expect_result = os.path.join( | |||
| self._output_path_1, 'minddata_pipeline_raw_0.csv' | |||
| ) | |||
| assert expect_result == self._parser_1.save_path | |||
| def test_parse(self): | |||
| """Test the parse function.""" | |||
| expect_pipeline_file = os.path.join( | |||
| PROFILER_DIR, 'minddata_pipeline_raw_0.csv' | |||
| ) | |||
| expect_result = get_minddata_pipeline_result(expect_pipeline_file) | |||
| self._parser_1.parse() | |||
| pipeline_file = os.path.join( | |||
| self._output_path_1, 'minddata_pipeline_raw_0.csv' | |||
| ) | |||
| result = get_minddata_pipeline_result(pipeline_file) | |||
| assert expect_result == result | |||
| self._parser_2.parse() | |||
| pipeline_file = os.path.join( | |||
| self._output_path_2, 'minddata_pipeline_raw_0.csv' | |||
| ) | |||
| result = get_minddata_pipeline_result(pipeline_file) | |||
| assert expect_result == result | |||
| @@ -1,14 +1,15 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Test the system metrics.""" | |||
| @@ -0,0 +1,42 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Test the metrics collector.""" | |||
| from os import cpu_count | |||
| from mindinsight.sysmetric.collector import collect_cpu, collect_mem, collect_npu | |||
| def test_collect_cpu(): | |||
| overall = collect_cpu(percent=True) | |||
| assert isinstance(overall, dict) | |||
| for value in overall.values(): | |||
| assert 0 <= value <= 100 | |||
| for key in 'user', 'system', 'idle': | |||
| assert key in overall | |||
| cores = collect_cpu(percpu=True) | |||
| assert isinstance(cores, list) and len(cores) == cpu_count() | |||
| def test_collect_mem(): | |||
| mem = collect_mem() | |||
| assert 'total' in mem | |||
| assert 'available' in mem | |||
| assert mem['total'] > mem['available'] | |||
| def test_collect_npu(): | |||
| npu = collect_npu() | |||
| if npu is not None: | |||
| assert len(npu) == 8 | |||
| @@ -0,0 +1,110 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Log generator for tensor data.""" | |||
| import time | |||
| from operator import mul | |||
| from functools import reduce | |||
| import numpy as np | |||
| from mindinsight.datavisual.proto_files import mindinsight_anf_ir_pb2 as anf_ir_pb2 | |||
| from mindinsight.datavisual.proto_files import mindinsight_summary_pb2 as summary_pb2 | |||
| from .log_generator import LogGenerator | |||
| class TensorLogGenerator(LogGenerator): | |||
| """ | |||
| Log generator for tensor data. | |||
| This is a log generator writing tensor data. User can use it to generate fake | |||
| summary logs about tensor. | |||
| """ | |||
| def generate_event(self, values): | |||
| """ | |||
| Method for generating tensor event. | |||
| Args: | |||
| values (dict): A dict contains: | |||
| { | |||
| wall_time (float): Timestamp. | |||
| step (int): Train step. | |||
| value (float): Tensor value. | |||
| tag (str): Tag name. | |||
| } | |||
| Returns: | |||
| summary_pb2.Event. | |||
| """ | |||
| tensor_event = summary_pb2.Event() | |||
| tensor_event.wall_time = values.get('wall_time') | |||
| tensor_event.step = values.get('step') | |||
| value = tensor_event.summary.value.add() | |||
| value.tag = values.get('tag') | |||
| tensor = values.get('value') | |||
| value.tensor.dims[:] = tensor.get('dims') | |||
| value.tensor.data_type = tensor.get('data_type') | |||
| value.tensor.float_data[:] = tensor.get('float_data') | |||
| print(tensor.get('float_data')) | |||
| return tensor_event | |||
| def generate_log(self, file_path, steps_list, tag_name): | |||
| """ | |||
| Generate log for external calls. | |||
| Args: | |||
| file_path (str): Path to write logs. | |||
| steps_list (list): A list consists of step. | |||
| tag_name (str): Tag name. | |||
| Returns: | |||
| list[dict], generated tensor metadata. | |||
| list, generated tensors. | |||
| """ | |||
| tensor_metadata = [] | |||
| tensor_values = dict() | |||
| for step in steps_list: | |||
| tensor = dict() | |||
| wall_time = time.time() | |||
| tensor.update({'wall_time': wall_time}) | |||
| tensor.update({'step': step}) | |||
| tensor.update({'tag': tag_name}) | |||
| dims = list(np.random.randint(1, 10, 4)) | |||
| mul_value = reduce(mul, dims) | |||
| tensor.update({'value': { | |||
| "dims": dims, | |||
| "data_type": anf_ir_pb2.DataType.DT_FLOAT32, | |||
| "float_data": np.random.randn(mul_value) | |||
| }}) | |||
| tensor_metadata.append(tensor) | |||
| tensor_values.update({step: tensor}) | |||
| self._write_log_one_step(file_path, tensor) | |||
| return tensor_metadata, tensor_values | |||
| if __name__ == "__main__": | |||
| tensor_log_generator = TensorLogGenerator() | |||
| test_file_name = '%s.%s.%s' % ('tensor', 'summary', str(time.time())) | |||
| test_steps = [1, 3, 5] | |||
| test_tag = "test_tensor_tag_name" | |||
| tensor_log_generator.generate_log(test_file_name, test_steps, test_tag) | |||
| @@ -25,12 +25,14 @@ from .log_generators.graph_log_generator import GraphLogGenerator | |||
| from .log_generators.images_log_generator import ImagesLogGenerator | |||
| from .log_generators.scalars_log_generator import ScalarsLogGenerator | |||
| from .log_generators.histogram_log_generator import HistogramLogGenerator | |||
| from .log_generators.tensor_log_generator import TensorLogGenerator | |||
| log_generators = { | |||
| PluginNameEnum.GRAPH.value: GraphLogGenerator(), | |||
| PluginNameEnum.IMAGE.value: ImagesLogGenerator(), | |||
| PluginNameEnum.SCALAR.value: ScalarsLogGenerator(), | |||
| PluginNameEnum.HISTOGRAM.value: HistogramLogGenerator() | |||
| PluginNameEnum.HISTOGRAM.value: HistogramLogGenerator(), | |||
| PluginNameEnum.TENSOR.value: TensorLogGenerator() | |||
| } | |||
| @@ -1,4 +1,8 @@ | |||
| 1 Default/Cast-op6 | |||
| 2 Default/TransData-op7 | |||
| 3 Default/network-WithLossCell/_backbone-ResNet/conv1-Conv2d/Cast-op5 | |||
| 4 Default/network-WithLossCell/_backbone-ResNet/layer1-SequentialCell/0-ResidualBlock/conv1-Conv2d/Cast-op28 | |||
| 3 Default/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/AllGather-op136 | |||
| 4 Default/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/AllGather-op136 | |||
| 5 Default/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/ReduceScatter-op145 | |||
| 6 Default/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/ReduceScatter-op145 | |||
| 7 Gradients/Default/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradReduceScatter/AllGather-op147 | |||
| 8 Gradients/Default/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradReduceScatter/AllGather-op147 | |||
| @@ -0,0 +1,200 @@ | |||
| full_op_name,execution_time | |||
| Default/AssignAdd-op414,0.001688 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op29,0.0012020000000000002 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op30,0.0013606666666666667 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op31,0.0011659999999999997 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op32,0.001116 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op33,0.9352293333333332 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op35,0.010222666666666666 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/ReduceSum-op36,0.015073333333333333 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op37,0.003832666666666666 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op34,0.001396666666666667 | |||
| Default/TransData-op216,0.006697333333333332 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Square-op38,0.009799333333333334 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Split-op39,0.09720533333333335 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Concat-op40,0.08841666666666667 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/StridedSlice-op41,0.012427333333333335 | |||
| Default/AtomicAddrClean-op418,0.001378666666666667 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceSum-op42,0.009832666666666665 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op48,0.001400666666666667 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op44,0.0014346666666666666 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Mul-op28,0.001468 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op47,0.004459333333333333 | |||
| Default/TransData-op281,0.0027733333333333334 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op46,0.004600000000000001 | |||
| Default/TransData-op278,0.004403333333333333 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op45,0.00711 | |||
| Default/TransData-op275,0.005461333333333334 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op52,0.023115999999999994 | |||
| Default/TransData-op272,0.009749333333333332 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op43,0.0013153333333333335 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op53,0.004243333333333333 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op54,0.004824666666666667 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op49,0.003735 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op50,0.0045564285714285715 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/grad_VirtualDiv/RealDiv-op51,0.004516428571428571 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op55,42.220212142857136 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op56,0.00871357142857143 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradStridedSlice/StridedSliceGrad-op57,0.15243714285714288 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op58,0.9626657142857143 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op59,1.0643285714285715 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op60,0.9675764285714286 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op61,0.9675435714285714 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op62,1.0075085714285714 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op63,0.9250400000000002 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op64,1.1294107142857144 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op65,1.0091157142857143 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSplit/Concat-op66,0.051030714285714276 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Split-op67,2.617072142857143 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Concat-op68,3.084827142857143 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/StridedSlice-op69,0.3331414285714285 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op70,0.37437785714285715 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/ReLU-op71,0.32776857142857135 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Mul-op72,0.33151499999999995 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op73,0.2518214285714286 | |||
| Default/TransData-op271,0.14980214285714283 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/MatMul-op74,0.45218500000000006 | |||
| Default/TransData-op240,0.09184714285714284 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/RealDiv-op76,0.10391071428571431 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/BiasAdd-op77,0.11015571428571427 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/ReLU-op78,0.10085142857142855 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Mul-op79,0.10943071428571426 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op80,0.04727285714285715 | |||
| Default/TransData-op274,0.03735642857142857 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/MatMul-op81,0.09832214285714284 | |||
| Default/TransData-op245,0.037176428571428576 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/RealDiv-op83,0.036798571428571424 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/BiasAdd-op84,0.04016857142857143 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/ReLU-op85,0.027936428571428574 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Mul-op86,0.039065 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op87,0.02587642857142857 | |||
| Default/TransData-op277,0.01939 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/MatMul-op88,0.03152 | |||
| Default/TransData-op250,0.020935000000000002 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/RealDiv-op90,0.025487142857142854 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/BiasAdd-op91,0.021720714285714288 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/ReLU-op92,0.016717857142857142 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Mul-op93,0.021017857142857147 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op94,0.014929999999999999 | |||
| Default/TransData-op280,0.012425714285714285 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/MatMul-op95,0.013189999999999997 | |||
| Default/TransData-op255,0.014586428571428571 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/RealDiv-op97,0.015751428571428572 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/BiasAdd-op98,0.013145 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/ReLU-op99,0.010007857142857143 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Mul-op100,0.01205 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op101,0.009261428571428571 | |||
| Default/TransData-op215,0.009404285714285714 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/MatMul-op102,0.007625 | |||
| Default/TransData-op204,0.016274285714285713 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/RealDiv-op104,0.004828571428571428 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/BiasAdd-op105,0.004472857142857142 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op106,0.003925714285714286 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/SigmoidCrossEntropyWithLogits-op107,0.004808571428571428 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op109,0.004950714285714286 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op108,0.004631428571428572 | |||
| Default/AtomicAddrClean-op425,0.0015150000000000003 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceMean-op110,0.004534999999999999 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradBiasAdd/BiasAddGrad-op112,0.0030614285714285717 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradRealDiv/RealDiv-op113,0.004547142857142856 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op111,0.0031428571428571426 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradCast/Cast-op115,0.0026614285714285715 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op114,0.027466428571428576 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op116,0.03313571428571428 | |||
| Default/TransData-op257,0.06620642857142857 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op117,0.010132142857142855 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op121,0.020947142857142855 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op119,0.009299285714285715 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op120,0.009546428571428572 | |||
| Default/AtomicAddrClean-op427,0.002937142857142857 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op123,7.355592142857143 | |||
| Default/TransData-op235,0.014415714285714283 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMul/Mul-op128,0.012212857142857145 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradReLU/ReluGrad-op131,0.02228428571428571 | |||
| Default/AtomicAddrClean-op428,0.001404285714285714 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradBiasAdd/BiasAddGrad-op134,0.008783571428571429 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradRealDiv/RealDiv-op135,0.013412857142857143 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradCast/Cast-op136,0.008197142857142856 | |||
| Default/TransData-op252,0.008572857142857142 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op138,0.029589285714285724 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op139,0.016685 | |||
| Default/TransData-op233,0.020412142857142858 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMul/Mul-op143,0.020592142857142857 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradReLU/ReluGrad-op145,0.03936785714285714 | |||
| Default/AtomicAddrClean-op429,0.0014571428571428572 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradBiasAdd/BiasAddGrad-op147,0.012325714285714285 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradRealDiv/RealDiv-op148,0.021508571428571432 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradCast/Cast-op149,0.012591428571428571 | |||
| Default/TransData-op247,0.012454999999999997 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op151,0.053485000000000005 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op152,0.03651357142857143 | |||
| Default/TransData-op231,0.03276571428571429 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMul/Mul-op156,0.037129999999999996 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradReLU/ReluGrad-op158,0.09050499999999999 | |||
| Default/AtomicAddrClean-op430,0.001497142857142857 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradBiasAdd/BiasAddGrad-op160,0.017480714285714283 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradRealDiv/RealDiv-op161,0.042566428571428575 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradCast/Cast-op162,0.02489785714285714 | |||
| Default/TransData-op242,0.019189285714285714 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op164,0.10608857142857142 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op165,0.1160064285714286 | |||
| Default/TransData-op229,0.09212928571428572 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMul/Mul-op169,0.10092642857142857 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradReLU/ReluGrad-op171,0.18744071428571424 | |||
| Default/AtomicAddrClean-op431,0.0014599999999999997 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradBiasAdd/BiasAddGrad-op173,0.030029999999999998 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradRealDiv/RealDiv-op174,0.13704571428571427 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradCast/Cast-op175,0.04649285714285715 | |||
| Default/TransData-op237,0.03681785714285714 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op177,0.42144428571428577 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op118,0.001617857142857143 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op124,0.0014600000000000001 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op178,0.5351814285714286 | |||
| Default/TransData-op284,0.32571142857142854 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMul/Mul-op182,0.3179142857142857 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradReLU/ReluGrad-op184,0.5144707142857143 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op186,0.3859778571428571 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradStridedSlice/StridedSliceGrad-op187,1.3543971428571429 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op188,1.5460985714285713 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op189,1.5340514285714286 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op190,1.540242857142857 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op191,1.5514735714285715 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op192,1.5607435714285713 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op193,1.5385385714285713 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op194,1.537682857142857 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op195,1.5342942857142856 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradSplit/Concat-op196,2.584179285714286 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op130,0.005715714285714287 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op129,0.0015964285714285716 | |||
| Default/Mul-op183,0.0016557142857142858 | |||
| Default/Mul-op170,0.0015957142857142856 | |||
| Default/Mul-op157,0.0015314285714285714 | |||
| Default/Mul-op144,0.0014735714285714285 | |||
| Default/Mul-op122,0.0012207142857142855 | |||
| Default/TransData-op206,0.02777642857142857 | |||
| Default/TransData-op208,0.008395714285714286 | |||
| Default/TransData-op210,0.006270714285714287 | |||
| Default/TransData-op212,0.003332857142857143 | |||
| Default/TransData-op214,0.0024235714285714286 | |||
| Default/Mul-op197,0.016677857142857147 | |||
| Default/Mul-op176,0.007605000000000001 | |||
| Default/Mul-op163,0.0062528571428571425 | |||
| Default/Mul-op150,0.004635 | |||
| Default/Mul-op137,0.0016078571428571429 | |||
| Default/AtomicAddrClean-op434,0.007719285714285714 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op199,37.25223428571428 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/AddN-op200,0.012836428571428572 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op201,0.010897142857142855 | |||
| Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op133,0.02319642857142857 | |||
| Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op132,0.0022571428571428573 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op185,0.003688571428571429 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op172,0.003175714285714285 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op159,0.0029478571428571436 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op146,0.0028899999999999998 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op127,0.0022257142857142853 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op198,0.133745 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op179,0.03321571428571428 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op166,0.010665 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op153,0.006292857142857143 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op140,0.002818571428571428 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op202,0.08427071428571428 | |||
| @@ -0,0 +1,30 @@ | |||
| op_type,execution_time,execution_frequency,percent | |||
| AssignAdd,0.001688,1,0.00 | |||
| Mul,1.9029486666666665347,32,1.51 | |||
| Assign,0.0024766666666666667,2,0.00 | |||
| GatherV2,43.1554414761904692,2,34.13 | |||
| ReduceSum,0.0307648571428571411,5,0.02 | |||
| TensorAdd,0.0092183809523809521,3,0.01 | |||
| Cast,0.4846848571428571735,15,0.38 | |||
| TransData,1.1151575238095237340,30,0.88 | |||
| Square,0.009799333333333334,1,0.01 | |||
| Split,2.71427747619047635,2,2.15 | |||
| Concat,5.808453809523809946,4,4.59 | |||
| StridedSlice,0.345568761904761835,2,0.27 | |||
| AtomicAddrClean,0.0193686666666666662,8,0.02 | |||
| RealDiv,0.4228071904761904831,15,0.33 | |||
| Tile,0.044158333333333339,4,0.03 | |||
| StridedSliceGrad,1.50683428571428578,2,1.19 | |||
| Slice,20.3763149999999997,16,16.12 | |||
| ReLU,0.483282142857142759,5,0.38 | |||
| MatMul,1.936681428571428733,15,1.53 | |||
| BiasAdd,0.189662857142857130,5,0.15 | |||
| SigmoidCrossEntropyWithLogits,0.004808571428571428,1,0.00 | |||
| SigmoidCrossEntropyWithLogitsGrad,0.009582142857142858,2,0.01 | |||
| ReduceMean,0.004534999999999999,1,0.00 | |||
| BiasAddGrad,0.0716814285714285667,5,0.06 | |||
| UnsortedSegmentSum,44.607826428571423,2,35.28 | |||
| ReluGrad,0.85406857142857138,5,0.68 | |||
| AddN,0.012836428571428572,1,0.01 | |||
| ApplyFtrl,0.0254535714285714273,2,0.02 | |||
| Adam,0.2859357142857142737,11,0.23 | |||
| @@ -0,0 +1,200 @@ | |||
| task_id,stream_id,block_dim,full_op_name,op_name,op_type,subgraph,op_info | |||
| 30092,3,1,Default/AssignAdd-op414,AssignAdd-op414,AssignAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""1""}}" | |||
| 30093,3,1,Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op29,Mul-op29,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||
| 30094,3,1,Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op30,Assign-op30,Assign,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||
| 30095,3,1,Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op31,Mul-op31,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||
| 30096,3,1,Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op32,Assign-op32,Assign,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||
| 30103,3,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op33,GatherV2-op33,GatherV2,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""16000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}}" | |||
| 30104,3,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op35,Mul-op35,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}}" | |||
| 30105,3,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/ReduceSum-op36,ReduceSum-op36,ReduceSum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||
| 30106,3,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op37,TensorAdd-op37,TensorAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||
| 30107,3,1,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op34,Cast-op34,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""128,1""}}" | |||
| 30108,3,8,Default/TransData-op216,TransData-op216,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""128,1""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,8,16,16""}}" | |||
| 30109,3,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Square-op38,Square-op38,Square,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 30453,7,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Split-op39,Split-op39,Split,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1477568,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 30454,7,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Concat-op40,Concat-op40,Concat,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}}" | |||
| 30455,7,22,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/StridedSlice-op41,StridedSlice-op41,StridedSlice,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""23087,64""}}" | |||
| 30456,7,1,Default/AtomicAddrClean-op418,AtomicAddrClean-op418,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||
| 30457,7,33,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceSum-op42,ReduceSum-op42,ReduceSum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""23087,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||
| 30646,9,1,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op48,ReduceSum-op48,ReduceSum,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||
| 30837,11,1,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op44,RealDiv-op44,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||
| 30838,11,1,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Mul-op28,Mul-op28,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||
| 30839,11,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op47,Cast-op47,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""256,128""}}" | |||
| 30840,11,16,Default/TransData-op281,TransData-op281,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""256,128""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,16,16,16""}}" | |||
| 30841,11,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op46,Cast-op46,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""512,256""}}" | |||
| 30842,11,32,Default/TransData-op278,TransData-op278,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""512,256""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,32,16,16""}}" | |||
| 30843,11,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op45,Cast-op45,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1024,512""}}" | |||
| 30844,11,32,Default/TransData-op275,TransData-op275,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1024,512""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,64,16,16""}}" | |||
| 30845,11,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op52,Cast-op52,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""2496,1024""}}" | |||
| 30846,11,32,Default/TransData-op272,TransData-op272,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""2496,1024""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,156,16,16""}}" | |||
| 30847,11,1,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op43,ReduceSum-op43,ReduceSum,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||
| 31038,13,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op53,Tile-op53,Tile,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||
| 31039,13,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op54,RealDiv-op54,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||
| 31231,15,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op49,Tile-op49,Tile,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||
| 31232,15,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op50,RealDiv-op50,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||
| 31233,15,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/grad_VirtualDiv/RealDiv-op51,RealDiv-op51,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||
| 31236,15,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op55,GatherV2-op55,GatherV2,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""128000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||
| 31409,17,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op56,Tile-op56,Tile,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""23087,64""}}" | |||
| 31410,17,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradStridedSlice/StridedSliceGrad-op57,StridedSliceGrad-op57,StridedSliceGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""23087,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}}" | |||
| 31411,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op58,Slice-op58,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 31412,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op59,Slice-op59,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 31413,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op60,Slice-op60,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 31414,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op61,Slice-op61,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 31415,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op62,Slice-op62,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 31416,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op63,Slice-op63,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 31417,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op64,Slice-op64,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 31418,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op65,Slice-op65,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 31419,17,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSplit/Concat-op66,Concat-op66,Concat,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1477568,8""}}" | |||
| 31598,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Split-op67,Split-op67,Split,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024000,39,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||
| 31599,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Concat-op68,Concat-op68,Concat,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}}" | |||
| 31600,19,15,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/StridedSlice-op69,StridedSlice-op69,StridedSlice,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}}" | |||
| 31601,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op70,Mul-op70,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}}" | |||
| 31602,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/ReLU-op71,ReLU-op71,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}}" | |||
| 31603,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Mul-op72,Mul-op72,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}}" | |||
| 31604,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op73,Cast-op73,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,2496""}}" | |||
| 31605,19,32,Default/TransData-op271,TransData-op271,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,2496""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""156,1000,16,16""}}" | |||
| 31606,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/MatMul-op74,MatMul-op74,MatMul,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""156,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,156,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,1000,16,16""}}" | |||
| 31607,19,32,Default/TransData-op240,TransData-op240,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||
| 31608,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/RealDiv-op76,RealDiv-op76,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||
| 31609,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/BiasAdd-op77,BiasAdd-op77,BiasAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||
| 31610,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/ReLU-op78,ReLU-op78,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||
| 31611,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Mul-op79,Mul-op79,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||
| 31612,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op80,Cast-op80,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1024""}}" | |||
| 31613,19,32,Default/TransData-op274,TransData-op274,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}}" | |||
| 31614,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/MatMul-op81,MatMul-op81,MatMul,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,64,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1000,16,16""}}" | |||
| 31615,19,32,Default/TransData-op245,TransData-op245,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||
| 31616,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/RealDiv-op83,RealDiv-op83,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||
| 31617,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/BiasAdd-op84,BiasAdd-op84,BiasAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||
| 31618,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/ReLU-op85,ReLU-op85,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||
| 31619,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Mul-op86,Mul-op86,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||
| 31620,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op87,Cast-op87,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,512""}}" | |||
| 31621,19,32,Default/TransData-op277,TransData-op277,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}}" | |||
| 31622,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/MatMul-op88,MatMul-op88,MatMul,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,32,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,1000,16,16""}}" | |||
| 31623,19,32,Default/TransData-op250,TransData-op250,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||
| 31624,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/RealDiv-op90,RealDiv-op90,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||
| 31625,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/BiasAdd-op91,BiasAdd-op91,BiasAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||
| 31626,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/ReLU-op92,ReLU-op92,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||
| 31627,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Mul-op93,Mul-op93,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||
| 31628,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op94,Cast-op94,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,256""}}" | |||
| 31629,19,32,Default/TransData-op280,TransData-op280,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}}" | |||
| 31630,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/MatMul-op95,MatMul-op95,MatMul,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,16,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,1000,16,16""}}" | |||
| 31631,19,32,Default/TransData-op255,TransData-op255,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||
| 31632,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/RealDiv-op97,RealDiv-op97,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||
| 31633,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/BiasAdd-op98,BiasAdd-op98,BiasAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||
| 31634,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/ReLU-op99,ReLU-op99,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||
| 31635,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Mul-op100,Mul-op100,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||
| 31636,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op101,Cast-op101,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,128""}}" | |||
| 31637,19,32,Default/TransData-op215,TransData-op215,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}}" | |||
| 31638,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/MatMul-op102,MatMul-op102,MatMul,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,8,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1,1000,16,16""}}" | |||
| 31639,19,32,Default/TransData-op204,TransData-op204,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||
| 31640,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/RealDiv-op104,RealDiv-op104,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||
| 31641,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/BiasAdd-op105,BiasAdd-op105,BiasAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||
| 31642,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op106,TensorAdd-op106,TensorAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||
| 31643,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/SigmoidCrossEntropyWithLogits-op107,SigmoidCrossEntropyWithLogits-op107,SigmoidCrossEntropyWithLogits,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||
| 31644,19,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op109,SigmoidCrossEntropyWithLogitsGrad-op109,SigmoidCrossEntropyWithLogitsGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||
| 31645,19,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op108,SigmoidCrossEntropyWithLogitsGrad-op108,SigmoidCrossEntropyWithLogitsGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||
| 31646,19,1,Default/AtomicAddrClean-op425,AtomicAddrClean-op425,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||
| 31647,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceMean-op110,ReduceMean-op110,ReduceMean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||
| 31648,19,1,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradBiasAdd/BiasAddGrad-op112,BiasAddGrad-op112,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||
| 31649,19,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradRealDiv/RealDiv-op113,RealDiv-op113,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||
| 31650,19,1,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op111,ReduceSum-op111,ReduceSum,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||
| 31839,21,16,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradCast/Cast-op115,Cast-op115,Cast,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1""}}" | |||
| 31840,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op114,Tile-op114,Tile,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}}" | |||
| 31843,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op116,Mul-op116,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 31844,21,32,Default/TransData-op257,TransData-op257,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,1000,16,16""}}" | |||
| 31845,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op117,Mul-op117,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}}" | |||
| 31846,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op121,Mul-op121,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 31847,21,8,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op119,MatMul-op119,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,1000,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1,8,16,16""}}" | |||
| 31848,21,63,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op120,MatMul-op120,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,8,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,1000,16,16""}}" | |||
| 31849,21,16,Default/AtomicAddrClean-op427,AtomicAddrClean-op427,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}}" | |||
| 31850,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op123,UnsortedSegmentSum-op123,UnsortedSegmentSum,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""16000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}}" | |||
| 31851,21,32,Default/TransData-op235,TransData-op235,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||
| 31852,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMul/Mul-op128,Mul-op128,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||
| 31853,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradReLU/ReluGrad-op131,ReluGrad-op131,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||
| 31854,21,1,Default/AtomicAddrClean-op428,AtomicAddrClean-op428,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}}" | |||
| 31855,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradBiasAdd/BiasAddGrad-op134,BiasAddGrad-op134,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}}" | |||
| 31856,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradRealDiv/RealDiv-op135,RealDiv-op135,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||
| 31857,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradCast/Cast-op136,Cast-op136,Cast,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,128""}}" | |||
| 31858,21,32,Default/TransData-op252,TransData-op252,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}}" | |||
| 31859,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op138,MatMul-op138,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,16,16,16""}}" | |||
| 31860,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op139,MatMul-op139,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,16,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,1000,16,16""}}" | |||
| 31861,21,32,Default/TransData-op233,TransData-op233,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||
| 31862,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMul/Mul-op143,Mul-op143,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||
| 31863,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradReLU/ReluGrad-op145,ReluGrad-op145,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||
| 31864,21,1,Default/AtomicAddrClean-op429,AtomicAddrClean-op429,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}}" | |||
| 31865,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradBiasAdd/BiasAddGrad-op147,BiasAddGrad-op147,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}}" | |||
| 31866,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradRealDiv/RealDiv-op148,RealDiv-op148,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||
| 31867,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradCast/Cast-op149,Cast-op149,Cast,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,256""}}" | |||
| 31868,21,32,Default/TransData-op247,TransData-op247,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}}" | |||
| 31869,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op151,MatMul-op151,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,32,16,16""}}" | |||
| 31870,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op152,MatMul-op152,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,32,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1000,16,16""}}" | |||
| 31871,21,32,Default/TransData-op231,TransData-op231,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||
| 31872,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMul/Mul-op156,Mul-op156,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||
| 31873,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradReLU/ReluGrad-op158,ReluGrad-op158,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||
| 31874,21,1,Default/AtomicAddrClean-op430,AtomicAddrClean-op430,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}}" | |||
| 31875,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradBiasAdd/BiasAddGrad-op160,BiasAddGrad-op160,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}}" | |||
| 31876,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradRealDiv/RealDiv-op161,RealDiv-op161,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||
| 31877,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradCast/Cast-op162,Cast-op162,Cast,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,512""}}" | |||
| 31878,21,32,Default/TransData-op242,TransData-op242,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}}" | |||
| 31879,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op164,MatMul-op164,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,64,16,16""}}" | |||
| 31880,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op165,MatMul-op165,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,64,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,1000,16,16""}}" | |||
| 31881,21,32,Default/TransData-op229,TransData-op229,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||
| 31882,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMul/Mul-op169,Mul-op169,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||
| 31883,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradReLU/ReluGrad-op171,ReluGrad-op171,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||
| 31884,21,1,Default/AtomicAddrClean-op431,AtomicAddrClean-op431,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}}" | |||
| 31885,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradBiasAdd/BiasAddGrad-op173,BiasAddGrad-op173,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}}" | |||
| 31886,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradRealDiv/RealDiv-op174,RealDiv-op174,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||
| 31887,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradCast/Cast-op175,Cast-op175,Cast,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1024""}}" | |||
| 31888,21,32,Default/TransData-op237,TransData-op237,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}}" | |||
| 31889,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op177,MatMul-op177,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""156,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,156,16,16""}}" | |||
| 32218,23,1,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op118,RealDiv-op118,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||
| 32219,23,1,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op124,TensorAdd-op124,TensorAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||
| 32220,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op178,MatMul-op178,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,156,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""156,1000,16,16""}}" | |||
| 32221,23,32,Default/TransData-op284,TransData-op284,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""156,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}}" | |||
| 32222,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMul/Mul-op182,Mul-op182,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}}" | |||
| 32223,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradReLU/ReluGrad-op184,ReluGrad-op184,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}}" | |||
| 32224,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op186,Mul-op186,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}}" | |||
| 32225,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradStridedSlice/StridedSliceGrad-op187,StridedSliceGrad-op187,StridedSliceGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}}" | |||
| 32226,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op188,Slice-op188,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||
| 32227,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op189,Slice-op189,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||
| 32228,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op190,Slice-op190,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||
| 32229,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op191,Slice-op191,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||
| 32230,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op192,Slice-op192,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||
| 32231,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op193,Slice-op193,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||
| 32232,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op194,Slice-op194,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||
| 32233,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op195,Slice-op195,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||
| 32234,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradSplit/Concat-op196,Concat-op196,Concat,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024000,39,8""}}" | |||
| 32414,25,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op130,Mul-op130,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}}" | |||
| 32415,25,1,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op129,Mul-op129,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||
| 32416,25,2,Default/Mul-op183,Mul-op183,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}}" | |||
| 32417,25,1,Default/Mul-op170,Mul-op170,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}}" | |||
| 32418,25,1,Default/Mul-op157,Mul-op157,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}}" | |||
| 32419,25,1,Default/Mul-op144,Mul-op144,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}}" | |||
| 32420,25,1,Default/Mul-op122,Mul-op122,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||
| 32421,25,32,Default/TransData-op206,TransData-op206,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,156,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}}" | |||
| 32422,25,32,Default/TransData-op208,TransData-op208,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,64,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}}" | |||
| 32423,25,32,Default/TransData-op210,TransData-op210,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,32,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}}" | |||
| 32424,25,16,Default/TransData-op212,TransData-op212,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,16,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}}" | |||
| 32425,25,8,Default/TransData-op214,TransData-op214,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1,8,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}}" | |||
| 32426,25,32,Default/Mul-op197,Mul-op197,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}}" | |||
| 32427,25,32,Default/Mul-op176,Mul-op176,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}}" | |||
| 32428,25,32,Default/Mul-op163,Mul-op163,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}}" | |||
| 32429,25,32,Default/Mul-op150,Mul-op150,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}}" | |||
| 32430,25,1,Default/Mul-op137,Mul-op137,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}}" | |||
| 32431,25,31,Default/AtomicAddrClean-op434,AtomicAddrClean-op434,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 32434,25,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op199,UnsortedSegmentSum-op199,UnsortedSegmentSum,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""128000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 32435,25,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/AddN-op200,AddN-op200,AddN,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 32436,25,32,Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op201,Mul-op201,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| 32437,25,29,Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op133,ApplyFtrl-op133,ApplyFtrl,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}}" | |||
| 32438,25,1,Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op132,ApplyFtrl-op132,ApplyFtrl,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||
| 32439,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op185,Adam-op185,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}}" | |||
| 32440,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op172,Adam-op172,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}}" | |||
| 32441,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op159,Adam-op159,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}}" | |||
| 32442,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op146,Adam-op146,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}}" | |||
| 32443,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op127,Adam-op127,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||
| 32444,25,32,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op198,Adam-op198,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}}" | |||
| 32445,25,31,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op179,Adam-op179,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}}" | |||
| 32446,25,31,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op166,Adam-op166,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}}" | |||
| 32447,25,16,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op153,Adam-op153,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}}" | |||
| 32448,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op140,Adam-op140,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}}" | |||
| 32449,25,31,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op202,Adam-op202,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||
| @@ -0,0 +1 @@ | |||
| 43806841592.0 | |||
| @@ -0,0 +1,5 @@ | |||
| op_id,op_type,num_workers,output_queue_size,output_queue_average_size,output_queue_length,output_queue_usage_rate,sample_interval,parent_id,children_id | |||
| 0,Batch,4,,,,,10,,[1] | |||
| 1,Shuffle,1,"[10, 20, 30]",20.0,64,0.3125,10,0,"[2, 3]" | |||
| 2,TFReader,4,"[10, 20, 30]",20.0,64,0.3125,10,1, | |||
| 3,TFReader,4,"[10, 20, 30]",20.0,64,0.3125,10,1, | |||
| @@ -0,0 +1,203 @@ | |||
| ====================op compute time==================== | |||
| op_name compute_time(ms) stream_id | |||
| ------------ --------------- --------- | |||
| Default/AssignAdd-op414 0.001688 519 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op29 0.0012020000000000002 519 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op30 0.0013606666666666667 519 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op31 0.0011659999999999997 519 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op32 0.001116 519 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op33 0.9352293333333332 519 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op35 0.010222666666666666 519 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/ReduceSum-op36 0.015073333333333333 519 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op37 0.003832666666666666 519 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op34 0.001396666666666667 519 | |||
| Default/TransData-op216 0.006697333333333332 519 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Square-op38 0.009799333333333334 519 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Split-op39 0.09720533333333335 523 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Concat-op40 0.08841666666666667 523 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/StridedSlice-op41 0.012427333333333335 523 | |||
| Default/AtomicAddrClean-op418 0.001378666666666667 523 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceSum-op42 0.009832666666666665 523 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op48 0.001400666666666667 525 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op44 0.0014346666666666666 527 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Mul-op28 0.001468 527 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op47 0.004459333333333333 527 | |||
| Default/TransData-op281 0.0027733333333333334 527 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op46 0.004600000000000001 527 | |||
| Default/TransData-op278 0.004403333333333333 527 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op45 0.00711 527 | |||
| Default/TransData-op275 0.005461333333333334 527 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op52 0.023115999999999994 527 | |||
| Default/TransData-op272 0.009749333333333332 527 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op43 0.0013153333333333335 527 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op53 0.004243333333333333 529 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op54 0.004824666666666667 529 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op49 0.003735 531 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op50 0.0045564285714285715 531 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/grad_VirtualDiv/RealDiv-op51 0.004516428571428571 531 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op55 42.220212142857136 531 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op56 0.00871357142857143 533 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradStridedSlice/StridedSliceGrad-op57 0.15243714285714288 533 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op58 0.9626657142857143 533 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op59 1.0643285714285715 533 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op60 0.9675764285714286 533 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op61 0.9675435714285714 533 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op62 1.0075085714285714 533 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op63 0.9250400000000002 533 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op64 1.1294107142857144 533 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op65 1.0091157142857143 533 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSplit/Concat-op66 0.051030714285714276 533 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Split-op67 2.617072142857143 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Concat-op68 3.084827142857143 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/StridedSlice-op69 0.3331414285714285 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op70 0.37437785714285715 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/ReLU-op71 0.32776857142857135 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Mul-op72 0.33151499999999995 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op73 0.2518214285714286 535 | |||
| Default/TransData-op271 0.14980214285714283 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/MatMul-op74 0.45218500000000006 535 | |||
| Default/TransData-op240 0.09184714285714284 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/RealDiv-op76 0.10391071428571431 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/BiasAdd-op77 0.11015571428571427 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/ReLU-op78 0.10085142857142855 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Mul-op79 0.10943071428571426 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op80 0.04727285714285715 535 | |||
| Default/TransData-op274 0.03735642857142857 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/MatMul-op81 0.09832214285714284 535 | |||
| Default/TransData-op245 0.037176428571428576 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/RealDiv-op83 0.036798571428571424 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/BiasAdd-op84 0.04016857142857143 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/ReLU-op85 0.027936428571428574 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Mul-op86 0.039065 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op87 0.02587642857142857 535 | |||
| Default/TransData-op277 0.01939 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/MatMul-op88 0.03152 535 | |||
| Default/TransData-op250 0.020935000000000002 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/RealDiv-op90 0.025487142857142854 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/BiasAdd-op91 0.021720714285714288 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/ReLU-op92 0.016717857142857142 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Mul-op93 0.021017857142857147 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op94 0.014929999999999999 535 | |||
| Default/TransData-op280 0.012425714285714285 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/MatMul-op95 0.013189999999999997 535 | |||
| Default/TransData-op255 0.014586428571428571 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/RealDiv-op97 0.015751428571428572 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/BiasAdd-op98 0.013145 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/ReLU-op99 0.010007857142857143 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Mul-op100 0.01205 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op101 0.009261428571428571 535 | |||
| Default/TransData-op215 0.009404285714285714 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/MatMul-op102 0.007625 535 | |||
| Default/TransData-op204 0.016274285714285713 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/RealDiv-op104 0.004828571428571428 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/BiasAdd-op105 0.004472857142857142 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op106 0.003925714285714286 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/SigmoidCrossEntropyWithLogits-op107 0.004808571428571428 535 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op109 0.004950714285714286 535 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op108 0.004631428571428572 535 | |||
| Default/AtomicAddrClean-op425 0.0015150000000000003 535 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceMean-op110 0.004534999999999999 535 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradBiasAdd/BiasAddGrad-op112 0.0030614285714285717 535 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradRealDiv/RealDiv-op113 0.004547142857142856 535 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op111 0.0031428571428571426 535 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradCast/Cast-op115 0.0026614285714285715 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op114 0.027466428571428576 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op116 0.03313571428571428 537 | |||
| Default/TransData-op257 0.06620642857142857 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op117 0.010132142857142855 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op121 0.020947142857142855 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op119 0.009299285714285715 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op120 0.009546428571428572 537 | |||
| Default/AtomicAddrClean-op427 0.002937142857142857 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op123 7.355592142857143 537 | |||
| Default/TransData-op235 0.014415714285714283 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMul/Mul-op128 0.012212857142857145 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradReLU/ReluGrad-op131 0.02228428571428571 537 | |||
| Default/AtomicAddrClean-op428 0.001404285714285714 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradBiasAdd/BiasAddGrad-op134 0.008783571428571429 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradRealDiv/RealDiv-op135 0.013412857142857143 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradCast/Cast-op136 0.008197142857142856 537 | |||
| Default/TransData-op252 0.008572857142857142 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op138 0.029589285714285724 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op139 0.016685 537 | |||
| Default/TransData-op233 0.020412142857142858 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMul/Mul-op143 0.020592142857142857 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradReLU/ReluGrad-op145 0.03936785714285714 537 | |||
| Default/AtomicAddrClean-op429 0.0014571428571428572 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradBiasAdd/BiasAddGrad-op147 0.012325714285714285 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradRealDiv/RealDiv-op148 0.021508571428571432 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradCast/Cast-op149 0.012591428571428571 537 | |||
| Default/TransData-op247 0.012454999999999997 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op151 0.053485000000000005 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op152 0.03651357142857143 537 | |||
| Default/TransData-op231 0.03276571428571429 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMul/Mul-op156 0.037129999999999996 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradReLU/ReluGrad-op158 0.09050499999999999 537 | |||
| Default/AtomicAddrClean-op430 0.001497142857142857 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradBiasAdd/BiasAddGrad-op160 0.017480714285714283 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradRealDiv/RealDiv-op161 0.042566428571428575 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradCast/Cast-op162 0.02489785714285714 537 | |||
| Default/TransData-op242 0.019189285714285714 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op164 0.10608857142857142 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op165 0.1160064285714286 537 | |||
| Default/TransData-op229 0.09212928571428572 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMul/Mul-op169 0.10092642857142857 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradReLU/ReluGrad-op171 0.18744071428571424 537 | |||
| Default/AtomicAddrClean-op431 0.0014599999999999997 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradBiasAdd/BiasAddGrad-op173 0.030029999999999998 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradRealDiv/RealDiv-op174 0.13704571428571427 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradCast/Cast-op175 0.04649285714285715 537 | |||
| Default/TransData-op237 0.03681785714285714 537 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op177 0.42144428571428577 537 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op118 0.001617857142857143 539 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op124 0.0014600000000000001 539 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op178 0.5351814285714286 539 | |||
| Default/TransData-op284 0.32571142857142854 539 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMul/Mul-op182 0.3179142857142857 539 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradReLU/ReluGrad-op184 0.5144707142857143 539 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op186 0.3859778571428571 539 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradStridedSlice/StridedSliceGrad-op187 1.3543971428571429 539 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op188 1.5460985714285713 539 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op189 1.5340514285714286 539 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op190 1.540242857142857 539 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op191 1.5514735714285715 539 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op192 1.5607435714285713 539 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op193 1.5385385714285713 539 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op194 1.537682857142857 539 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op195 1.5342942857142856 539 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradSplit/Concat-op196 2.584179285714286 539 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op130 0.005715714285714287 541 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op129 0.0015964285714285716 541 | |||
| Default/Mul-op183 0.0016557142857142858 541 | |||
| Default/Mul-op170 0.0015957142857142856 541 | |||
| Default/Mul-op157 0.0015314285714285714 541 | |||
| Default/Mul-op144 0.0014735714285714285 541 | |||
| Default/Mul-op122 0.0012207142857142855 541 | |||
| Default/TransData-op206 0.02777642857142857 541 | |||
| Default/TransData-op208 0.008395714285714286 541 | |||
| Default/TransData-op210 0.006270714285714287 541 | |||
| Default/TransData-op212 0.003332857142857143 541 | |||
| Default/TransData-op214 0.0024235714285714286 541 | |||
| Default/Mul-op197 0.016677857142857147 541 | |||
| Default/Mul-op176 0.007605000000000001 541 | |||
| Default/Mul-op163 0.0062528571428571425 541 | |||
| Default/Mul-op150 0.004635 541 | |||
| Default/Mul-op137 0.0016078571428571429 541 | |||
| Default/AtomicAddrClean-op434 0.007719285714285714 541 | |||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op199 37.25223428571428 541 | |||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/AddN-op200 0.012836428571428572 541 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op201 0.010897142857142855 541 | |||
| Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op133 0.02319642857142857 541 | |||
| Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op132 0.0022571428571428573 541 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op185 0.003688571428571429 541 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op172 0.003175714285714285 541 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op159 0.0029478571428571436 541 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op146 0.0028899999999999998 541 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op127 0.0022257142857142853 541 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op198 0.133745 541 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op179 0.03321571428571428 541 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op166 0.010665 541 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op153 0.006292857142857143 541 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op140 0.002818571428571428 541 | |||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op202 0.08427071428571428 541 | |||
| total op 126.43631757142849 0 | |||
| @@ -0,0 +1,705 @@ | |||
| ====================op compute time==================== | |||
| optype_name compute_time(ms, per-step) called_times(per-step) percent | |||
| --------------------------------- ---------------------------- ------------------------ --------- | |||
| UnsortedSegmentSum 44.6078 2 35.28 | |||
| GatherV2 43.1554 2 34.13 | |||
| Slice 20.3763 16 16.12 | |||
| Concat 5.80845 4 4.59 | |||
| Split 2.71428 2 2.15 | |||
| MatMul 1.93668 15 1.53 | |||
| Mul 1.90295 32 1.51 | |||
| StridedSliceGrad 1.50683 2 1.19 | |||
| TransData 1.11516 30 0.88 | |||
| ReluGrad 0.854069 5 0.68 | |||
| Cast 0.484685 15 0.38 | |||
| ReLU 0.483282 5 0.38 | |||
| RealDiv 0.422807 15 0.33 | |||
| StridedSlice 0.345569 2 0.27 | |||
| Adam 0.285936 11 0.23 | |||
| BiasAdd 0.189663 5 0.15 | |||
| BiasAddGrad 0.071681 5 0.06 | |||
| Tile 0.044158 4 0.03 | |||
| ReduceSum 0.030765 5 0.02 | |||
| ApplyFtrl 0.025454 2 0.02 | |||
| AtomicAddrClean 0.019369 8 0.02 | |||
| AddN 0.012836 1 0.01 | |||
| Square 0.009799 1 0.01 | |||
| SigmoidCrossEntropyWithLogitsGrad 0.009582 2 0.01 | |||
| TensorAdd 0.009218 3 0.01 | |||
| SigmoidCrossEntropyWithLogits 0.004809 1 0 | |||
| ReduceMean 0.004535 1 0 | |||
| Assign 0.002477 2 0 | |||
| AssignAdd 0.001688 1 0 | |||
| Detail: | |||
| op_name op_type avg_execution_time subgraph | |||
| --------------------------------------- --------------------------------- -------------------- ---------- | |||
| UnsortedSegmentSum-op199 UnsortedSegmentSum 37.2522 Gradients | |||
| UnsortedSegmentSum-op123 UnsortedSegmentSum 7.35559 Gradients | |||
| GatherV2-op55 GatherV2 42.2202 Default | |||
| GatherV2-op33 GatherV2 0.935229 Default | |||
| Slice-op192 Slice 1.56074 Gradients | |||
| Slice-op191 Slice 1.55147 Gradients | |||
| Slice-op188 Slice 1.5461 Gradients | |||
| Slice-op190 Slice 1.54024 Gradients | |||
| Slice-op193 Slice 1.53854 Gradients | |||
| Slice-op194 Slice 1.53768 Gradients | |||
| Slice-op195 Slice 1.53429 Gradients | |||
| Slice-op189 Slice 1.53405 Gradients | |||
| Slice-op64 Slice 1.12941 Gradients | |||
| Slice-op59 Slice 1.06433 Gradients | |||
| Slice-op65 Slice 1.00912 Gradients | |||
| Slice-op62 Slice 1.00751 Gradients | |||
| Slice-op60 Slice 0.967576 Gradients | |||
| Slice-op61 Slice 0.967544 Gradients | |||
| Slice-op58 Slice 0.962666 Gradients | |||
| Slice-op63 Slice 0.92504 Gradients | |||
| Concat-op68 Concat 3.08483 Default | |||
| Concat-op196 Concat 2.58418 Gradients | |||
| Concat-op40 Concat 0.0884167 Default | |||
| Concat-op66 Concat 0.0510307 Gradients | |||
| Split-op67 Split 2.61707 Default | |||
| Split-op39 Split 0.0972053 Default | |||
| MatMul-op178 MatMul 0.535181 Gradients | |||
| MatMul-op74 MatMul 0.452185 Default | |||
| MatMul-op177 MatMul 0.421444 Gradients | |||
| MatMul-op165 MatMul 0.116006 Gradients | |||
| MatMul-op164 MatMul 0.106089 Gradients | |||
| MatMul-op81 MatMul 0.0983221 Default | |||
| MatMul-op151 MatMul 0.053485 Gradients | |||
| MatMul-op152 MatMul 0.0365136 Gradients | |||
| MatMul-op88 MatMul 0.03152 Default | |||
| MatMul-op138 MatMul 0.0295893 Gradients | |||
| MatMul-op139 MatMul 0.016685 Gradients | |||
| MatMul-op95 MatMul 0.01319 Default | |||
| MatMul-op120 MatMul 0.00954643 Gradients | |||
| MatMul-op119 MatMul 0.00929929 Gradients | |||
| MatMul-op102 MatMul 0.007625 Default | |||
| Mul-op186 Mul 0.385978 Gradients | |||
| Mul-op70 Mul 0.374378 Default | |||
| Mul-op72 Mul 0.331515 Default | |||
| Mul-op182 Mul 0.317914 Gradients | |||
| Mul-op79 Mul 0.109431 Default | |||
| Mul-op169 Mul 0.100926 Gradients | |||
| Mul-op86 Mul 0.039065 Default | |||
| Mul-op156 Mul 0.03713 Gradients | |||
| Mul-op116 Mul 0.0331357 Gradients | |||
| Mul-op93 Mul 0.0210179 Default | |||
| Mul-op121 Mul 0.0209471 Gradients | |||
| Mul-op143 Mul 0.0205921 Gradients | |||
| Mul-op197 Mul 0.0166779 Default | |||
| Mul-op128 Mul 0.0122129 Gradients | |||
| Mul-op100 Mul 0.01205 Default | |||
| Mul-op201 Mul 0.0108971 Default | |||
| Mul-op35 Mul 0.0102227 Default | |||
| Mul-op117 Mul 0.0101321 Gradients | |||
| Mul-op176 Mul 0.007605 Default | |||
| Mul-op163 Mul 0.00625286 Default | |||
| Mul-op130 Mul 0.00571571 Gradients | |||
| Mul-op150 Mul 0.004635 Default | |||
| Mul-op183 Mul 0.00165571 Default | |||
| Mul-op137 Mul 0.00160786 Default | |||
| Mul-op129 Mul 0.00159643 Gradients | |||
| Mul-op170 Mul 0.00159571 Default | |||
| Mul-op157 Mul 0.00153143 Default | |||
| Mul-op144 Mul 0.00147357 Default | |||
| Mul-op28 Mul 0.001468 Default | |||
| Mul-op122 Mul 0.00122071 Default | |||
| Mul-op29 Mul 0.001202 Default | |||
| Mul-op31 Mul 0.001166 Default | |||
| StridedSliceGrad-op187 StridedSliceGrad 1.3544 Gradients | |||
| StridedSliceGrad-op57 StridedSliceGrad 0.152437 Gradients | |||
| TransData-op284 TransData 0.325711 Default | |||
| TransData-op271 TransData 0.149802 Default | |||
| TransData-op229 TransData 0.0921293 Default | |||
| TransData-op240 TransData 0.0918471 Default | |||
| TransData-op257 TransData 0.0662064 Default | |||
| TransData-op274 TransData 0.0373564 Default | |||
| TransData-op245 TransData 0.0371764 Default | |||
| TransData-op237 TransData 0.0368179 Default | |||
| TransData-op231 TransData 0.0327657 Default | |||
| TransData-op206 TransData 0.0277764 Default | |||
| TransData-op250 TransData 0.020935 Default | |||
| TransData-op233 TransData 0.0204121 Default | |||
| TransData-op277 TransData 0.01939 Default | |||
| TransData-op242 TransData 0.0191893 Default | |||
| TransData-op204 TransData 0.0162743 Default | |||
| TransData-op255 TransData 0.0145864 Default | |||
| TransData-op235 TransData 0.0144157 Default | |||
| TransData-op247 TransData 0.012455 Default | |||
| TransData-op280 TransData 0.0124257 Default | |||
| TransData-op272 TransData 0.00974933 Default | |||
| TransData-op215 TransData 0.00940429 Default | |||
| TransData-op252 TransData 0.00857286 Default | |||
| TransData-op208 TransData 0.00839571 Default | |||
| TransData-op216 TransData 0.00669733 Default | |||
| TransData-op210 TransData 0.00627071 Default | |||
| TransData-op275 TransData 0.00546133 Default | |||
| TransData-op278 TransData 0.00440333 Default | |||
| TransData-op212 TransData 0.00333286 Default | |||
| TransData-op281 TransData 0.00277333 Default | |||
| TransData-op214 TransData 0.00242357 Default | |||
| ReluGrad-op184 ReluGrad 0.514471 Gradients | |||
| ReluGrad-op171 ReluGrad 0.187441 Gradients | |||
| ReluGrad-op158 ReluGrad 0.090505 Gradients | |||
| ReluGrad-op145 ReluGrad 0.0393679 Gradients | |||
| ReluGrad-op131 ReluGrad 0.0222843 Gradients | |||
| Cast-op73 Cast 0.251821 Default | |||
| Cast-op80 Cast 0.0472729 Default | |||
| Cast-op175 Cast 0.0464929 Gradients | |||
| Cast-op87 Cast 0.0258764 Default | |||
| Cast-op162 Cast 0.0248979 Gradients | |||
| Cast-op52 Cast 0.023116 Default | |||
| Cast-op94 Cast 0.01493 Default | |||
| Cast-op149 Cast 0.0125914 Gradients | |||
| Cast-op101 Cast 0.00926143 Default | |||
| Cast-op136 Cast 0.00819714 Gradients | |||
| Cast-op45 Cast 0.00711 Default | |||
| Cast-op46 Cast 0.0046 Default | |||
| Cast-op47 Cast 0.00445933 Default | |||
| Cast-op115 Cast 0.00266143 Gradients | |||
| Cast-op34 Cast 0.00139667 Default | |||
| ReLU-op71 ReLU 0.327769 Default | |||
| ReLU-op78 ReLU 0.100851 Default | |||
| ReLU-op85 ReLU 0.0279364 Default | |||
| ReLU-op92 ReLU 0.0167179 Default | |||
| ReLU-op99 ReLU 0.0100079 Default | |||
| RealDiv-op174 RealDiv 0.137046 Gradients | |||
| RealDiv-op76 RealDiv 0.103911 Default | |||
| RealDiv-op161 RealDiv 0.0425664 Gradients | |||
| RealDiv-op83 RealDiv 0.0367986 Default | |||
| RealDiv-op90 RealDiv 0.0254871 Default | |||
| RealDiv-op148 RealDiv 0.0215086 Gradients | |||
| RealDiv-op97 RealDiv 0.0157514 Default | |||
| RealDiv-op135 RealDiv 0.0134129 Gradients | |||
| RealDiv-op104 RealDiv 0.00482857 Default | |||
| RealDiv-op54 RealDiv 0.00482467 Gradients | |||
| RealDiv-op50 RealDiv 0.00455643 Gradients | |||
| RealDiv-op113 RealDiv 0.00454714 Gradients | |||
| RealDiv-op51 RealDiv 0.00451643 Gradients | |||
| RealDiv-op118 RealDiv 0.00161786 Default | |||
| RealDiv-op44 RealDiv 0.00143467 Default | |||
| StridedSlice-op69 StridedSlice 0.333141 Default | |||
| StridedSlice-op41 StridedSlice 0.0124273 Default | |||
| Adam-op198 Adam 0.133745 Default | |||
| Adam-op202 Adam 0.0842707 Default | |||
| Adam-op179 Adam 0.0332157 Default | |||
| Adam-op166 Adam 0.010665 Default | |||
| Adam-op153 Adam 0.00629286 Default | |||
| Adam-op185 Adam 0.00368857 Default | |||
| Adam-op172 Adam 0.00317571 Default | |||
| Adam-op159 Adam 0.00294786 Default | |||
| Adam-op146 Adam 0.00289 Default | |||
| Adam-op140 Adam 0.00281857 Default | |||
| Adam-op127 Adam 0.00222571 Default | |||
| BiasAdd-op77 BiasAdd 0.110156 Default | |||
| BiasAdd-op84 BiasAdd 0.0401686 Default | |||
| BiasAdd-op91 BiasAdd 0.0217207 Default | |||
| BiasAdd-op98 BiasAdd 0.013145 Default | |||
| BiasAdd-op105 BiasAdd 0.00447286 Default | |||
| BiasAddGrad-op173 BiasAddGrad 0.03003 Gradients | |||
| BiasAddGrad-op160 BiasAddGrad 0.0174807 Gradients | |||
| BiasAddGrad-op147 BiasAddGrad 0.0123257 Gradients | |||
| BiasAddGrad-op134 BiasAddGrad 0.00878357 Gradients | |||
| BiasAddGrad-op112 BiasAddGrad 0.00306143 Gradients | |||
| Tile-op114 Tile 0.0274664 Gradients | |||
| Tile-op56 Tile 0.00871357 Gradients | |||
| Tile-op53 Tile 0.00424333 Gradients | |||
| Tile-op49 Tile 0.003735 Gradients | |||
| ReduceSum-op36 ReduceSum 0.0150733 Default | |||
| ReduceSum-op42 ReduceSum 0.00983267 Default | |||
| ReduceSum-op111 ReduceSum 0.00314286 Gradients | |||
| ReduceSum-op48 ReduceSum 0.00140067 Gradients | |||
| ReduceSum-op43 ReduceSum 0.00131533 Gradients | |||
| ApplyFtrl-op133 ApplyFtrl 0.0231964 Default | |||
| ApplyFtrl-op132 ApplyFtrl 0.00225714 Default | |||
| AtomicAddrClean-op434 AtomicAddrClean 0.00771929 Default | |||
| AtomicAddrClean-op427 AtomicAddrClean 0.00293714 Default | |||
| AtomicAddrClean-op425 AtomicAddrClean 0.001515 Default | |||
| AtomicAddrClean-op430 AtomicAddrClean 0.00149714 Default | |||
| AtomicAddrClean-op431 AtomicAddrClean 0.00146 Default | |||
| AtomicAddrClean-op429 AtomicAddrClean 0.00145714 Default | |||
| AtomicAddrClean-op428 AtomicAddrClean 0.00140429 Default | |||
| AtomicAddrClean-op418 AtomicAddrClean 0.00137867 Default | |||
| AddN-op200 AddN 0.0128364 Default | |||
| Square-op38 Square 0.00979933 Default | |||
| SigmoidCrossEntropyWithLogitsGrad-op109 SigmoidCrossEntropyWithLogitsGrad 0.00495071 Gradients | |||
| SigmoidCrossEntropyWithLogitsGrad-op108 SigmoidCrossEntropyWithLogitsGrad 0.00463143 Gradients | |||
| TensorAdd-op106 TensorAdd 0.00392571 Default | |||
| TensorAdd-op37 TensorAdd 0.00383267 Default | |||
| TensorAdd-op124 TensorAdd 0.00146 Default | |||
| SigmoidCrossEntropyWithLogits-op107 SigmoidCrossEntropyWithLogits 0.00480857 Default | |||
| ReduceMean-op110 ReduceMean 0.004535 Default | |||
| Assign-op30 Assign 0.00136067 Default | |||
| Assign-op32 Assign 0.001116 Default | |||
| AssignAdd-op414 AssignAdd 0.001688 Default | |||
| ====================op compute time==================== | |||
| optype_name compute_time(ms, per-step) called_times(per-step) percent | |||
| --------------------------------- ---------------------------- ------------------------ --------- | |||
| UnsortedSegmentSum 44.6078 2 35.28 | |||
| GatherV2 43.1554 2 34.13 | |||
| Slice 20.3763 16 16.12 | |||
| Concat 5.80845 4 4.59 | |||
| Split 2.71428 2 2.15 | |||
| MatMul 1.93668 15 1.53 | |||
| Mul 1.90295 32 1.51 | |||
| StridedSliceGrad 1.50683 2 1.19 | |||
| TransData 1.11516 30 0.88 | |||
| ReluGrad 0.854069 5 0.68 | |||
| Cast 0.484685 15 0.38 | |||
| ReLU 0.483282 5 0.38 | |||
| RealDiv 0.422807 15 0.33 | |||
| StridedSlice 0.345569 2 0.27 | |||
| Adam 0.285936 11 0.23 | |||
| BiasAdd 0.189663 5 0.15 | |||
| BiasAddGrad 0.071681 5 0.06 | |||
| Tile 0.044158 4 0.03 | |||
| ReduceSum 0.030765 5 0.02 | |||
| ApplyFtrl 0.025454 2 0.02 | |||
| AtomicAddrClean 0.019369 8 0.02 | |||
| AddN 0.012836 1 0.01 | |||
| Square 0.009799 1 0.01 | |||
| SigmoidCrossEntropyWithLogitsGrad 0.009582 2 0.01 | |||
| TensorAdd 0.009218 3 0.01 | |||
| SigmoidCrossEntropyWithLogits 0.004809 1 0 | |||
| ReduceMean 0.004535 1 0 | |||
| Assign 0.002477 2 0 | |||
| AssignAdd 0.001688 1 0 | |||
| Detail: | |||
| op_name op_type avg_execution_time subgraph | |||
| --------------------------------------- --------------------------------- -------------------- ---------- | |||
| UnsortedSegmentSum-op199 UnsortedSegmentSum 37.2522 Gradients | |||
| UnsortedSegmentSum-op123 UnsortedSegmentSum 7.35559 Gradients | |||
| GatherV2-op55 GatherV2 42.2202 Default | |||
| GatherV2-op33 GatherV2 0.935229 Default | |||
| Slice-op192 Slice 1.56074 Gradients | |||
| Slice-op191 Slice 1.55147 Gradients | |||
| Slice-op188 Slice 1.5461 Gradients | |||
| Slice-op190 Slice 1.54024 Gradients | |||
| Slice-op193 Slice 1.53854 Gradients | |||
| Slice-op194 Slice 1.53768 Gradients | |||
| Slice-op195 Slice 1.53429 Gradients | |||
| Slice-op189 Slice 1.53405 Gradients | |||
| Slice-op64 Slice 1.12941 Gradients | |||
| Slice-op59 Slice 1.06433 Gradients | |||
| Slice-op65 Slice 1.00912 Gradients | |||
| Slice-op62 Slice 1.00751 Gradients | |||
| Slice-op60 Slice 0.967576 Gradients | |||
| Slice-op61 Slice 0.967544 Gradients | |||
| Slice-op58 Slice 0.962666 Gradients | |||
| Slice-op63 Slice 0.92504 Gradients | |||
| Concat-op68 Concat 3.08483 Default | |||
| Concat-op196 Concat 2.58418 Gradients | |||
| Concat-op40 Concat 0.0884167 Default | |||
| Concat-op66 Concat 0.0510307 Gradients | |||
| Split-op67 Split 2.61707 Default | |||
| Split-op39 Split 0.0972053 Default | |||
| MatMul-op178 MatMul 0.535181 Gradients | |||
| MatMul-op74 MatMul 0.452185 Default | |||
| MatMul-op177 MatMul 0.421444 Gradients | |||
| MatMul-op165 MatMul 0.116006 Gradients | |||
| MatMul-op164 MatMul 0.106089 Gradients | |||
| MatMul-op81 MatMul 0.0983221 Default | |||
| MatMul-op151 MatMul 0.053485 Gradients | |||
| MatMul-op152 MatMul 0.0365136 Gradients | |||
| MatMul-op88 MatMul 0.03152 Default | |||
| MatMul-op138 MatMul 0.0295893 Gradients | |||
| MatMul-op139 MatMul 0.016685 Gradients | |||
| MatMul-op95 MatMul 0.01319 Default | |||
| MatMul-op120 MatMul 0.00954643 Gradients | |||
| MatMul-op119 MatMul 0.00929929 Gradients | |||
| MatMul-op102 MatMul 0.007625 Default | |||
| Mul-op186 Mul 0.385978 Gradients | |||
| Mul-op70 Mul 0.374378 Default | |||
| Mul-op72 Mul 0.331515 Default | |||
| Mul-op182 Mul 0.317914 Gradients | |||
| Mul-op79 Mul 0.109431 Default | |||
| Mul-op169 Mul 0.100926 Gradients | |||
| Mul-op86 Mul 0.039065 Default | |||
| Mul-op156 Mul 0.03713 Gradients | |||
| Mul-op116 Mul 0.0331357 Gradients | |||
| Mul-op93 Mul 0.0210179 Default | |||
| Mul-op121 Mul 0.0209471 Gradients | |||
| Mul-op143 Mul 0.0205921 Gradients | |||
| Mul-op197 Mul 0.0166779 Default | |||
| Mul-op128 Mul 0.0122129 Gradients | |||
| Mul-op100 Mul 0.01205 Default | |||
| Mul-op201 Mul 0.0108971 Default | |||
| Mul-op35 Mul 0.0102227 Default | |||
| Mul-op117 Mul 0.0101321 Gradients | |||
| Mul-op176 Mul 0.007605 Default | |||
| Mul-op163 Mul 0.00625286 Default | |||
| Mul-op130 Mul 0.00571571 Gradients | |||
| Mul-op150 Mul 0.004635 Default | |||
| Mul-op183 Mul 0.00165571 Default | |||
| Mul-op137 Mul 0.00160786 Default | |||
| Mul-op129 Mul 0.00159643 Gradients | |||
| Mul-op170 Mul 0.00159571 Default | |||
| Mul-op157 Mul 0.00153143 Default | |||
| Mul-op144 Mul 0.00147357 Default | |||
| Mul-op28 Mul 0.001468 Default | |||
| Mul-op122 Mul 0.00122071 Default | |||
| Mul-op29 Mul 0.001202 Default | |||
| Mul-op31 Mul 0.001166 Default | |||
| StridedSliceGrad-op187 StridedSliceGrad 1.3544 Gradients | |||
| StridedSliceGrad-op57 StridedSliceGrad 0.152437 Gradients | |||
| TransData-op284 TransData 0.325711 Default | |||
| TransData-op271 TransData 0.149802 Default | |||
| TransData-op229 TransData 0.0921293 Default | |||
| TransData-op240 TransData 0.0918471 Default | |||
| TransData-op257 TransData 0.0662064 Default | |||
| TransData-op274 TransData 0.0373564 Default | |||
| TransData-op245 TransData 0.0371764 Default | |||
| TransData-op237 TransData 0.0368179 Default | |||
| TransData-op231 TransData 0.0327657 Default | |||
| TransData-op206 TransData 0.0277764 Default | |||
| TransData-op250 TransData 0.020935 Default | |||
| TransData-op233 TransData 0.0204121 Default | |||
| TransData-op277 TransData 0.01939 Default | |||
| TransData-op242 TransData 0.0191893 Default | |||
| TransData-op204 TransData 0.0162743 Default | |||
| TransData-op255 TransData 0.0145864 Default | |||
| TransData-op235 TransData 0.0144157 Default | |||
| TransData-op247 TransData 0.012455 Default | |||
| TransData-op280 TransData 0.0124257 Default | |||
| TransData-op272 TransData 0.00974933 Default | |||
| TransData-op215 TransData 0.00940429 Default | |||
| TransData-op252 TransData 0.00857286 Default | |||
| TransData-op208 TransData 0.00839571 Default | |||
| TransData-op216 TransData 0.00669733 Default | |||
| TransData-op210 TransData 0.00627071 Default | |||
| TransData-op275 TransData 0.00546133 Default | |||
| TransData-op278 TransData 0.00440333 Default | |||
| TransData-op212 TransData 0.00333286 Default | |||
| TransData-op281 TransData 0.00277333 Default | |||
| TransData-op214 TransData 0.00242357 Default | |||
| ReluGrad-op184 ReluGrad 0.514471 Gradients | |||
| ReluGrad-op171 ReluGrad 0.187441 Gradients | |||
| ReluGrad-op158 ReluGrad 0.090505 Gradients | |||
| ReluGrad-op145 ReluGrad 0.0393679 Gradients | |||
| ReluGrad-op131 ReluGrad 0.0222843 Gradients | |||
| Cast-op73 Cast 0.251821 Default | |||
| Cast-op80 Cast 0.0472729 Default | |||
| Cast-op175 Cast 0.0464929 Gradients | |||
| Cast-op87 Cast 0.0258764 Default | |||
| Cast-op162 Cast 0.0248979 Gradients | |||
| Cast-op52 Cast 0.023116 Default | |||
| Cast-op94 Cast 0.01493 Default | |||
| Cast-op149 Cast 0.0125914 Gradients | |||
| Cast-op101 Cast 0.00926143 Default | |||
| Cast-op136 Cast 0.00819714 Gradients | |||
| Cast-op45 Cast 0.00711 Default | |||
| Cast-op46 Cast 0.0046 Default | |||
| Cast-op47 Cast 0.00445933 Default | |||
| Cast-op115 Cast 0.00266143 Gradients | |||
| Cast-op34 Cast 0.00139667 Default | |||
| ReLU-op71 ReLU 0.327769 Default | |||
| ReLU-op78 ReLU 0.100851 Default | |||
| ReLU-op85 ReLU 0.0279364 Default | |||
| ReLU-op92 ReLU 0.0167179 Default | |||
| ReLU-op99 ReLU 0.0100079 Default | |||
| RealDiv-op174 RealDiv 0.137046 Gradients | |||
| RealDiv-op76 RealDiv 0.103911 Default | |||
| RealDiv-op161 RealDiv 0.0425664 Gradients | |||
| RealDiv-op83 RealDiv 0.0367986 Default | |||
| RealDiv-op90 RealDiv 0.0254871 Default | |||
| RealDiv-op148 RealDiv 0.0215086 Gradients | |||
| RealDiv-op97 RealDiv 0.0157514 Default | |||
| RealDiv-op135 RealDiv 0.0134129 Gradients | |||
| RealDiv-op104 RealDiv 0.00482857 Default | |||
| RealDiv-op54 RealDiv 0.00482467 Gradients | |||
| RealDiv-op50 RealDiv 0.00455643 Gradients | |||
| RealDiv-op113 RealDiv 0.00454714 Gradients | |||
| RealDiv-op51 RealDiv 0.00451643 Gradients | |||
| RealDiv-op118 RealDiv 0.00161786 Default | |||
| RealDiv-op44 RealDiv 0.00143467 Default | |||
| StridedSlice-op69 StridedSlice 0.333141 Default | |||
| StridedSlice-op41 StridedSlice 0.0124273 Default | |||
| Adam-op198 Adam 0.133745 Default | |||
| Adam-op202 Adam 0.0842707 Default | |||
| Adam-op179 Adam 0.0332157 Default | |||
| Adam-op166 Adam 0.010665 Default | |||
| Adam-op153 Adam 0.00629286 Default | |||
| Adam-op185 Adam 0.00368857 Default | |||
| Adam-op172 Adam 0.00317571 Default | |||
| Adam-op159 Adam 0.00294786 Default | |||
| Adam-op146 Adam 0.00289 Default | |||
| Adam-op140 Adam 0.00281857 Default | |||
| Adam-op127 Adam 0.00222571 Default | |||
| BiasAdd-op77 BiasAdd 0.110156 Default | |||
| BiasAdd-op84 BiasAdd 0.0401686 Default | |||
| BiasAdd-op91 BiasAdd 0.0217207 Default | |||
| BiasAdd-op98 BiasAdd 0.013145 Default | |||
| BiasAdd-op105 BiasAdd 0.00447286 Default | |||
| BiasAddGrad-op173 BiasAddGrad 0.03003 Gradients | |||
| BiasAddGrad-op160 BiasAddGrad 0.0174807 Gradients | |||
| BiasAddGrad-op147 BiasAddGrad 0.0123257 Gradients | |||
| BiasAddGrad-op134 BiasAddGrad 0.00878357 Gradients | |||
| BiasAddGrad-op112 BiasAddGrad 0.00306143 Gradients | |||
| Tile-op114 Tile 0.0274664 Gradients | |||
| Tile-op56 Tile 0.00871357 Gradients | |||
| Tile-op53 Tile 0.00424333 Gradients | |||
| Tile-op49 Tile 0.003735 Gradients | |||
| ReduceSum-op36 ReduceSum 0.0150733 Default | |||
| ReduceSum-op42 ReduceSum 0.00983267 Default | |||
| ReduceSum-op111 ReduceSum 0.00314286 Gradients | |||
| ReduceSum-op48 ReduceSum 0.00140067 Gradients | |||
| ReduceSum-op43 ReduceSum 0.00131533 Gradients | |||
| ApplyFtrl-op133 ApplyFtrl 0.0231964 Default | |||
| ApplyFtrl-op132 ApplyFtrl 0.00225714 Default | |||
| AtomicAddrClean-op434 AtomicAddrClean 0.00771929 Default | |||
| AtomicAddrClean-op427 AtomicAddrClean 0.00293714 Default | |||
| AtomicAddrClean-op425 AtomicAddrClean 0.001515 Default | |||
| AtomicAddrClean-op430 AtomicAddrClean 0.00149714 Default | |||
| AtomicAddrClean-op431 AtomicAddrClean 0.00146 Default | |||
| AtomicAddrClean-op429 AtomicAddrClean 0.00145714 Default | |||
| AtomicAddrClean-op428 AtomicAddrClean 0.00140429 Default | |||
| AtomicAddrClean-op418 AtomicAddrClean 0.00137867 Default | |||
| AddN-op200 AddN 0.0128364 Default | |||
| Square-op38 Square 0.00979933 Default | |||
| SigmoidCrossEntropyWithLogitsGrad-op109 SigmoidCrossEntropyWithLogitsGrad 0.00495071 Gradients | |||
| SigmoidCrossEntropyWithLogitsGrad-op108 SigmoidCrossEntropyWithLogitsGrad 0.00463143 Gradients | |||
| TensorAdd-op106 TensorAdd 0.00392571 Default | |||
| TensorAdd-op37 TensorAdd 0.00383267 Default | |||
| TensorAdd-op124 TensorAdd 0.00146 Default | |||
| SigmoidCrossEntropyWithLogits-op107 SigmoidCrossEntropyWithLogits 0.00480857 Default | |||
| ReduceMean-op110 ReduceMean 0.004535 Default | |||
| Assign-op30 Assign 0.00136067 Default | |||
| Assign-op32 Assign 0.001116 Default | |||
| AssignAdd-op414 AssignAdd 0.001688 Default | |||
| ====================op compute time==================== | |||
| optype_name compute_time(ms, per-step) called_times(per-step) percent | |||
| --------------------------------- ---------------------------- ------------------------ --------- | |||
| UnsortedSegmentSum 44.6078 2 35.28 | |||
| GatherV2 43.1554 2 34.13 | |||
| Slice 20.3763 16 16.12 | |||
| Concat 5.80845 4 4.59 | |||
| Split 2.71428 2 2.15 | |||
| MatMul 1.93668 15 1.53 | |||
| Mul 1.90295 32 1.51 | |||
| StridedSliceGrad 1.50683 2 1.19 | |||
| TransData 1.11516 30 0.88 | |||
| ReluGrad 0.854069 5 0.68 | |||
| Cast 0.484685 15 0.38 | |||
| ReLU 0.483282 5 0.38 | |||
| RealDiv 0.422807 15 0.33 | |||
| StridedSlice 0.345569 2 0.27 | |||
| Adam 0.285936 11 0.23 | |||
| BiasAdd 0.189663 5 0.15 | |||
| BiasAddGrad 0.071681 5 0.06 | |||
| Tile 0.044158 4 0.03 | |||
| ReduceSum 0.030765 5 0.02 | |||
| ApplyFtrl 0.025454 2 0.02 | |||
| AtomicAddrClean 0.019369 8 0.02 | |||
| AddN 0.012836 1 0.01 | |||
| Square 0.009799 1 0.01 | |||
| SigmoidCrossEntropyWithLogitsGrad 0.009582 2 0.01 | |||
| TensorAdd 0.009218 3 0.01 | |||
| SigmoidCrossEntropyWithLogits 0.004809 1 0 | |||
| ReduceMean 0.004535 1 0 | |||
| Assign 0.002477 2 0 | |||
| AssignAdd 0.001688 1 0 | |||
| Detail: | |||
| op_name op_type avg_execution_time subgraph | |||
| --------------------------------------- --------------------------------- -------------------- ---------- | |||
| UnsortedSegmentSum-op199 UnsortedSegmentSum 37.2522 Gradients | |||
| UnsortedSegmentSum-op123 UnsortedSegmentSum 7.35559 Gradients | |||
| GatherV2-op55 GatherV2 42.2202 Default | |||
| GatherV2-op33 GatherV2 0.935229 Default | |||
| Slice-op192 Slice 1.56074 Gradients | |||
| Slice-op191 Slice 1.55147 Gradients | |||
| Slice-op188 Slice 1.5461 Gradients | |||
| Slice-op190 Slice 1.54024 Gradients | |||
| Slice-op193 Slice 1.53854 Gradients | |||
| Slice-op194 Slice 1.53768 Gradients | |||
| Slice-op195 Slice 1.53429 Gradients | |||
| Slice-op189 Slice 1.53405 Gradients | |||
| Slice-op64 Slice 1.12941 Gradients | |||
| Slice-op59 Slice 1.06433 Gradients | |||
| Slice-op65 Slice 1.00912 Gradients | |||
| Slice-op62 Slice 1.00751 Gradients | |||
| Slice-op60 Slice 0.967576 Gradients | |||
| Slice-op61 Slice 0.967544 Gradients | |||
| Slice-op58 Slice 0.962666 Gradients | |||
| Slice-op63 Slice 0.92504 Gradients | |||
| Concat-op68 Concat 3.08483 Default | |||
| Concat-op196 Concat 2.58418 Gradients | |||
| Concat-op40 Concat 0.0884167 Default | |||
| Concat-op66 Concat 0.0510307 Gradients | |||
| Split-op67 Split 2.61707 Default | |||
| Split-op39 Split 0.0972053 Default | |||
| MatMul-op178 MatMul 0.535181 Gradients | |||
| MatMul-op74 MatMul 0.452185 Default | |||
| MatMul-op177 MatMul 0.421444 Gradients | |||
| MatMul-op165 MatMul 0.116006 Gradients | |||
| MatMul-op164 MatMul 0.106089 Gradients | |||
| MatMul-op81 MatMul 0.0983221 Default | |||
| MatMul-op151 MatMul 0.053485 Gradients | |||
| MatMul-op152 MatMul 0.0365136 Gradients | |||
| MatMul-op88 MatMul 0.03152 Default | |||
| MatMul-op138 MatMul 0.0295893 Gradients | |||
| MatMul-op139 MatMul 0.016685 Gradients | |||
| MatMul-op95 MatMul 0.01319 Default | |||
| MatMul-op120 MatMul 0.00954643 Gradients | |||
| MatMul-op119 MatMul 0.00929929 Gradients | |||
| MatMul-op102 MatMul 0.007625 Default | |||
| Mul-op186 Mul 0.385978 Gradients | |||
| Mul-op70 Mul 0.374378 Default | |||
| Mul-op72 Mul 0.331515 Default | |||
| Mul-op182 Mul 0.317914 Gradients | |||
| Mul-op79 Mul 0.109431 Default | |||
| Mul-op169 Mul 0.100926 Gradients | |||
| Mul-op86 Mul 0.039065 Default | |||
| Mul-op156 Mul 0.03713 Gradients | |||
| Mul-op116 Mul 0.0331357 Gradients | |||
| Mul-op93 Mul 0.0210179 Default | |||
| Mul-op121 Mul 0.0209471 Gradients | |||
| Mul-op143 Mul 0.0205921 Gradients | |||
| Mul-op197 Mul 0.0166779 Default | |||
| Mul-op128 Mul 0.0122129 Gradients | |||
| Mul-op100 Mul 0.01205 Default | |||
| Mul-op201 Mul 0.0108971 Default | |||
| Mul-op35 Mul 0.0102227 Default | |||
| Mul-op117 Mul 0.0101321 Gradients | |||
| Mul-op176 Mul 0.007605 Default | |||
| Mul-op163 Mul 0.00625286 Default | |||
| Mul-op130 Mul 0.00571571 Gradients | |||
| Mul-op150 Mul 0.004635 Default | |||
| Mul-op183 Mul 0.00165571 Default | |||
| Mul-op137 Mul 0.00160786 Default | |||
| Mul-op129 Mul 0.00159643 Gradients | |||
| Mul-op170 Mul 0.00159571 Default | |||
| Mul-op157 Mul 0.00153143 Default | |||
| Mul-op144 Mul 0.00147357 Default | |||
| Mul-op28 Mul 0.001468 Default | |||
| Mul-op122 Mul 0.00122071 Default | |||
| Mul-op29 Mul 0.001202 Default | |||
| Mul-op31 Mul 0.001166 Default | |||
| StridedSliceGrad-op187 StridedSliceGrad 1.3544 Gradients | |||
| StridedSliceGrad-op57 StridedSliceGrad 0.152437 Gradients | |||
| TransData-op284 TransData 0.325711 Default | |||
| TransData-op271 TransData 0.149802 Default | |||
| TransData-op229 TransData 0.0921293 Default | |||
| TransData-op240 TransData 0.0918471 Default | |||
| TransData-op257 TransData 0.0662064 Default | |||
| TransData-op274 TransData 0.0373564 Default | |||
| TransData-op245 TransData 0.0371764 Default | |||
| TransData-op237 TransData 0.0368179 Default | |||
| TransData-op231 TransData 0.0327657 Default | |||
| TransData-op206 TransData 0.0277764 Default | |||
| TransData-op250 TransData 0.020935 Default | |||
| TransData-op233 TransData 0.0204121 Default | |||
| TransData-op277 TransData 0.01939 Default | |||
| TransData-op242 TransData 0.0191893 Default | |||
| TransData-op204 TransData 0.0162743 Default | |||
| TransData-op255 TransData 0.0145864 Default | |||
| TransData-op235 TransData 0.0144157 Default | |||
| TransData-op247 TransData 0.012455 Default | |||
| TransData-op280 TransData 0.0124257 Default | |||
| TransData-op272 TransData 0.00974933 Default | |||
| TransData-op215 TransData 0.00940429 Default | |||
| TransData-op252 TransData 0.00857286 Default | |||
| TransData-op208 TransData 0.00839571 Default | |||
| TransData-op216 TransData 0.00669733 Default | |||
| TransData-op210 TransData 0.00627071 Default | |||
| TransData-op275 TransData 0.00546133 Default | |||
| TransData-op278 TransData 0.00440333 Default | |||
| TransData-op212 TransData 0.00333286 Default | |||
| TransData-op281 TransData 0.00277333 Default | |||
| TransData-op214 TransData 0.00242357 Default | |||
| ReluGrad-op184 ReluGrad 0.514471 Gradients | |||
| ReluGrad-op171 ReluGrad 0.187441 Gradients | |||
| ReluGrad-op158 ReluGrad 0.090505 Gradients | |||
| ReluGrad-op145 ReluGrad 0.0393679 Gradients | |||
| ReluGrad-op131 ReluGrad 0.0222843 Gradients | |||
| Cast-op73 Cast 0.251821 Default | |||
| Cast-op80 Cast 0.0472729 Default | |||
| Cast-op175 Cast 0.0464929 Gradients | |||
| Cast-op87 Cast 0.0258764 Default | |||
| Cast-op162 Cast 0.0248979 Gradients | |||
| Cast-op52 Cast 0.023116 Default | |||
| Cast-op94 Cast 0.01493 Default | |||
| Cast-op149 Cast 0.0125914 Gradients | |||
| Cast-op101 Cast 0.00926143 Default | |||
| Cast-op136 Cast 0.00819714 Gradients | |||
| Cast-op45 Cast 0.00711 Default | |||
| Cast-op46 Cast 0.0046 Default | |||
| Cast-op47 Cast 0.00445933 Default | |||
| Cast-op115 Cast 0.00266143 Gradients | |||
| Cast-op34 Cast 0.00139667 Default | |||
| ReLU-op71 ReLU 0.327769 Default | |||
| ReLU-op78 ReLU 0.100851 Default | |||
| ReLU-op85 ReLU 0.0279364 Default | |||
| ReLU-op92 ReLU 0.0167179 Default | |||
| ReLU-op99 ReLU 0.0100079 Default | |||
| RealDiv-op174 RealDiv 0.137046 Gradients | |||
| RealDiv-op76 RealDiv 0.103911 Default | |||
| RealDiv-op161 RealDiv 0.0425664 Gradients | |||
| RealDiv-op83 RealDiv 0.0367986 Default | |||
| RealDiv-op90 RealDiv 0.0254871 Default | |||
| RealDiv-op148 RealDiv 0.0215086 Gradients | |||
| RealDiv-op97 RealDiv 0.0157514 Default | |||
| RealDiv-op135 RealDiv 0.0134129 Gradients | |||
| RealDiv-op104 RealDiv 0.00482857 Default | |||
| RealDiv-op54 RealDiv 0.00482467 Gradients | |||
| RealDiv-op50 RealDiv 0.00455643 Gradients | |||
| RealDiv-op113 RealDiv 0.00454714 Gradients | |||
| RealDiv-op51 RealDiv 0.00451643 Gradients | |||
| RealDiv-op118 RealDiv 0.00161786 Default | |||
| RealDiv-op44 RealDiv 0.00143467 Default | |||
| StridedSlice-op69 StridedSlice 0.333141 Default | |||
| StridedSlice-op41 StridedSlice 0.0124273 Default | |||
| Adam-op198 Adam 0.133745 Default | |||
| Adam-op202 Adam 0.0842707 Default | |||
| Adam-op179 Adam 0.0332157 Default | |||
| Adam-op166 Adam 0.010665 Default | |||
| Adam-op153 Adam 0.00629286 Default | |||
| Adam-op185 Adam 0.00368857 Default | |||
| Adam-op172 Adam 0.00317571 Default | |||
| Adam-op159 Adam 0.00294786 Default | |||
| Adam-op146 Adam 0.00289 Default | |||
| Adam-op140 Adam 0.00281857 Default | |||
| Adam-op127 Adam 0.00222571 Default | |||
| BiasAdd-op77 BiasAdd 0.110156 Default | |||
| BiasAdd-op84 BiasAdd 0.0401686 Default | |||
| BiasAdd-op91 BiasAdd 0.0217207 Default | |||
| BiasAdd-op98 BiasAdd 0.013145 Default | |||
| BiasAdd-op105 BiasAdd 0.00447286 Default | |||
| BiasAddGrad-op173 BiasAddGrad 0.03003 Gradients | |||
| BiasAddGrad-op160 BiasAddGrad 0.0174807 Gradients | |||
| BiasAddGrad-op147 BiasAddGrad 0.0123257 Gradients | |||
| BiasAddGrad-op134 BiasAddGrad 0.00878357 Gradients | |||
| BiasAddGrad-op112 BiasAddGrad 0.00306143 Gradients | |||
| Tile-op114 Tile 0.0274664 Gradients | |||
| Tile-op56 Tile 0.00871357 Gradients | |||
| Tile-op53 Tile 0.00424333 Gradients | |||
| Tile-op49 Tile 0.003735 Gradients | |||
| ReduceSum-op36 ReduceSum 0.0150733 Default | |||
| ReduceSum-op42 ReduceSum 0.00983267 Default | |||
| ReduceSum-op111 ReduceSum 0.00314286 Gradients | |||
| ReduceSum-op48 ReduceSum 0.00140067 Gradients | |||
| ReduceSum-op43 ReduceSum 0.00131533 Gradients | |||
| ApplyFtrl-op133 ApplyFtrl 0.0231964 Default | |||
| ApplyFtrl-op132 ApplyFtrl 0.00225714 Default | |||
| AtomicAddrClean-op434 AtomicAddrClean 0.00771929 Default | |||
| AtomicAddrClean-op427 AtomicAddrClean 0.00293714 Default | |||
| AtomicAddrClean-op425 AtomicAddrClean 0.001515 Default | |||
| AtomicAddrClean-op430 AtomicAddrClean 0.00149714 Default | |||
| AtomicAddrClean-op431 AtomicAddrClean 0.00146 Default | |||
| AtomicAddrClean-op429 AtomicAddrClean 0.00145714 Default | |||
| AtomicAddrClean-op428 AtomicAddrClean 0.00140429 Default | |||
| AtomicAddrClean-op418 AtomicAddrClean 0.00137867 Default | |||
| AddN-op200 AddN 0.0128364 Default | |||
| Square-op38 Square 0.00979933 Default | |||
| SigmoidCrossEntropyWithLogitsGrad-op109 SigmoidCrossEntropyWithLogitsGrad 0.00495071 Gradients | |||
| SigmoidCrossEntropyWithLogitsGrad-op108 SigmoidCrossEntropyWithLogitsGrad 0.00463143 Gradients | |||
| TensorAdd-op106 TensorAdd 0.00392571 Default | |||
| TensorAdd-op37 TensorAdd 0.00383267 Default | |||
| TensorAdd-op124 TensorAdd 0.00146 Default | |||
| SigmoidCrossEntropyWithLogits-op107 SigmoidCrossEntropyWithLogits 0.00480857 Default | |||
| ReduceMean-op110 ReduceMean 0.004535 Default | |||
| Assign-op30 Assign 0.00136067 Default | |||
| Assign-op32 Assign 0.001116 Default | |||
| AssignAdd-op414 AssignAdd 0.001688 Default | |||