|
|
@@ -0,0 +1,407 @@ |
|
|
|
|
|
{ |
|
|
|
|
|
"cells": [ |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "headed-output", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"# PyTorch BERT迁移案例\n", |
|
|
|
|
|
"PyTorch模型转换为MindSpore脚本+权重,首先需要将PyTorch模型导出为ONNX模型,然后使用MindConverter CLI工具进行脚本+权重迁移。\n", |
|
|
|
|
|
"HuggingFace Transformers是PyTorch框架下主流的自然语言处理三方库,我们以Transformer中的BertForMaskedLM为例,演示迁移过程。" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "sustained-touch", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"## 1. ONNX模型导出\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"首先实例化HuggingFace中的BertForMaskedLM,以及相应的分词器(首次使用需要下降模型权重、词表、模型配置等数据)。\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"关于HuggingFace的使用,本文不做过多介绍,详细使用请参考[HuggingFace使用文档](https://huggingface.co/transformers/model_doc)。\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"该模型可对句子中被掩蔽(mask)的词进行预测。" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "code", |
|
|
|
|
|
"execution_count": 35, |
|
|
|
|
|
"id": "interpreted-trunk", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"outputs": [], |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"import numpy as np\n", |
|
|
|
|
|
"import torch\n", |
|
|
|
|
|
"from transformers.models.bert import BertForMaskedLM, BertTokenizer\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"tokenizer = BertTokenizer.from_pretrained(\"bert-base-uncased\")\n", |
|
|
|
|
|
"model = BertForMaskedLM.from_pretrained(\"bert-base-uncased\")" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "bronze-authentication", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"我们使用该模型进行推理,生成若干组测试用例,以验证模型迁移的正确性。\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"这里我们以一条句子为例`china is a poworful country, its capital is beijing.`。\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"我们对`beijing`进行掩蔽(mask),输入`china is a poworful country, its capital is [MASK].`至模型,模型预期输出应为`beijing`。" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "code", |
|
|
|
|
|
"execution_count": 37, |
|
|
|
|
|
"id": "legendary-seven", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"outputs": [ |
|
|
|
|
|
{ |
|
|
|
|
|
"name": "stdout", |
|
|
|
|
|
"output_type": "stream", |
|
|
|
|
|
"text": [ |
|
|
|
|
|
"MASK TOKEN id: 12\n", |
|
|
|
|
|
"Tokens: [[ 101 2859 2003 1037 23776 16347 5313 2406 1010 2049 3007 2003\n", |
|
|
|
|
|
" 103 1012 102]]\n", |
|
|
|
|
|
"Attention mask: [[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]]\n", |
|
|
|
|
|
"Token type ids: [[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]\n", |
|
|
|
|
|
"Pred id: 7211\n", |
|
|
|
|
|
"Pred token: beijing\n" |
|
|
|
|
|
] |
|
|
|
|
|
} |
|
|
|
|
|
], |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"text = \"china is a poworful country, its capital is [MASK].\"\n", |
|
|
|
|
|
"tokenized_sentence = tokenizer(text)\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"mask_idx = tokenized_sentence[\"input_ids\"].index(tokenizer.convert_tokens_to_ids(\"[MASK]\"))\n", |
|
|
|
|
|
"input_ids = np.array([tokenized_sentence[\"input_ids\"]])\n", |
|
|
|
|
|
"attention_mask = np.array([tokenized_sentence[\"attention_mask\"]])\n", |
|
|
|
|
|
"token_type_ids = np.array([tokenized_sentence[\"token_type_ids\"]])\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"# Get [MASK] token id.\n", |
|
|
|
|
|
"print(f\"MASK TOKEN id: {mask_idx}\")\n", |
|
|
|
|
|
"print(f\"Tokens: {input_ids}\") \n", |
|
|
|
|
|
"print(f\"Attention mask: {attention_mask}\")\n", |
|
|
|
|
|
"print(f\"Token type ids: {token_type_ids}\")\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"model.eval()\n", |
|
|
|
|
|
"with torch.no_grad():\n", |
|
|
|
|
|
" predictions = model(input_ids=torch.tensor(input_ids),\n", |
|
|
|
|
|
" attention_mask=torch.tensor(attention_mask),\n", |
|
|
|
|
|
" token_type_ids=torch.tensor(token_type_ids))\n", |
|
|
|
|
|
" predicted_index = torch.argmax(predictions[0][0][mask_idx])\n", |
|
|
|
|
|
" predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]\n", |
|
|
|
|
|
" print(f\"Pred id: {predicted_index}\")\n", |
|
|
|
|
|
" print(f\"Pred token: {predicted_token}\")\n", |
|
|
|
|
|
" assert predicted_token == \"beijing\"" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "opponent-validity", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"HuggingFace提供了导出ONNX模型的工具,可使用如下方法将HuggingFace的预训练模型导出为ONNX模型:" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "code", |
|
|
|
|
|
"execution_count": null, |
|
|
|
|
|
"id": "ethical-radiation", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"outputs": [], |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"from pathlib import Path\n", |
|
|
|
|
|
"from transformers.convert_graph_to_onnx import convert\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"saved_onnx_path = \"./exported_bert_base_uncased/bert_base_uncased.onnx\"\n", |
|
|
|
|
|
"convert(\"pt\", model, Path(saved_onnx_path), 11, tokenizer)" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "southeast-response", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"根据打印的信息,我们可以看到导出的ONNX模型输入节点有3个:`input_ids`,`token_type_ids`,`attention_mask`,以及相应的输入轴,\n", |
|
|
|
|
|
"输出节点有一个`output_0`。\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"至此ONNX模型导出成功,接下来对导出的ONNX模型精度进行验证。" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "historic-business", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"## 2. ONNX模型验证\n" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "naval-virgin", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"我们仍然使用PyTorch模型推理时的句子`china is a poworful country, its capital is [MASK].`作为输入,观测ONNX模型表现是否符合预期。" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "code", |
|
|
|
|
|
"execution_count": 39, |
|
|
|
|
|
"id": "satisfactory-embassy", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"outputs": [ |
|
|
|
|
|
{ |
|
|
|
|
|
"name": "stdout", |
|
|
|
|
|
"output_type": "stream", |
|
|
|
|
|
"text": [ |
|
|
|
|
|
"ONNX Pred id: 7211\n", |
|
|
|
|
|
"ONNX Pred token: beijing\n" |
|
|
|
|
|
] |
|
|
|
|
|
} |
|
|
|
|
|
], |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"import onnx\n", |
|
|
|
|
|
"import onnxruntime as ort\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"model = onnx.load(saved_onnx_path)\n", |
|
|
|
|
|
"sess = ort.InferenceSession(bytes(model.SerializeToString()))\n", |
|
|
|
|
|
"result = sess.run(\n", |
|
|
|
|
|
" output_names=None,\n", |
|
|
|
|
|
" input_feed={\"input_ids\": input_ids, \n", |
|
|
|
|
|
" \"attention_mask\": attention_mask,\n", |
|
|
|
|
|
" \"token_type_ids\": token_type_ids}\n", |
|
|
|
|
|
")[0]\n", |
|
|
|
|
|
"predicted_index = np.argmax(result[0][mask_idx])\n", |
|
|
|
|
|
"predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"print(f\"ONNX Pred id: {predicted_index}\")\n", |
|
|
|
|
|
"print(f\"ONNX Pred token: {predicted_token}\")\n", |
|
|
|
|
|
"assert predicted_token == \"beijing\"" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "legal-consensus", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"可以看到,导出的ONNX模型功能与原PyTorch模型完全一致,接下来可以使用MindConverter进行脚本+权重迁移了!" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "adverse-coverage", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"## 3. MindConverter进行模型脚本+权重迁移" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "vanilla-nature", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"MindConverter进行模型转换时,需要给定模型路径(`--model_file`)、输入节点(`--input_nodes`)、输入节点尺寸(`--shape`)、输出节点(`--output_nodes`)。\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"生成的脚本输出路径(`--output`)、转换报告路径(`--report`)为可选参数,默认为当前路径下的output目录,若输出目录不存在将自动创建。" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "code", |
|
|
|
|
|
"execution_count": null, |
|
|
|
|
|
"id": "metallic-wright", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"outputs": [], |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"!mindconverter --help" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "code", |
|
|
|
|
|
"execution_count": null, |
|
|
|
|
|
"id": "horizontal-heater", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"outputs": [], |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"!mindconverter --model_file ./exported_bert_base_uncased/bert_base_uncased.onnx --shape 1,128 1,128 1,128 \\\n", |
|
|
|
|
|
" --input_nodes input_ids,token_type_ids,attention_mask\n", |
|
|
|
|
|
" --output_nodes output_0\n", |
|
|
|
|
|
" --output ./converted_bert_base_uncased\n", |
|
|
|
|
|
" --report ./converted_bert_base_uncased" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "blind-forty", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"转换完成后,该目录下生成如下文件:\n", |
|
|
|
|
|
"- 模型定义脚本(后缀为.py)\n", |
|
|
|
|
|
"- 权重ckpt文件(后缀为.ckpt)\n", |
|
|
|
|
|
"- 迁移前后权重映射(后缀为.json)\n", |
|
|
|
|
|
"- 转换报告(后缀为.txt)\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"通过ls命令检查一下转换结果。" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "code", |
|
|
|
|
|
"execution_count": null, |
|
|
|
|
|
"id": "blocked-teens", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"outputs": [], |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"!ls ./converted_bert_base_uncased" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "improving-difference", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"可以看到所有文件已生成。\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"迁移完成,接下来我们对迁移后模型精度进行验证。" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "dimensional-driver", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"## 4. MindSpore模型验证\n", |
|
|
|
|
|
"我们仍然使用`china is a poworful country, its capital is [MASK].`作为输入,观测迁移后模型表现是否符合预期。" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "unexpected-permit", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"由于工具在转换时,需要将模型尺寸冻结,因此在使用MindSpore进行推理验证时,需要将句子补齐(Pad)到固定长度,可通过如下函数实现句子补齐。\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"推理时,句子长度需小于转换时的最大句长(这里我们最长句子长度为128)。" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "code", |
|
|
|
|
|
"execution_count": null, |
|
|
|
|
|
"id": "going-fields", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"outputs": [], |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"def padding(input_ids, attn_mask, token_type_ids, target_len=128):\n", |
|
|
|
|
|
" length = len(input_ids)\n", |
|
|
|
|
|
" for i in range(target_len - length):\n", |
|
|
|
|
|
" input_ids.append(0)\n", |
|
|
|
|
|
" attn_mask.append(0)\n", |
|
|
|
|
|
" token_type_ids.append(0)\n", |
|
|
|
|
|
" return np.array([input_ids]), np.array([attn_mask]), np.array([token_type_ids])" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "code", |
|
|
|
|
|
"execution_count": null, |
|
|
|
|
|
"id": "intense-carrier", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"outputs": [], |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"from converted_bert_base_uncased.bert_base_uncased import Model as MsBert\n", |
|
|
|
|
|
"from mindspore import load_checkpoint, load_param_into_net, context, Tensor\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"context.set_context(mode=context.GRAPH_MODE, device_target=\"GPU\")\n", |
|
|
|
|
|
"padded_input_ids, padded_attention_mask, padded_token_type = padding(tokenized_sentence[\"input_ids\"], \n", |
|
|
|
|
|
" tokenized_sentence[\"attention_mask\"], \n", |
|
|
|
|
|
" tokenized_sentence[\"token_type_ids\"], \n", |
|
|
|
|
|
" target_len=128)\n", |
|
|
|
|
|
"padded_input_ids = Tensor(padded_input_ids)\n", |
|
|
|
|
|
"padded_attention_mask = Tensor(padded_attention_mask)\n", |
|
|
|
|
|
"padded_token_type = Tensor(padded_token_type)\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"model = MsBert()\n", |
|
|
|
|
|
"param_dict = load_checkpoint(\"./converted_bert_base_uncased/bert_base_uncased.ckpt\")\n", |
|
|
|
|
|
"not_load_params = load_param_into_net(model, param_dict)\n", |
|
|
|
|
|
"output = model(padded_attention_mask, padded_input_ids, padded_token_type)\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"assert not not_load_params\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"predicted_index = np.argmax(output.asnumpy()[0][mask_idx])\n", |
|
|
|
|
|
"print(f\"ONNX Pred id: {predicted_index}\")\n", |
|
|
|
|
|
"assert predicted_index == 7211" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "national-norfolk", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"至此,使用MindConverter进行脚本+权重迁移完成。\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"用户可根据使用场景编写训练、推理、部署脚本,实现个人业务逻辑。" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "capital-joint", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"## 5. 其他问题" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "magnetic-collective", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"1. 如何修改迁移后脚本的批次大小(Batch size)、句子长度(Sequence length),实现模型可支持任意的尺寸的数据推理、训练?\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"> 答:迁移后脚本存在shape限制,通常是由于Reshape算子导致,或其他涉及张量排布变化的算子导致。以上述Bert迁移为例,首先创建两个全局变量,作为预期的批次大小、句子长度的表示,而后将Reshape操作的目标尺寸进行修改,相应的替换成批次大小、句子长度的全局变量即可。\n", |
|
|
|
|
|
"> ./converted_bert_base_uncased/modified_bert_base_uncased.py为修改后的可支持任意尺寸数据训练、推理的脚本,该脚本脚本展示了相应的修改。" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "proprietary-yugoslavia", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"2. 生成后的脚本中类名的定义不符合开发者的习惯,如`class Module0(nn.Cell)`,人工修改是否会影响转换后的权重加载?\n", |
|
|
|
|
|
"\n", |
|
|
|
|
|
"> 答:权重的加载仅与变量名、类结构有关,因此类名可以修改,不影响权重加载。若需要调整类的结构,则相应的权重命名需要同步修改以适应迁移后模型的结构。" |
|
|
|
|
|
] |
|
|
|
|
|
}, |
|
|
|
|
|
{ |
|
|
|
|
|
"cell_type": "markdown", |
|
|
|
|
|
"id": "selective-flight", |
|
|
|
|
|
"metadata": {}, |
|
|
|
|
|
"source": [ |
|
|
|
|
|
"## 6. 其他参考教程\n", |
|
|
|
|
|
"1. [MindConverter高阶使用教程-自定义生成代码结构]()" |
|
|
|
|
|
] |
|
|
|
|
|
} |
|
|
|
|
|
], |
|
|
|
|
|
"metadata": { |
|
|
|
|
|
"kernelspec": { |
|
|
|
|
|
"display_name": "Python 3", |
|
|
|
|
|
"language": "python", |
|
|
|
|
|
"name": "python3" |
|
|
|
|
|
}, |
|
|
|
|
|
"language_info": { |
|
|
|
|
|
"codemirror_mode": { |
|
|
|
|
|
"name": "ipython", |
|
|
|
|
|
"version": 3 |
|
|
|
|
|
}, |
|
|
|
|
|
"file_extension": ".py", |
|
|
|
|
|
"mimetype": "text/x-python", |
|
|
|
|
|
"name": "python", |
|
|
|
|
|
"nbconvert_exporter": "python", |
|
|
|
|
|
"pygments_lexer": "ipython3", |
|
|
|
|
|
"version": "3.7.6" |
|
|
|
|
|
} |
|
|
|
|
|
}, |
|
|
|
|
|
"nbformat": 4, |
|
|
|
|
|
"nbformat_minor": 5 |
|
|
|
|
|
} |