| @@ -12,16 +12,4 @@ | |||||
| # See the License for the specific language governing permissions and | # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| """ | |||||
| Profiler Module Introduction. | |||||
| This module provides Python APIs to enable the profiling of MindSpore neural networks. | |||||
| Users can import the mindinsight.profiler.Profiler, initialize the Profiler object to start profiling, | |||||
| and use Profiler.analyse() to stop profiling and analyse the results. | |||||
| To visualize the profiling results, users can open MindInsight Web, find the corresponding run | |||||
| and click the profile link. | |||||
| Now, Profiler supports the AICore operator analysis. | |||||
| """ | |||||
| from mindinsight.profiler.profiling import Profiler | |||||
| __all__ = ["Profiler"] | |||||
| """Profiler Module Introduction.""" | |||||
| @@ -15,7 +15,7 @@ | |||||
| """The analyser factory.""" | """The analyser factory.""" | ||||
| import threading | import threading | ||||
| import mindinsight.profiler.analyser as analyser_module | |||||
| from mindinsight.profiler import analyser as analyser_module | |||||
| from mindinsight.profiler.common.exceptions.exceptions import \ | from mindinsight.profiler.common.exceptions.exceptions import \ | ||||
| ProfilerAnalyserNotExistException | ProfilerAnalyserNotExistException | ||||
| @@ -17,7 +17,6 @@ import json | |||||
| import os | import os | ||||
| from mindinsight.profiler.analyser.base_analyser import BaseAnalyser | from mindinsight.profiler.analyser.base_analyser import BaseAnalyser | ||||
| from mindinsight.profiler.parser.container import TimelineContainer | |||||
| from mindinsight.profiler.common.exceptions.exceptions import ProfilerFileNotFoundException, \ | from mindinsight.profiler.common.exceptions.exceptions import ProfilerFileNotFoundException, \ | ||||
| ProfilerIOException | ProfilerIOException | ||||
| from mindinsight.profiler.common.log import logger | from mindinsight.profiler.common.log import logger | ||||
| @@ -27,6 +26,48 @@ from mindinsight.profiler.common.validator.validate_path import validate_and_nor | |||||
| SIZE_LIMIT = 20 * 1024 * 1024 # 20MB | SIZE_LIMIT = 20 * 1024 * 1024 # 20MB | ||||
| class TimelineContainer: | |||||
| """ | |||||
| A container of operator computation metadata. | |||||
| Args: | |||||
| split_list (list): The split list of metadata in op_compute output file. | |||||
| """ | |||||
| def __init__(self, split_list): | |||||
| self._op_name = split_list[0] | |||||
| self._stream_id = int(split_list[1]) | |||||
| self._start_time = float(split_list[2]) | |||||
| self._duration = float(split_list[3]) | |||||
| self._pid = None | |||||
| if len(split_list) == 5: | |||||
| self._pid = int(split_list[4]) | |||||
| @property | |||||
| def op_name(self): | |||||
| """Get the name of the operator.""" | |||||
| return self._op_name | |||||
| @property | |||||
| def stream_id(self): | |||||
| """Get the stream id of the operator.""" | |||||
| return self._stream_id | |||||
| @property | |||||
| def start_time(self): | |||||
| """Get the execution start time of the operator.""" | |||||
| return self._start_time | |||||
| @property | |||||
| def duration(self): | |||||
| """Get the duration of the operator execution.""" | |||||
| return self._duration | |||||
| @property | |||||
| def pid(self): | |||||
| """Get the pid of the operator execution.""" | |||||
| return self._pid | |||||
| class TimelineAnalyser(BaseAnalyser): | class TimelineAnalyser(BaseAnalyser): | ||||
| """ | """ | ||||
| Analyse timeline data from file. | Analyse timeline data from file. | ||||
| @@ -1,14 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| @@ -1,182 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| The parser for AI CPU preprocess data. | |||||
| """ | |||||
| import os | |||||
| from tabulate import tabulate | |||||
| from mindinsight.profiler.common._utils import fwrite_format, get_file_join_name | |||||
| from mindinsight.profiler.common.log import logger | |||||
| class DataPreProcessParser: | |||||
| """ | |||||
| The Parser for AI CPU preprocess data. | |||||
| Args: | |||||
| input_path(str): The profiling job path. | |||||
| output_filename(str): The output data path and name. | |||||
| """ | |||||
| _source_file_target = 'DATA_PREPROCESS.dev.AICPU.' | |||||
| _dst_file_title = 'title:DATA_PREPROCESS AICPU' | |||||
| _dst_file_column_title = ['serial_number', 'node_type_name', 'total_time(ms)', | |||||
| 'dispatch_time(ms)', 'run_start', 'run_end'] | |||||
| _ms_unit = 1000 | |||||
| def __init__(self, input_path, output_filename): | |||||
| self._input_path = input_path | |||||
| self._output_filename = output_filename | |||||
| self._source_file_name = self._get_source_file() | |||||
| self._ms_kernel_flag = 3 | |||||
| self._other_kernel_flag = 6 | |||||
| self._thread_flag = 7 | |||||
| self._ms_kernel_run_end_index = 2 | |||||
| self._other_kernel_run_end_index = 5 | |||||
| self._result_list = [] | |||||
| self._min_cycle_counter = float('inf') | |||||
| def _get_source_file(self): | |||||
| """Get log file name, which was created by ada service.""" | |||||
| file_name = get_file_join_name(self._input_path, self._source_file_target) | |||||
| if not file_name: | |||||
| data_path = os.path.join(self._input_path, "data") | |||||
| file_name = get_file_join_name(data_path, self._source_file_target) | |||||
| return file_name | |||||
| def _get_kernel_result(self, number, node_list, thread_list): | |||||
| """Get the profiling data form different aicpu kernel""" | |||||
| try: | |||||
| if len(node_list) == self._ms_kernel_flag and len(thread_list) == self._thread_flag: | |||||
| node_type_name = node_list[0].split(':')[-1] | |||||
| run_end_index = self._ms_kernel_run_end_index | |||||
| elif len(node_list) == self._other_kernel_flag and len(thread_list) == self._thread_flag: | |||||
| node_type_name = node_list[0].split(':')[-1].split('/')[-1].split('-')[0] | |||||
| run_end_index = self._other_kernel_run_end_index | |||||
| else: | |||||
| logger.warning("the data format can't support 'node_list':%s", str(node_list)) | |||||
| return None | |||||
| run_start = node_list[1].split(':')[-1].split(' ')[0] | |||||
| run_end = node_list[run_end_index].split(':')[-1].split(' ')[0] | |||||
| total_time = float(thread_list[-1].split('=')[-1].split()[0]) / self._ms_unit | |||||
| dispatch_time = float(thread_list[-2].split('=')[-1].split()[0]) / self._ms_unit | |||||
| return [number, node_type_name, total_time, dispatch_time, | |||||
| run_start, run_end] | |||||
| except IndexError as e: | |||||
| logger.exception(e) | |||||
| return None | |||||
| def execute(self): | |||||
| """Execute the parser, get result data, and write it to the output file.""" | |||||
| if not os.path.exists(self._source_file_name): | |||||
| logger.info("Did not find the aicpu profiling source file") | |||||
| return | |||||
| with open(self._source_file_name, 'rb') as ai_cpu_data: | |||||
| ai_cpu_str = str(ai_cpu_data.read().replace(b'\n\x00', b' ___ ') | |||||
| .replace(b'\x00', b' ___ '))[2:-1] | |||||
| ai_cpu_lines = ai_cpu_str.split(" ___ ") | |||||
| result_list = list() | |||||
| ai_cpu_total_time_summary = 0 | |||||
| # Node serial number. | |||||
| serial_number = 1 | |||||
| for i in range(len(ai_cpu_lines) - 1): | |||||
| node_line = ai_cpu_lines[i] | |||||
| thread_line = ai_cpu_lines[i + 1] | |||||
| result = [] | |||||
| if "Node" in node_line and "Thread" in thread_line: | |||||
| # Get the node data from node_line | |||||
| node_list = node_line.split(',') | |||||
| thread_list = thread_line.split(',') | |||||
| result = self._get_kernel_result(serial_number, node_list, thread_list) | |||||
| if result is None: | |||||
| continue | |||||
| result_list.append(result) | |||||
| # Calculate the total time. | |||||
| total_time = result[2] | |||||
| ai_cpu_total_time_summary += total_time | |||||
| # Increase node serial number. | |||||
| serial_number += 1 | |||||
| elif "Node" in node_line and "Thread" not in thread_line: | |||||
| node_type_name = node_line.split(',')[0].split(':')[-1] | |||||
| logger.warning("The node type:%s cannot find thread data", node_type_name) | |||||
| if result_list: | |||||
| ai_cpu_total_time = format(ai_cpu_total_time_summary, '.6f') | |||||
| result_list.append(["AI CPU Total Time(ms):", ai_cpu_total_time]) | |||||
| fwrite_format(self._output_filename, data_source=self._dst_file_title, is_print=True, | |||||
| is_start=True) | |||||
| fwrite_format(self._output_filename, | |||||
| data_source=tabulate(result_list, self._dst_file_column_title, | |||||
| tablefmt='simple'), | |||||
| is_start=True, is_print=True) | |||||
| # For timeline display. | |||||
| self._result_list = result_list | |||||
| def query_aicpu_data(self): | |||||
| """ | |||||
| Get execution time of AI CPU operator. | |||||
| Returns: | |||||
| a dict, the metadata of AI CPU operator execution time. | |||||
| """ | |||||
| stream_id = 0 # Default stream id for AI CPU. | |||||
| pid = 9000 # Default pid for AI CPU. | |||||
| factor = 1000 # Convert time unit from 1us to 1ms | |||||
| total_time = 0 | |||||
| min_cycle_counter = float('inf') | |||||
| aicpu_info = [] | |||||
| op_count_list = [] | |||||
| for aicpu_item in self._result_list: | |||||
| if "AI CPU Total Time(ms):" in aicpu_item: | |||||
| total_time = aicpu_item[-1] | |||||
| continue | |||||
| op_name = aicpu_item[1] | |||||
| start_time = float(aicpu_item[4]) / factor | |||||
| min_cycle_counter = min(min_cycle_counter, start_time) | |||||
| end_time = float(aicpu_item[5]) / factor | |||||
| duration = end_time - start_time | |||||
| aicpu_info.append([op_name, stream_id, start_time, duration, pid]) | |||||
| # Record the number of operator types. | |||||
| if op_name not in op_count_list: | |||||
| op_count_list.append(op_name) | |||||
| self._min_cycle_counter = min_cycle_counter | |||||
| aicpu_dict = { | |||||
| 'info': aicpu_info, | |||||
| 'total_time': float(total_time), | |||||
| 'op_exe_times': len(aicpu_info), | |||||
| 'num_of_ops': len(op_count_list), | |||||
| 'num_of_streams': 1 | |||||
| } | |||||
| return aicpu_dict | |||||
| @property | |||||
| def min_cycle_counter(self): | |||||
| """Get minimum cycle counter in AI CPU.""" | |||||
| return self._min_cycle_counter | |||||
| @@ -1,113 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """The container of metadata used in profiler parser.""" | |||||
| class HWTSContainer: | |||||
| """ | |||||
| HWTS output container. | |||||
| Args: | |||||
| split_list (list): The split list of metadata in HWTS output file. | |||||
| """ | |||||
| def __init__(self, split_list): | |||||
| self._op_name = '' | |||||
| self._duration = None | |||||
| self._status = split_list[0] | |||||
| self._task_id = split_list[6] | |||||
| self._cycle_counter = float(split_list[7]) | |||||
| self._stream_id = split_list[8] | |||||
| @property | |||||
| def status(self): | |||||
| """Get the status of the operator, i.e. Start or End.""" | |||||
| return self._status | |||||
| @property | |||||
| def task_id(self): | |||||
| """Get the task id of the operator.""" | |||||
| return self._task_id | |||||
| @property | |||||
| def cycle_counter(self): | |||||
| """Get the cycle counter.""" | |||||
| return self._cycle_counter | |||||
| @property | |||||
| def stream_id(self): | |||||
| """Get the stream id of the operator.""" | |||||
| return self._stream_id | |||||
| @property | |||||
| def op_name(self): | |||||
| """Get the name of the operator.""" | |||||
| return self._op_name | |||||
| @op_name.setter | |||||
| def op_name(self, name): | |||||
| """Set the name of the operator.""" | |||||
| self._op_name = name | |||||
| @property | |||||
| def duration(self): | |||||
| """Get the duration of the operator execution.""" | |||||
| return self._duration | |||||
| @duration.setter | |||||
| def duration(self, value): | |||||
| """Set the duration of the operator execution.""" | |||||
| self._duration = value | |||||
| class TimelineContainer: | |||||
| """ | |||||
| A container of operator computation metadata. | |||||
| Args: | |||||
| split_list (list): The split list of metadata in op_compute output file. | |||||
| """ | |||||
| def __init__(self, split_list): | |||||
| self._op_name = split_list[0] | |||||
| self._stream_id = int(split_list[1]) | |||||
| self._start_time = float(split_list[2]) | |||||
| self._duration = float(split_list[3]) | |||||
| self._pid = None | |||||
| if len(split_list) == 5: | |||||
| self._pid = int(split_list[4]) | |||||
| @property | |||||
| def op_name(self): | |||||
| """Get the name of the operator.""" | |||||
| return self._op_name | |||||
| @property | |||||
| def stream_id(self): | |||||
| """Get the stream id of the operator.""" | |||||
| return self._stream_id | |||||
| @property | |||||
| def start_time(self): | |||||
| """Get the execution start time of the operator.""" | |||||
| return self._start_time | |||||
| @property | |||||
| def duration(self): | |||||
| """Get the duration of the operator execution.""" | |||||
| return self._duration | |||||
| @property | |||||
| def pid(self): | |||||
| """Get the pid of the operator execution.""" | |||||
| return self._pid | |||||
| @@ -1,598 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Thr parser for parsing framework files.""" | |||||
| import csv | |||||
| import enum | |||||
| import json | |||||
| import os | |||||
| import re | |||||
| from marshmallow import ValidationError | |||||
| from mindinsight.profiler.common.exceptions.exceptions import \ | |||||
| ProfilerPathErrorException, ProfilerDirNotFoundException, \ | |||||
| ProfilerFileNotFoundException, ProfilerDeviceIdMismatchException, \ | |||||
| ProfilerRawFileException, ProfilerParamValueErrorException | |||||
| from mindinsight.profiler.common.validator.validate_path import \ | |||||
| validate_and_normalize_path | |||||
| class VmDataType(enum.IntEnum): | |||||
| """Definition of vm data type.""" | |||||
| NUMBER_TYPE_BEGIN = 26 | |||||
| NUMBER_TYPE_BOOL = 27 | |||||
| NUMBER_TYPE_INT = 28 | |||||
| NUMBER_TYPE_INT8 = 29 | |||||
| NUMBER_TYPE_INT16 = 30 | |||||
| NUMBER_TYPE_INT32 = 31 | |||||
| NUMBER_TYPE_INT64 = 32 | |||||
| NUMBER_TYPE_UINT = 33 | |||||
| NUMBER_TYPE_UINT8 = 34 | |||||
| NUMBER_TYPE_UINT16 = 35 | |||||
| NUMBER_TYPE_UINT32 = 36 | |||||
| NUMBER_TYPE_UINT64 = 37 | |||||
| NUMBER_TYPE_FLOAT = 38 | |||||
| NUMBER_TYPE_FLOAT16 = 39 | |||||
| NUMBER_TYPE_FLOAT32 = 40 | |||||
| NUMBER_TYPE_FLOAT64 = 41 | |||||
| NUMBER_TYPE_END = 42 | |||||
| @classmethod | |||||
| def get_data_type_name(cls, num): | |||||
| """ | |||||
| Get the name of data type by enum number. | |||||
| Args: | |||||
| num (int): Enum number. | |||||
| Returns: | |||||
| str, the name of data type. | |||||
| """ | |||||
| data_type = cls._value2member_map_.get(num) | |||||
| return 'UNKNOWN' if data_type is None else data_type.name | |||||
| class GeDataType(enum.IntEnum): | |||||
| """Definition of ge data type.""" | |||||
| DT_FLOAT = 0 | |||||
| DT_FLOAT16 = 1 | |||||
| DT_INT8 = 2 | |||||
| DT_INT16 = 6 | |||||
| DT_UINT16 = 7 | |||||
| DT_UINT8 = 4 | |||||
| DT_INT32 = 3 | |||||
| DT_INT64 = 9 | |||||
| DT_UINT32 = 8 | |||||
| DT_UINT64 = 10 | |||||
| DT_BOOL = 12 | |||||
| DT_DOUBLE = 11 | |||||
| DT_STRING = 13 | |||||
| DT_DUAL_SUB_INT8 = 14 | |||||
| DT_DUAL_SUB_UINT8 = 15 | |||||
| DT_COMPLEX64 = 16 | |||||
| DT_COMPLEX128 = 17 | |||||
| DT_QINT8 = 18 | |||||
| DT_QINT16 = 19 | |||||
| DT_QINT32 = 20 | |||||
| DT_QUINT8 = 21 | |||||
| DT_QUINT16 = 22 | |||||
| DT_RESOURCE = 23 | |||||
| DT_STRING_REF = 24 | |||||
| DT_DUAL = 25 | |||||
| DT_UNDEFINED = 26 | |||||
| @classmethod | |||||
| def get_data_type_name(cls, num): | |||||
| """ | |||||
| Get the name of data type by enum number. | |||||
| Args: | |||||
| num (int): Enum number. | |||||
| Returns: | |||||
| str, the name of data type. | |||||
| """ | |||||
| data_type = cls._value2member_map_.get(num) | |||||
| return 'UNKNOWN' if data_type is None else data_type.name | |||||
| class GeFormat(enum.IntEnum): | |||||
| """Definition of ge format type.""" | |||||
| FORMAT_NCHW = 0 | |||||
| FORMAT_NHWC = 1 | |||||
| FORMAT_ND = 2 | |||||
| FORMAT_NC1HWC0 = 3 | |||||
| FORMAT_FRACTAL_Z = 4 | |||||
| FORMAT_NC1C0HWPAD = 5 | |||||
| FORMAT_NHWC1C0 = 6 | |||||
| FORMAT_FSR_NCHW = 7 | |||||
| FORMAT_FRACTAL_DECONV = 8 | |||||
| FORMAT_C1HWNC0 = 9 | |||||
| FORMAT_FRACTAL_DECONV_TRANSPOSE = 10 | |||||
| FORMAT_FRACTAL_DECONV_SP_STRIDE_TRANS = 11 | |||||
| FORMAT_NC1HWC0_C04 = 12 | |||||
| FORMAT_FRACTAL_Z_C04 = 13 | |||||
| FORMAT_CHWN = 14 | |||||
| FORMAT_FRACTAL_DECONV_SP_STRIDE8_TRANS = 15 | |||||
| FORMAT_HWCN = 16 | |||||
| FORMAT_NC1KHKWHWC0 = 17 | |||||
| FORMAT_BN_WEIGHT = 18 | |||||
| FORMAT_FILTER_HWCK = 19 | |||||
| FORMAT_HASHTABLE_LOOKUP_LOOKUPS = 20 | |||||
| FORMAT_HASHTABLE_LOOKUP_KEYS = 21 | |||||
| FORMAT_HASHTABLE_LOOKUP_VALUE = 22 | |||||
| FORMAT_HASHTABLE_LOOKUP_OUTPUT = 23 | |||||
| FORMAT_HASHTABLE_LOOKUP_HITS = 24 | |||||
| FORMAT_C1HWNCOC0 = 25 | |||||
| FORMAT_MD = 26 | |||||
| FORMAT_NDHWC = 27 | |||||
| FORMAT_FRACTAL_ZZ = 28 | |||||
| FORMAT_FRACTAL_NZ = 29 | |||||
| FORMAT_NCDHW = 30 | |||||
| FORMAT_DHWCN = 31 | |||||
| FORMAT_NDC1HWC0 = 32 | |||||
| FORMAT_FRACTAL_Z_3D = 33 | |||||
| FORMAT_CN = 34 | |||||
| FORMAT_NC = 35 | |||||
| FORMAT_DHWNC = 36 | |||||
| FORMAT_FRACTAL_Z_3D_TRANSPOSE = 37 | |||||
| FORMAT_RESERVED = 38 | |||||
| FORMAT_ALL = 39 | |||||
| @classmethod | |||||
| def get_format_name(cls, num): | |||||
| """ | |||||
| Get the name of format type by enum number. | |||||
| Args: | |||||
| num (int): Enum number. | |||||
| Returns: | |||||
| str, the name of format type. | |||||
| """ | |||||
| format_type = cls._value2member_map_.get(num) | |||||
| return 'UNKNOWN' if format_type is None else format_type.name | |||||
| class FrameworkParser: | |||||
| """ | |||||
| Thr parser for parsing framework files. | |||||
| Args: | |||||
| profiling_id (str): The profiling ID. | |||||
| device_id (str): The device ID. | |||||
| output_path (str): The directory of the parsed file. Default: `./`. | |||||
| """ | |||||
| _raw_data_dir = '/var/log/npu/profiling' | |||||
| _regex_framework = r'Framework\.host\.(?P<data_type>.+)\.(?P<device_id>\d).+' | |||||
| _regex_framework_in_data = r'Framework\.host\.(?P<data_type>.+)\.' \ | |||||
| r'(?P<device_id>\d)\.(?P<profiling_id>[a-zA-Z0-9]+).+' | |||||
| _col_names = [ | |||||
| 'task_id', 'stream_id', 'block_dim', 'full_op_name', 'op_name', | |||||
| 'op_type', 'subgraph', 'op_info' | |||||
| ] | |||||
| _graph_attr_name = [ | |||||
| 'input_format', 'input_data_type', 'input_shape', 'output_format', | |||||
| 'output_data_type', 'output_shape' | |||||
| ] | |||||
| # if the task id is less than the task id threshold, The combination of | |||||
| # task id and Stream id represents one operator, else the task id represents | |||||
| # one operator | |||||
| _task_id_threshold = 25000 | |||||
| def __init__(self, profiling_id, device_id, output_path='./'): | |||||
| self._profiling_path = self._get_raw_profiling_path(profiling_id) | |||||
| self._backend_type = None | |||||
| self._framework_path = {'graph': [], 'task': [], 'point': []} | |||||
| self._search_file(profiling_id, device_id) | |||||
| self._device_id = device_id | |||||
| self._save_path = self._get_save_path(device_id, output_path) | |||||
| self._task_id_full_op_name_dict = {} | |||||
| self._task_cache = {} | |||||
| self._point_info = {} | |||||
| self._parse_task_files() | |||||
| self._parse_point_files() | |||||
| @property | |||||
| def save_path(self): | |||||
| """ | |||||
| The property of save path. | |||||
| Returns: | |||||
| str, the save path. | |||||
| """ | |||||
| return self._save_path | |||||
| @property | |||||
| def point_info(self): | |||||
| """ | |||||
| The property of the framework point information. | |||||
| Returns: | |||||
| dict, the framework point information. | |||||
| """ | |||||
| return self._point_info | |||||
| def to_task_id_full_op_name_dict(self): | |||||
| """ | |||||
| Get the task id and full operator name dict. | |||||
| Returns: | |||||
| dict, the task id and full operator name dict. | |||||
| """ | |||||
| return self._task_id_full_op_name_dict | |||||
| def parse(self): | |||||
| """Parse the framework files.""" | |||||
| self._parse_graph_files_and_save(self._task_cache) | |||||
| del self._task_cache | |||||
| def check_op_name(self, op_name, is_prefix=True): | |||||
| """ | |||||
| Check whether the operator name exists. | |||||
| Args: | |||||
| op_name (str): The operator name or operator name prefix. | |||||
| is_prefix (bool): `True` if the op_name is prefix, else `False`. | |||||
| Default: True. | |||||
| Returns: | |||||
| bool, `True` if the operator name does exist in framework file, else | |||||
| `False`. | |||||
| """ | |||||
| if not op_name: | |||||
| raise ProfilerParamValueErrorException('The op_name should exist.') | |||||
| for full_op_name in self._task_id_full_op_name_dict.values(): | |||||
| if full_op_name: | |||||
| if is_prefix and full_op_name.startswith(op_name): | |||||
| return True | |||||
| if not is_prefix and op_name == full_op_name: | |||||
| return True | |||||
| return False | |||||
| def _get_raw_profiling_path(self, profiling_id): | |||||
| """ | |||||
| Get raw profiling path. | |||||
| Args: | |||||
| profiling_id (str): The profiling ID. | |||||
| Returns: | |||||
| str, the raw profiling path. | |||||
| Raises: | |||||
| ProfilerPathErrorException: If the profiling path is invalid. | |||||
| ProfilerDirNotFoundException: If the profiling dir is not found. | |||||
| """ | |||||
| profiling_path = os.path.join(self._raw_data_dir, profiling_id) | |||||
| try: | |||||
| profiling_path = validate_and_normalize_path( | |||||
| profiling_path, 'profiler' | |||||
| ) | |||||
| except ValidationError: | |||||
| raise ProfilerPathErrorException('Profiling path is invalid.') | |||||
| if not os.path.isdir(profiling_path): | |||||
| raise ProfilerDirNotFoundException(profiling_path) | |||||
| return profiling_path | |||||
| def _search_file(self, profiling_id, device_id): | |||||
| """ | |||||
| Search all framework files in raw profiling path. | |||||
| Args: | |||||
| profiling_id (str): The profiling ID. | |||||
| device_id (str): The device ID. | |||||
| Raises: | |||||
| ProfilerFileNotFoundException: If the framework files are not found. | |||||
| """ | |||||
| # first search in the JOB dir, and if not, search in the sub directory | |||||
| # in the JOB | |||||
| self._search_file_from_job_path(device_id, search_in_sub_path=False) | |||||
| if self._backend_type is None: | |||||
| self._search_file_from_job_path(device_id, search_in_sub_path=True) | |||||
| self._search_file_from_data_path(profiling_id, device_id) | |||||
| if self._backend_type is None: | |||||
| raise ProfilerFileNotFoundException('Framework') | |||||
| self._framework_path['graph'].sort() | |||||
| self._framework_path['task'].sort() | |||||
| def _search_file_from_job_path(self, device_id, search_in_sub_path=False): | |||||
| """ | |||||
| Search framework files from job path. | |||||
| Args: | |||||
| device_id (str): The device ID. | |||||
| search_in_sub_path (bool): `True` if search file in profiling dir, | |||||
| else search in profiling sub dir. Default: False. | |||||
| Raises: | |||||
| ProfilerRawFileException: If the framework file type is inconsistent. | |||||
| ProfilerDeviceIdMismatchException: If the device id is mismatch | |||||
| with framework in the raw dir. | |||||
| """ | |||||
| profiling_dir = os.path.join(self._profiling_path, 'data') \ | |||||
| if search_in_sub_path else self._profiling_path | |||||
| if not os.path.isdir(profiling_dir): | |||||
| return | |||||
| files = os.listdir(profiling_dir) | |||||
| for file in files: | |||||
| pattern = re.search(self._regex_framework, file) | |||||
| if not pattern or file.endswith('.done'): | |||||
| continue | |||||
| attrs = pattern.groupdict() | |||||
| device_id_in_path = attrs.get('device_id') | |||||
| if device_id_in_path != device_id: | |||||
| raise ProfilerDeviceIdMismatchException() | |||||
| data_type = attrs.get('data_type') | |||||
| if data_type.startswith('vm.'): | |||||
| if self._backend_type and self._backend_type != 'vm': | |||||
| raise ProfilerRawFileException('Backend type is inconsistent.') | |||||
| self._backend_type = 'vm' | |||||
| data_type = data_type.split('.')[1] | |||||
| else: | |||||
| if self._backend_type and self._backend_type != 'ge': | |||||
| raise ProfilerRawFileException('Backend type is inconsistent.') | |||||
| self._backend_type = 'ge' | |||||
| if data_type.startswith('graph_desc_info'): | |||||
| self._framework_path['graph'].append( | |||||
| os.path.join(profiling_dir, file) | |||||
| ) | |||||
| elif data_type.startswith('task_desc_info'): | |||||
| self._framework_path['task'].append( | |||||
| os.path.join(profiling_dir, file) | |||||
| ) | |||||
| elif data_type.startswith('point'): | |||||
| self._framework_path['point'].append( | |||||
| os.path.join(profiling_dir, file) | |||||
| ) | |||||
| def _search_file_from_data_path(self, profiling_id, device_id): | |||||
| """ | |||||
| Search framework files from data path. | |||||
| Args: | |||||
| profiling_id (str): The profiling ID. | |||||
| device_id (str): The device ID. | |||||
| Raises: | |||||
| ProfilerRawFileException: If the framework file type is inconsistent. | |||||
| ProfilerDeviceIdMismatchException: If the device id is mismatch | |||||
| with framework in the raw dir. | |||||
| """ | |||||
| profiling_data_path = os.path.join( | |||||
| self._raw_data_dir, 'container', device_id, 'data' | |||||
| ) | |||||
| if not os.path.isdir(profiling_data_path): | |||||
| return | |||||
| files = os.listdir(profiling_data_path) | |||||
| for file in files: | |||||
| pattern = re.search(self._regex_framework_in_data, file) | |||||
| if not pattern or file.endswith('.done') or file.endswith('.zip'): | |||||
| continue | |||||
| attrs = pattern.groupdict() | |||||
| profiling_id_in_path = attrs.get('profiling_id') | |||||
| if profiling_id_in_path != profiling_id: | |||||
| continue | |||||
| device_id_in_path = attrs.get('device_id') | |||||
| if device_id_in_path != device_id: | |||||
| raise ProfilerDeviceIdMismatchException() | |||||
| data_type = attrs.get('data_type') | |||||
| if data_type.startswith('vm.'): | |||||
| if self._backend_type and self._backend_type != 'vm': | |||||
| raise ProfilerRawFileException('Backend type is inconsistent.') | |||||
| self._backend_type = 'vm' | |||||
| data_type = data_type.split('.')[1] | |||||
| else: | |||||
| if self._backend_type and self._backend_type != 'ge': | |||||
| raise ProfilerRawFileException('Backend type is inconsistent.') | |||||
| self._backend_type = 'ge' | |||||
| if data_type.startswith('graph_desc_info'): | |||||
| self._framework_path['graph'].append( | |||||
| os.path.join(profiling_data_path, file) | |||||
| ) | |||||
| elif data_type.startswith('task_desc_info'): | |||||
| self._framework_path['task'].append( | |||||
| os.path.join(profiling_data_path, file) | |||||
| ) | |||||
| elif data_type.startswith('point'): | |||||
| self._framework_path['point'].append( | |||||
| os.path.join(profiling_data_path, file) | |||||
| ) | |||||
| def _get_save_path(self, device_id, output_path): | |||||
| """ | |||||
| Get the save path. | |||||
| Args: | |||||
| device_id (str): The device ID. | |||||
| output_path (str): The output dir. | |||||
| Returns: | |||||
| str, the save path. | |||||
| Raises: | |||||
| ProfilerPathErrorException: If the output path is invalid. | |||||
| ProfilerDirNotFoundException: If the output dir is not found. | |||||
| """ | |||||
| try: | |||||
| output_dir = validate_and_normalize_path(output_path, 'profiler') | |||||
| except ValidationError: | |||||
| raise ProfilerPathErrorException('Output path is invalid.') | |||||
| if not os.path.isdir(output_dir): | |||||
| raise ProfilerDirNotFoundException(output_dir) | |||||
| return os.path.join( | |||||
| output_dir, '_'.join(['framework', 'raw', device_id]) + '.csv' | |||||
| ) | |||||
| def _parse_task_files(self): | |||||
| """Parse the framework task files.""" | |||||
| for path in self._framework_path['task']: | |||||
| with open(path, 'r') as file: | |||||
| for task_info in file: | |||||
| infos = task_info.strip('\n').split(' ') | |||||
| # key is op name, values is task id, stream id, block_dim | |||||
| self._task_cache[infos[0]] = [infos[2], infos[3], infos[1]] | |||||
| # if the task id is less than the task id threshold, the | |||||
| # stream id and task id correspond to an operator | |||||
| task_id = infos[2] | |||||
| if int(task_id) < self._task_id_threshold: | |||||
| task_id = '_'.join([infos[3], task_id]) | |||||
| self._task_id_full_op_name_dict[task_id] = infos[0] | |||||
| def _parse_graph_files_and_save(self, task_cache): | |||||
| """ | |||||
| Parse the framework graph files and save the framework information. | |||||
| Args: | |||||
| task_cache (dict): The task information cache. | |||||
| """ | |||||
| with open(self._save_path, 'w') as save_file: | |||||
| csv_writer = csv.writer(save_file) | |||||
| csv_writer.writerow(self._col_names) | |||||
| for path in self._framework_path['graph']: | |||||
| with open(path, 'r') as graph_file: | |||||
| for graph_info in graph_file: | |||||
| result = self._parse_one_row_graph_info(graph_info) | |||||
| task_info = task_cache.get(result[0]) | |||||
| if task_info: | |||||
| task_info.extend(result) | |||||
| csv_writer.writerow(task_info) | |||||
| del task_cache[result[0]] | |||||
| else: | |||||
| save_info = [None, None, None] | |||||
| save_info.extend(result) | |||||
| csv_writer.writerow(save_info) | |||||
| none_list = [None, None, None, None] | |||||
| for key, value in task_cache.items(): | |||||
| value.append(key) | |||||
| value.extend(none_list) | |||||
| csv_writer.writerow(value) | |||||
| def _parse_one_row_graph_info(self, row_info): | |||||
| """ | |||||
| Parse the graph information in one row. | |||||
| Args: | |||||
| row_info (str): One row graph information. | |||||
| Returns: | |||||
| list[str], the parsed graph information. | |||||
| """ | |||||
| full_op_name = None | |||||
| op_name = None | |||||
| subgraph_name = None | |||||
| op_type = None | |||||
| op_info = dict() | |||||
| cur_op_info_key = None | |||||
| infos = row_info.strip('\n').split(' ') | |||||
| for info in infos: | |||||
| attr_name, attr_value = info.split(':', 1) | |||||
| if attr_name == 'op_name': | |||||
| full_op_name = attr_value | |||||
| subgraph_name = self._get_subgraph_name(full_op_name) | |||||
| op_name = self._get_op_name(full_op_name, subgraph_name) | |||||
| elif attr_name == 'op_type': | |||||
| op_type = attr_value | |||||
| elif attr_name in ['input_id', 'output_id']: | |||||
| cur_op_info_key = '{}_{}'.format( | |||||
| attr_name.split('_')[0], attr_value | |||||
| ) | |||||
| op_info[cur_op_info_key] = dict() | |||||
| elif attr_name in self._graph_attr_name: | |||||
| op_attr = attr_name.split('_', 1)[1] | |||||
| if op_attr == 'shape': | |||||
| attr_value = attr_value.strip('"') | |||||
| if self._backend_type == 'vm': | |||||
| if op_attr == 'data_type': | |||||
| attr_value = VmDataType.get_data_type_name( | |||||
| int(attr_value) | |||||
| ) | |||||
| else: | |||||
| if op_attr == 'data_type': | |||||
| attr_value = GeDataType.get_data_type_name( | |||||
| int(attr_value) | |||||
| ) | |||||
| elif op_attr == 'format': | |||||
| attr_value = GeFormat.get_format_name(int(attr_value)) | |||||
| op_info[cur_op_info_key][op_attr] = attr_value | |||||
| # the list info are full_op_name, op_name, op_type, subgraph, op_info | |||||
| return [full_op_name, op_name, op_type, subgraph_name, | |||||
| json.dumps(op_info)] | |||||
| def _get_subgraph_name(self, full_op_name): | |||||
| """ | |||||
| Get subgraph name. | |||||
| Args: | |||||
| full_op_name (str): The full operator name. | |||||
| Returns: | |||||
| str, the subgraph name. | |||||
| """ | |||||
| subgraph_name = full_op_name.split('/', 1)[0] | |||||
| if subgraph_name in ['Default', 'Gradients']: | |||||
| return subgraph_name | |||||
| return None | |||||
| def _get_op_name(self, full_op_name, subgraph_name): | |||||
| """ | |||||
| Get operator name. | |||||
| Args: | |||||
| full_op_name (str): The full operator name. | |||||
| subgraph_name (str): The subgraph name. | |||||
| Returns: | |||||
| str, the operator name. | |||||
| """ | |||||
| if subgraph_name is None: | |||||
| return full_op_name | |||||
| if self._backend_type == 'vm': | |||||
| return full_op_name.split('/')[-1] | |||||
| strs = full_op_name.split(subgraph_name + '/') | |||||
| op_name = None | |||||
| for name_str in strs: | |||||
| if not name_str: | |||||
| continue | |||||
| if op_name is None: | |||||
| op_name = name_str.split('/')[-1] | |||||
| else: | |||||
| op_name = '+'.join([op_name, name_str.split('/')[-1]]) | |||||
| return op_name | |||||
| def _parse_point_files(self): | |||||
| """Parse the framework point files.""" | |||||
| for path in self._framework_path['point']: | |||||
| with open(path, 'r') as file: | |||||
| for point_info in file: | |||||
| infos = point_info.strip('\n').split(' ') | |||||
| self._point_info[int(infos[0])] = infos[1] | |||||
| @@ -1,109 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """The parser for hwts log file.""" | |||||
| import os | |||||
| import struct | |||||
| from mindinsight.profiler.common._utils import fwrite_format, get_file_join_name | |||||
| from mindinsight.profiler.common.log import logger | |||||
| class HWTSLogParser: | |||||
| """ | |||||
| The Parser for hwts log files. | |||||
| Args: | |||||
| _input_path (str): The profiling job path. Such as: '/var/log/npu/profiling/JOBAIFGJEJFEDCBAEADIFJAAAAAAAAAA". | |||||
| output_filename (str): The output data path and name. Such as: './output_format_data_hwts_0.txt'. | |||||
| """ | |||||
| _source_file_target = 'hwts.log.data.45.dev.profiler_default_tag' | |||||
| _dst_file_title = 'title:45 HWTS data' | |||||
| _dst_file_column_title = 'Type cnt Core_ID Block_ID Task_ID Cycle_counter Stream_ID' | |||||
| def __init__(self, input_path, output_filename): | |||||
| self._input_path = input_path | |||||
| self._output_filename = output_filename | |||||
| self._source_flie_name = self._get_source_file() | |||||
| def _get_source_file(self): | |||||
| """Get hwts log file name, which was created by ada service.""" | |||||
| file_name = get_file_join_name(self._input_path, self._source_file_target) | |||||
| if not file_name: | |||||
| data_path = os.path.join(self._input_path, "data") | |||||
| file_name = get_file_join_name(data_path, self._source_file_target) | |||||
| if not file_name: | |||||
| msg = ("Fail to find hwts log file, under profiling directory") | |||||
| raise RuntimeError(msg) | |||||
| return file_name | |||||
| def execute(self): | |||||
| """ | |||||
| Execute the parser, get result data, and write it to the output file. | |||||
| Returns: | |||||
| bool, whether succeed to analyse hwts log. | |||||
| """ | |||||
| content_format = ['QIIIIIIIIIIII', 'QIIQIIIIIIII', 'IIIIQIIIIIIII'] | |||||
| log_type = ['Start of task', 'End of task', 'Start of block', 'End of block', 'Block PMU'] | |||||
| result_data = "" | |||||
| with open(self._source_flie_name, 'rb') as hwts_data: | |||||
| while True: | |||||
| line = hwts_data.read(64) | |||||
| if line: | |||||
| if not line.strip(): | |||||
| continue | |||||
| else: | |||||
| break | |||||
| byte_first_four = struct.unpack('BBHHH', line[0:8]) | |||||
| byte_first = bin(byte_first_four[0]).replace('0b', '').zfill(8) | |||||
| ms_type = byte_first[-3:] | |||||
| is_warn_res0_ov = byte_first[4] | |||||
| cnt = int(byte_first[0:4], 2) | |||||
| core_id = byte_first_four[1] | |||||
| blk_id, task_id = byte_first_four[3], byte_first_four[4] | |||||
| if ms_type in ['000', '001', '010']: # log type 0,1,2 | |||||
| result = struct.unpack(content_format[0], line[8:]) | |||||
| syscnt = result[0] | |||||
| stream_id = result[1] | |||||
| elif ms_type == '011': # log type 3 | |||||
| result = struct.unpack(content_format[1], line[8:]) | |||||
| syscnt = result[0] | |||||
| stream_id = result[1] | |||||
| elif ms_type == '100': # log type 4 | |||||
| result = struct.unpack(content_format[2], line[8:]) | |||||
| stream_id = result[2] | |||||
| if is_warn_res0_ov == '0': | |||||
| syscnt = result[4] | |||||
| else: | |||||
| syscnt = None | |||||
| else: | |||||
| logger.info("Profiling: invalid hwts log record type %s", ms_type) | |||||
| continue | |||||
| if int(task_id) < 25000: | |||||
| task_id = str(stream_id) + "_" + str(task_id) | |||||
| result_data += ("%-14s %-4s %-8s %-9s %-8s %-15s %s\n" %(log_type[int(ms_type, 2)], cnt, core_id, | |||||
| blk_id, task_id, syscnt, stream_id)) | |||||
| fwrite_format(self._output_filename, data_source=self._dst_file_title, is_start=True) | |||||
| fwrite_format(self._output_filename, data_source=self._dst_file_column_title) | |||||
| fwrite_format(self._output_filename, data_source=result_data) | |||||
| return True | |||||
| @@ -1,93 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Minddata aicpu parser.""" | |||||
| import os | |||||
| from tabulate import tabulate | |||||
| from mindinsight.profiler.common._utils import get_file_join_name, fwrite_format | |||||
| from mindinsight.profiler.common.log import logger | |||||
| class MinddataParser: | |||||
| """Minddata Aicpu Parser.""" | |||||
| @staticmethod | |||||
| def parse_minddata_aicpu_data(minddata_aicpu_source_path): | |||||
| """ | |||||
| Parse minddata get_next info which contains queue size and execute time. | |||||
| Args: | |||||
| minddata_aicpu_source_path (str): the source file path. | |||||
| Returns: | |||||
| list[Union[str, float]], the converted data. | |||||
| """ | |||||
| result = list() | |||||
| try: | |||||
| with open(minddata_aicpu_source_path) as source_data_file: | |||||
| source_data = source_data_file.read() | |||||
| step_data = source_data.split("\x00") | |||||
| for one_step in step_data: | |||||
| if one_step: | |||||
| node_info = one_step.split(", ") | |||||
| node_name, node_start, node_end, queue_size = "", 0, 0, 0 | |||||
| if node_info: | |||||
| node_name = node_info[0].replace("Node:", "") | |||||
| if len(node_info) > 2: | |||||
| node_start = node_info[1].replace("Run start:", "") | |||||
| if node_start.isdigit(): | |||||
| node_start = int(node_start) | |||||
| node_end = node_info[2].replace("Run end:", "") | |||||
| if node_end.isdigit(): | |||||
| node_end = int(node_end) | |||||
| if len(node_info) > 3: | |||||
| queue_size = node_info[3].replace("queue size:", "") | |||||
| if queue_size.isdigit(): | |||||
| queue_size = int(queue_size) | |||||
| one_step_list = [node_name, node_start, node_end, queue_size] | |||||
| result.append(one_step_list) | |||||
| except OSError: | |||||
| logger.error("Open get_next profiling file error.") | |||||
| return result | |||||
| @staticmethod | |||||
| def execute(source_path, output_path, device_id): | |||||
| """ | |||||
| Execute the parser. | |||||
| Args: | |||||
| source_path (str): the source file path. | |||||
| output_path (str): the output file path. | |||||
| device_id (str): the device id. | |||||
| """ | |||||
| col_names = ["node_name", "start_time", "end_time", "queue_size"] | |||||
| minddata_aicpu_source_path = get_file_join_name( | |||||
| input_path=source_path, file_name='DATA_PREPROCESS.dev.AICPUMI') | |||||
| if not minddata_aicpu_source_path: | |||||
| minddata_aicpu_source_path = get_file_join_name( | |||||
| input_path=os.path.join(source_path, "data"), file_name='DATA_PREPROCESS.dev.AICPUMI') | |||||
| if not minddata_aicpu_source_path: | |||||
| return | |||||
| minddata_aicpu_output_path = os.path.join(output_path, "minddata_aicpu_" + device_id + ".txt") | |||||
| minddata_aicpu_data = MinddataParser.parse_minddata_aicpu_data(minddata_aicpu_source_path) | |||||
| if minddata_aicpu_data: | |||||
| fwrite_format( | |||||
| minddata_aicpu_output_path, | |||||
| tabulate(minddata_aicpu_data, col_names, tablefmt='simple'), | |||||
| is_start=True | |||||
| ) | |||||
| @@ -1,289 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Thr parser for parsing minddata pipeline files.""" | |||||
| import csv | |||||
| import json | |||||
| import os | |||||
| from queue import Queue | |||||
| from marshmallow import ValidationError | |||||
| from mindinsight.profiler.common.exceptions.exceptions import \ | |||||
| ProfilerPathErrorException, ProfilerFileNotFoundException, \ | |||||
| ProfilerDirNotFoundException, ProfilerRawFileException | |||||
| from mindinsight.profiler.common.log import logger | |||||
| from mindinsight.profiler.common.validator.validate_path import \ | |||||
| validate_and_normalize_path | |||||
| class MinddataPipelineParser: | |||||
| """ | |||||
| Thr parser for parsing minddata pipeline files. | |||||
| Args: | |||||
| source_dir (str): The minddata pipeline source dir. | |||||
| device_id (str): The device ID. | |||||
| output_path (str): The directory of the parsed file. Default: `./`. | |||||
| Raises: | |||||
| ProfilerPathErrorException: If the minddata pipeline file path or | |||||
| the output path is invalid. | |||||
| ProfilerFileNotFoundException: If the minddata pipeline file or | |||||
| the output dir does not exist. | |||||
| """ | |||||
| _raw_pipeline_file_name = 'pipeline_profiling_{}.json' | |||||
| _parsed_pipeline_file_name = 'minddata_pipeline_raw_{}.csv' | |||||
| _col_names = [ | |||||
| 'op_id', 'op_type', 'num_workers', 'output_queue_size', | |||||
| 'output_queue_average_size', 'output_queue_length', | |||||
| 'output_queue_usage_rate', 'sample_interval', 'parent_id', 'children_id' | |||||
| ] | |||||
| def __init__(self, source_dir, device_id, output_path='./'): | |||||
| self._device_id = device_id | |||||
| self._pipeline_path = self._get_pipeline_path(source_dir) | |||||
| self._save_path = self._get_save_path(output_path) | |||||
| @property | |||||
| def save_path(self): | |||||
| """ | |||||
| The property of save path. | |||||
| Returns: | |||||
| str, the save path. | |||||
| """ | |||||
| return self._save_path | |||||
| def parse(self): | |||||
| """ | |||||
| Parse the minddata pipeline files. | |||||
| Raises: | |||||
| ProfilerRawFileException: If fails to parse the raw file of | |||||
| minddata pipeline or the file is empty. | |||||
| """ | |||||
| with open(self._pipeline_path, 'r') as file: | |||||
| try: | |||||
| pipeline_info = json.load(file) | |||||
| except (json.JSONDecodeError, TypeError) as err: | |||||
| logger.exception(err) | |||||
| raise ProfilerRawFileException( | |||||
| 'Fail to parse minddata pipeline file.' | |||||
| ) | |||||
| if not pipeline_info: | |||||
| logger.warning('The minddata pipeline file is empty.') | |||||
| raise ProfilerRawFileException( | |||||
| 'The minddata pipeline file is empty.' | |||||
| ) | |||||
| self._parse_and_save(pipeline_info) | |||||
| def _get_pipeline_path(self, source_dir): | |||||
| """ | |||||
| Get the minddata pipeline file path. | |||||
| Args: | |||||
| source_dir (str): The minddata pipeline source dir. | |||||
| Returns: | |||||
| str, the minddata pipeline file path. | |||||
| """ | |||||
| pipeline_path = os.path.join( | |||||
| source_dir, | |||||
| self._raw_pipeline_file_name.format(self._device_id) | |||||
| ) | |||||
| try: | |||||
| pipeline_path = validate_and_normalize_path(pipeline_path, 'profiler') | |||||
| except ValidationError: | |||||
| logger.warning('Minddata pipeline file is invalid.') | |||||
| raise ProfilerPathErrorException('Minddata pipeline file is invalid.') | |||||
| if not os.path.isfile(pipeline_path): | |||||
| logger.warning( | |||||
| 'The minddata pipeline file <%s> not found.', pipeline_path | |||||
| ) | |||||
| raise ProfilerFileNotFoundException(pipeline_path) | |||||
| return pipeline_path | |||||
| def _get_save_path(self, output_path): | |||||
| """ | |||||
| Get the save path. | |||||
| Args: | |||||
| output_path (str): The output dir. | |||||
| Returns: | |||||
| str, the save path. | |||||
| """ | |||||
| try: | |||||
| output_dir = validate_and_normalize_path(output_path, 'profiler') | |||||
| except ValidationError: | |||||
| logger.warning('Output path is invalid.') | |||||
| raise ProfilerPathErrorException('Output path is invalid.') | |||||
| if not os.path.isdir(output_dir): | |||||
| logger.warning('The output dir <%s> not found.', output_dir) | |||||
| raise ProfilerDirNotFoundException(output_dir) | |||||
| return os.path.join( | |||||
| output_dir, self._parsed_pipeline_file_name.format(self._device_id) | |||||
| ) | |||||
| def _parse_and_save(self, pipeline_info): | |||||
| """ | |||||
| Parse and save the parsed minddata pipeline file. | |||||
| Args: | |||||
| pipeline_info (dict): The pipeline info reads from the raw file of | |||||
| the minddata pipeline. | |||||
| Raises: | |||||
| ProfilerRawFileException: If the format of minddata pipeline raw | |||||
| file is wrong. | |||||
| """ | |||||
| sample_interval = pipeline_info.get('sampling_interval') | |||||
| op_info = pipeline_info.get('op_info') | |||||
| if sample_interval is None or not op_info: | |||||
| raise ProfilerRawFileException( | |||||
| 'The format of minddata pipeline raw file is wrong.' | |||||
| ) | |||||
| op_id_info_cache = {} | |||||
| for item in op_info: | |||||
| op_id_info_cache[item.get('op_id')] = item | |||||
| with open(self._save_path, 'w') as save_file: | |||||
| csv_writer = csv.writer(save_file) | |||||
| csv_writer.writerow(self._col_names) | |||||
| self._parse_and_save_op_info( | |||||
| csv_writer, op_id_info_cache, sample_interval | |||||
| ) | |||||
| def _parse_and_save_op_info(self, csv_writer, op_id_info_cache, | |||||
| sample_interval): | |||||
| """ | |||||
| Parse and save the minddata pipeline operator information. | |||||
| Args: | |||||
| csv_writer (csv.writer): The csv writer. | |||||
| op_id_info_cache (dict): The operator id and information cache. | |||||
| sample_interval (int): The sample interval. | |||||
| Raises: | |||||
| ProfilerRawFileException: If the operator that id is 0 does not exist. | |||||
| """ | |||||
| queue = Queue() | |||||
| root_node = op_id_info_cache.get(0) | |||||
| if not root_node: | |||||
| raise ProfilerRawFileException( | |||||
| 'The format of minddata pipeline raw file is wrong, ' | |||||
| 'the operator that id is 0 does not exist.' | |||||
| ) | |||||
| root_node['parent_id'] = None | |||||
| queue.put_nowait(root_node) | |||||
| while not queue.empty(): | |||||
| node = queue.get_nowait() | |||||
| self._update_child_node(node, op_id_info_cache) | |||||
| csv_writer.writerow(self._get_op_info(node, sample_interval)) | |||||
| op_id = node.get('op_id') | |||||
| children_ids = node.get('children') | |||||
| if not children_ids: | |||||
| continue | |||||
| for child_op_id in children_ids: | |||||
| sub_node = op_id_info_cache.get(child_op_id) | |||||
| sub_node['parent_id'] = op_id | |||||
| queue.put_nowait(sub_node) | |||||
| def _update_child_node(self, node, op_id_info_cache): | |||||
| """ | |||||
| Updates the child node information of the operator. | |||||
| Args: | |||||
| node (dict): The node represents an operator. | |||||
| op_id_info_cache (dict): The operator id and information cache. | |||||
| """ | |||||
| child_op_ids = node.get('children') | |||||
| if not child_op_ids: | |||||
| return | |||||
| queue = Queue() | |||||
| self._cp_list_item_to_queue(child_op_ids, queue) | |||||
| new_child_op_ids = [] | |||||
| while not queue.empty(): | |||||
| child_op_id = queue.get_nowait() | |||||
| child_node = op_id_info_cache.get(child_op_id) | |||||
| if child_node is None: | |||||
| continue | |||||
| metrics = child_node.get('metrics') | |||||
| if not metrics or not metrics.get('output_queue'): | |||||
| op_ids = child_node.get('children') | |||||
| if op_ids: | |||||
| self._cp_list_item_to_queue(op_ids, queue) | |||||
| else: | |||||
| new_child_op_ids.append(child_op_id) | |||||
| node['children'] = new_child_op_ids | |||||
| def _get_op_info(self, op_node, sample_interval): | |||||
| """ | |||||
| Get the operator information. | |||||
| Args: | |||||
| op_node (dict): The node represents an operator. | |||||
| sample_interval (int): The sample interval. | |||||
| Returns: | |||||
| list[str, int, float], the operator information. | |||||
| """ | |||||
| queue_size = None | |||||
| queue_average_size = None | |||||
| queue_length = None | |||||
| queue_usage_rate = None | |||||
| metrics = op_node.get('metrics') | |||||
| if metrics: | |||||
| output_queue = metrics.get('output_queue') | |||||
| if output_queue: | |||||
| queue_size = output_queue.get('size') | |||||
| queue_average_size = sum(queue_size) / len(queue_size) | |||||
| queue_length = output_queue.get('length') | |||||
| queue_usage_rate = queue_average_size / queue_length | |||||
| children_id = op_node.get('children') | |||||
| op_info = [ | |||||
| op_node.get('op_id'), | |||||
| op_node.get('op_type'), | |||||
| op_node.get('num_workers'), | |||||
| queue_size, | |||||
| queue_average_size, | |||||
| queue_length, | |||||
| queue_usage_rate, | |||||
| sample_interval, | |||||
| op_node.get('parent_id'), | |||||
| children_id if children_id else None | |||||
| ] | |||||
| return op_info | |||||
| def _cp_list_item_to_queue(self, inner_list, queue): | |||||
| """ | |||||
| Copy the contents of a list to a queue. | |||||
| Args: | |||||
| inner_list (list): The list. | |||||
| queue (Queue): The target queue. | |||||
| """ | |||||
| for item in inner_list: | |||||
| queue.put_nowait(item) | |||||
| @@ -1,247 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Op compute time files parser.""" | |||||
| import os | |||||
| from mindinsight.profiler.common._utils import fwrite_format | |||||
| from mindinsight.profiler.common.exceptions.exceptions import ProfilerFileNotFoundException, \ | |||||
| ProfilerIOException | |||||
| from mindinsight.profiler.common.log import logger | |||||
| from mindinsight.profiler.common.validator.validate_path import validate_and_normalize_path | |||||
| from mindinsight.profiler.parser.container import HWTSContainer | |||||
| TIMELINE_FILE_COLUMN_TITLE = 'op_name, stream_id, start_time(ms), duration(ms)' | |||||
| class OPComputeTimeParser: | |||||
| """ | |||||
| Join hwts info and framework info, get op time info, and output to the result file. | |||||
| Args: | |||||
| hwts_output_file (str): The file path of hwts_output_file. Such as: './output_format_data_hwts_0.txt". | |||||
| output_filename (str): The output data file path and name. Such as: './output_op_compute_time_0.txt'. | |||||
| op_task_info (dict): The task and op relation info. The format: {task_id, [opname, stream_id, block dim]}. | |||||
| """ | |||||
| _dst_file_title = 'title:op compute time' | |||||
| _dst_file_column_title = 'op_name compute_time(ms) stream_id' | |||||
| _dst_file_column_title += '\n------------ --------------- ---------' | |||||
| def __init__(self, hwts_output_file, output_filename, op_task_info, | |||||
| output_path, device_id): | |||||
| hwts_output_file = validate_and_normalize_path( | |||||
| hwts_output_file, raise_key='Invalid hwts output file path.' | |||||
| ) | |||||
| self._hwts_output_file = hwts_output_file | |||||
| self._output_filename = output_filename | |||||
| self._op_task_info = op_task_info | |||||
| self._output_path = output_path | |||||
| self._device_id = device_id | |||||
| self._min_cycle_counter = float("inf") | |||||
| def _get_op_task_id_map(self): | |||||
| """ | |||||
| Read hwts data file, get the task time info. | |||||
| Returns: | |||||
| list: all hwts task time info. | |||||
| """ | |||||
| op_map_result = [] | |||||
| hwts_list = [] | |||||
| if not os.path.exists(self._hwts_output_file): | |||||
| logger.error('The hwts output file does not exist.') | |||||
| raise ProfilerFileNotFoundException('hwts output file') | |||||
| with open(self._hwts_output_file, 'r') as data_file: | |||||
| lines = data_file.readlines() | |||||
| for line in lines: | |||||
| if line.startswith("Start of task") or line.startswith("End of task"): | |||||
| line_split = line.split() | |||||
| container = HWTSContainer(line_split) | |||||
| hwts_list.append(container) | |||||
| # hwts op map by taskId | |||||
| for hwts in hwts_list: | |||||
| if hwts.task_id in self._op_task_info.keys(): | |||||
| hwts.op_name = self._op_task_info[hwts.task_id] | |||||
| op_map_result.append(hwts) | |||||
| return op_map_result | |||||
| def execute(self): | |||||
| """Execute the parser, compute all op, get op time, and write it to the output file.""" | |||||
| # Calculate the execution time of operators, | |||||
| # and update the minimum cycle counter. | |||||
| tmp_result_data = self._calculate_op_execution_time() | |||||
| # Convert time units from nanoseconds to milliseconds. | |||||
| # The unit of the cycle counter is 10 nanoseconds. | |||||
| op_name_time_dict = {} | |||||
| op_name_stream_dict = {} | |||||
| op_name_count_dict = {} | |||||
| op_name_task_dict = {} | |||||
| op_name_start_time = {} | |||||
| self._convert_op_time_unit( | |||||
| tmp_result_data, op_name_time_dict, op_name_stream_dict, | |||||
| op_name_count_dict, op_name_task_dict, op_name_start_time | |||||
| ) | |||||
| result_data = "" | |||||
| total_time = 0 | |||||
| for op_name, time in op_name_time_dict.items(): | |||||
| if op_name in op_name_stream_dict.keys(): | |||||
| stream_id = op_name_stream_dict[op_name] | |||||
| avg_time = time / op_name_count_dict[op_name] | |||||
| total_time += avg_time | |||||
| result_data += ("%s %s %s\n" %(op_name, str(avg_time), stream_id)) | |||||
| result_data += ("total op %s 0" %(str(total_time))) | |||||
| timeline_data = [] | |||||
| for op_name, time in op_name_time_dict.items(): | |||||
| if op_name in op_name_stream_dict.keys(): | |||||
| stream_id = op_name_stream_dict[op_name] | |||||
| start_time_list = op_name_start_time.get(op_name) | |||||
| for (start_time, duration) in start_time_list: | |||||
| timeline_data.append([op_name, stream_id, start_time, duration]) | |||||
| # Write the metadata of operators into the file, | |||||
| # including operator name, average time, and stream id. | |||||
| self._write_op_time_into_file(result_data) | |||||
| # Write the timeline data into file, | |||||
| # including operator name, stream id, start time, and duration. | |||||
| self._write_timeline_data_into_file(timeline_data) | |||||
| def _write_op_time_into_file(self, result_data): | |||||
| """ | |||||
| Write the metadata of operators into the file, including | |||||
| op name, average time, and stream id. | |||||
| Args: | |||||
| result_data (str): The metadata to be written into the file. | |||||
| 'op_name_1', 'avg_time_1', 'stream_id_1', | |||||
| 'op_name_2', 'avg_time_2', 'stream_id_2', | |||||
| ... | |||||
| """ | |||||
| fwrite_format(self._output_filename, data_source=self._dst_file_title, is_start=True) | |||||
| fwrite_format(self._output_filename, data_source=self._dst_file_column_title) | |||||
| fwrite_format(self._output_filename, data_source=result_data) | |||||
| def _write_timeline_data_into_file(self, timeline_data): | |||||
| """ | |||||
| Write the timeline information into the file, including | |||||
| operator name, stream id, start time and duration. | |||||
| Args: | |||||
| timeline_data (list): The metadata to be written into the file. | |||||
| [ | |||||
| ['op_name_1', 'stream_id_1', 'start_time_1', 'durarion_1'], | |||||
| ['op_name_2', 'stream_id_2', 'start_time_2', 'durarion_2'], | |||||
| [...] | |||||
| ] | |||||
| """ | |||||
| # sorted by start times | |||||
| timeline_data.sort(key=lambda x: float(x[2])) | |||||
| filename = 'output_timeline_data_{}.txt'.format(self._device_id) | |||||
| file_path = os.path.join(self._output_path, filename) | |||||
| file_path = validate_and_normalize_path(file_path, raise_key='Invalid file path of timeline data.') | |||||
| # write to file | |||||
| try: | |||||
| with open(file_path, 'w') as f_obj: | |||||
| f_obj.write(TIMELINE_FILE_COLUMN_TITLE + '\n') | |||||
| for timeline in timeline_data: | |||||
| timeline = [str(item) for item in timeline] | |||||
| f_obj.write(','.join(timeline) + '\n') | |||||
| except (IOError, OSError) as err: | |||||
| logger.error('Error occurred when writing intermediate timeline file: %s', err) | |||||
| raise ProfilerIOException | |||||
| def _calculate_op_execution_time(self): | |||||
| """ | |||||
| Calculate the execution time of each operator. | |||||
| Returns: | |||||
| list, including the intermediate data of op execution time. | |||||
| """ | |||||
| tmp_result_data = [] | |||||
| op_map_list = self._get_op_task_id_map() | |||||
| cur_index = 0 | |||||
| length = len(op_map_list) | |||||
| min_cycle_counter = float("inf") | |||||
| while cur_index < length: | |||||
| if cur_index + 1 == length: | |||||
| break | |||||
| op_start = op_map_list[cur_index] | |||||
| op_end = op_map_list[cur_index + 1] | |||||
| if op_start.status == "Start" and op_end.status == "End" \ | |||||
| and op_start.op_name == op_end.op_name: | |||||
| op_start.duration = op_end.cycle_counter - op_start.cycle_counter | |||||
| tmp_result_data.append(op_start) | |||||
| cur_index += 2 | |||||
| if not op_start.op_name.startswith("assign"): | |||||
| min_cycle_counter = min(min_cycle_counter, op_start.cycle_counter) | |||||
| else: | |||||
| cur_index += 1 | |||||
| # Update the value of minimum cycle counter. | |||||
| self._min_cycle_counter = min_cycle_counter / 1e5 # Convert the time unit from 10ns to 1ms | |||||
| return tmp_result_data | |||||
| def _convert_op_time_unit(self, op_data_list, op_name_time_dict, op_name_stream_dict, | |||||
| op_name_count_dict, op_name_task_dict, op_name_start_time): | |||||
| """ | |||||
| Calculate the execution time of operator and convert it into millisecond. | |||||
| Args: | |||||
| op_data_list (list): The list of operator metadata. | |||||
| op_name_time_dict (dict): The mapping relation of operator name and its execution time. | |||||
| op_name_stream_dict (dict): The mapping relation of operator name and its stream id. | |||||
| op_name_count_dict (dict): The mapping relation of operator name and its count. | |||||
| op_name_task_dict (dict): The mapping relation of operator name and its task id. | |||||
| op_name_start_time (dict): The mapping relation of operator name and its start time. | |||||
| """ | |||||
| factor = 1e5 | |||||
| for item in op_data_list: | |||||
| op_name = item.op_name | |||||
| # Unit conversion: converting the cycle counter into ms. | |||||
| op_start_time_str = str(item.cycle_counter / factor) | |||||
| op_duration = item.duration / factor | |||||
| op_duration_str = str(item.duration / factor) | |||||
| if op_name in op_name_time_dict.keys(): | |||||
| op_name_time_dict[op_name] += op_duration | |||||
| if item.task_id == op_name_task_dict[op_name]: | |||||
| op_name_count_dict[op_name] += 1 | |||||
| op_name_start_time[op_name].append( | |||||
| (op_start_time_str, op_duration_str) | |||||
| ) | |||||
| else: | |||||
| op_name_time_dict[op_name] = op_duration | |||||
| op_name_stream_dict[op_name] = item.stream_id | |||||
| op_name_task_dict[op_name] = item.task_id | |||||
| op_name_count_dict[op_name] = 1 | |||||
| op_name_start_time[op_name] = [] | |||||
| op_name_start_time[op_name].append( | |||||
| (op_start_time_str, op_duration_str) | |||||
| ) | |||||
| @property | |||||
| def min_cycle_counter(self): | |||||
| """Get minimum cycle counter.""" | |||||
| return self._min_cycle_counter | |||||
| @@ -1,382 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """The parser for step trace data.""" | |||||
| import csv | |||||
| import json | |||||
| import os | |||||
| import stat | |||||
| import struct | |||||
| from collections import namedtuple | |||||
| from decimal import Decimal | |||||
| from mindinsight.profiler.common.exceptions.exceptions import ProfilerPathErrorException, \ | |||||
| JobIdMismatchException, ProfilerIOException | |||||
| from mindinsight.profiler.common.log import logger as log | |||||
| from mindinsight.profiler.common.util import get_summary_for_step_trace | |||||
| StepTraceStruct = namedtuple( | |||||
| 'TrainingTraceStruct', ['tag_id', 'task_id', 'stream_id', 'sys_count'] | |||||
| ) | |||||
| class StepTraceParser: | |||||
| """ | |||||
| The parser for step trace data. | |||||
| Args: | |||||
| input_dir (str): The directory that contains original step trace data. | |||||
| output_file_path (str): The output file path. | |||||
| job_id (int): The job id used to define the start of new step. Default: 0. | |||||
| skip_first_step (bool): Whether skip the first step or not. | |||||
| """ | |||||
| _event_size = 20 | |||||
| _fp_tag = 1 | |||||
| _bp_tag = 2 | |||||
| _end_tag = 255 | |||||
| def __init__(self, input_dir, output_file_path, job_id=0, skip_first_step=False): | |||||
| self._input_dir = input_dir | |||||
| self._output_path = output_file_path | |||||
| self._job_id = job_id | |||||
| self._skip_first_step = skip_first_step | |||||
| self._result = [] | |||||
| self._header = [] | |||||
| self._step_num = 0 | |||||
| self._tag_map = {} | |||||
| @property | |||||
| def output_file(self): | |||||
| """The property of step trace header.""" | |||||
| file_name = self._output_path.rsplit('/', 2) | |||||
| return file_name[-1] if len(file_name) == 3 else '' | |||||
| def show(self): | |||||
| """The property of step trace info.""" | |||||
| summary_info = {} | |||||
| if self._result: | |||||
| summary_info = get_summary_for_step_trace(self._result[-1], self._header) | |||||
| summary_info['total_steps'] = len(self._result) - 1 | |||||
| print('\nStep trace summary info (unit: syscnt):') | |||||
| print(summary_info) | |||||
| print('\nThe step trace parse result saves under ${summary_dir}/profiler/%s' | |||||
| % self.output_file) | |||||
| def parse_and_save(self): | |||||
| """Parse step trace files and save the result.""" | |||||
| try: | |||||
| source_files = self._get_step_trace_files() | |||||
| self._parse(source_files) | |||||
| self._save() | |||||
| except IOError as err: | |||||
| log.exception(err) | |||||
| raise ProfilerIOException() | |||||
| else: | |||||
| log.info("Finish to save intermediate result for step trace file.") | |||||
| def record_point_info(self, point_info, output_path): | |||||
| """ | |||||
| Record point info into json. | |||||
| Args: | |||||
| point_info (dict): The point info about tag id and relative op name. | |||||
| output_path (str): The output path for saving point info. | |||||
| Returns: | |||||
| dict, parsed point info. | |||||
| """ | |||||
| points = { | |||||
| 'fp_start': point_info.get(self._fp_tag, ''), | |||||
| 'bp_end': point_info.get(self._bp_tag, '') | |||||
| } | |||||
| try: | |||||
| with open(output_path, 'w') as json_file: | |||||
| json.dump(points, json_file) | |||||
| os.chmod(output_path, stat.S_IREAD) | |||||
| except (IOError, OSError) as err: | |||||
| log.warning('Failed to save point info. %s', err) | |||||
| raise ProfilerIOException | |||||
| return points | |||||
| def update_tag_op_type_map(self, point_info): | |||||
| """ | |||||
| update the map from tag id to op type. | |||||
| Args: | |||||
| point_info (dict): The point info about tag id and relative op name. | |||||
| """ | |||||
| tag_map = {} | |||||
| for tag, op_name in point_info.items(): | |||||
| op_type = self._get_op_type(tag, op_name) | |||||
| tag_map[tag] = op_type | |||||
| log.info("Get tag types for step trace analysis: %s", tag_map) | |||||
| self._tag_map = tag_map | |||||
| def _get_op_type(self, tag, name): | |||||
| """ | |||||
| Get op type from tag and name. | |||||
| Args: | |||||
| tag (int): The tag id. | |||||
| name (str): The op name. | |||||
| Returns: | |||||
| str, the op type. | |||||
| """ | |||||
| tag_map = {self._fp_tag: 'fp', self._bp_tag: 'bp', self._end_tag: 'end'} | |||||
| # get solid tag type | |||||
| op_type = tag_map.get(tag, '') | |||||
| if op_type: | |||||
| return op_type | |||||
| # check if the tag is step tag. | |||||
| if tag > self._end_tag or tag == 0: | |||||
| return 'start' | |||||
| # analyze the reduce tag | |||||
| op_type = name.rsplit('/', 1)[-1].split('-')[0] | |||||
| if not op_type: | |||||
| log.warning("Unexpected op name:%s", name) | |||||
| return op_type | |||||
| def _get_step_trace_files(self): | |||||
| """Get step trace files.""" | |||||
| # step trace files may under $profiler_dir or $profiler_dir/data | |||||
| profiler_dir = self._input_dir | |||||
| step_trace_files = self._search_file(profiler_dir) | |||||
| if not step_trace_files: | |||||
| # try to find step trace files under $profiler_dir/data | |||||
| profiler_dir = os.path.join(profiler_dir, 'data') | |||||
| step_trace_files = self._search_file(profiler_dir) | |||||
| if not step_trace_files: | |||||
| raise ProfilerPathErrorException('Training trace file does not exist.') | |||||
| return step_trace_files | |||||
| @staticmethod | |||||
| def _search_file(input_dir): | |||||
| """Search step trace file under specific input directory.""" | |||||
| # validate input_dir | |||||
| if not os.path.isdir(input_dir): | |||||
| raise ProfilerPathErrorException( | |||||
| '{} does not exist or is not a dir'.format(input_dir) | |||||
| ) | |||||
| # get step trace files | |||||
| files = os.listdir(input_dir) | |||||
| step_trace_files = list( | |||||
| filter( | |||||
| lambda file: file.startswith('training_trace') and not file.endswith('.done'), | |||||
| files | |||||
| ) | |||||
| ) | |||||
| # validate result | |||||
| if len(step_trace_files) > 1: | |||||
| # the format of file name is like | |||||
| # `training_trace.46.dev.profiler_default_tag.$id.slice_$number` | |||||
| # use the $number as the sorted key | |||||
| try: | |||||
| step_trace_files.sort(key=lambda path: int(path.rsplit('_', 1)[-1])) | |||||
| except ValueError as err: | |||||
| log.warning("Unable to parse file names: %s. %s", step_trace_files, err) | |||||
| step_trace_files = [] | |||||
| file_paths = [os.path.join(input_dir, file) for file in step_trace_files] | |||||
| log.info("Find %d step trace files.", len(file_paths)) | |||||
| return file_paths | |||||
| def _parse(self, source_files): | |||||
| """Parse source step trace files.""" | |||||
| log.info("Start to parse step trace file.") | |||||
| event_info = {} | |||||
| for source_file in source_files: | |||||
| with open(source_file, 'rb') as handler: | |||||
| content = handler.read() | |||||
| for step_trace in self._get_next_step_trace(content, event_info): | |||||
| if self._skip_first_step: | |||||
| self._skip_first_step = False | |||||
| continue | |||||
| self._record_trace_event(step_trace) | |||||
| self._record_average_info() | |||||
| log.info("Finish to parse step trace file.") | |||||
| def _get_next_step_trace(self, content, event_info): | |||||
| """ | |||||
| Get next step trace info. | |||||
| Args: | |||||
| content (bytes): The input step trace info. | |||||
| event_info (dict): The event info. | |||||
| Returns: | |||||
| Generator, return the step trace one by one. | |||||
| """ | |||||
| for pos in range(0, len(content), 20): | |||||
| next_event = self._get_trace_struct(content[pos:pos + self._event_size]) | |||||
| self._construct_event_info(next_event, event_info) | |||||
| if event_info.get('end'): | |||||
| yield event_info | |||||
| def _get_trace_struct(self, bin_info): | |||||
| """Translate event info to StepTraceStruct.""" | |||||
| if len(bin_info) == self._event_size: | |||||
| parsed_info = struct.unpack('=QHHQ', bin_info) | |||||
| return StepTraceStruct(*parsed_info) | |||||
| return None | |||||
| def _construct_event_info(self, next_event, event_info): | |||||
| """Construct event info according to next_event.""" | |||||
| min_job_id = 255 | |||||
| step_flag: bool = lambda tag: tag > min_job_id or tag == 0 | |||||
| end_flag: bool = lambda tag: tag == min_job_id | |||||
| fp_flag: bool = lambda tag: tag == self._fp_tag | |||||
| bp_flag: bool = lambda tag: tag == self._bp_tag | |||||
| def _on_step_event(): | |||||
| """Handle step event.""" | |||||
| self._validate_tag_id(tag_id) | |||||
| start_time = event_info.get('end', '-') | |||||
| event_info.clear() | |||||
| event_info['start'] = start_time | |||||
| event_info['reduce'] = {} | |||||
| def _on_reduce_event(reduce_tag_id): | |||||
| """Handle reduce event.""" | |||||
| stream_id = next_event.stream_id | |||||
| if event_info['reduce'].get(stream_id): | |||||
| event_info['reduce'][stream_id].append((reduce_tag_id, sys_count)) | |||||
| else: | |||||
| event_info['reduce'][stream_id] = [(reduce_tag_id, sys_count)] | |||||
| tag_id = next_event.tag_id | |||||
| sys_count = next_event.sys_count | |||||
| if end_flag(tag_id): | |||||
| event_info['end'] = sys_count | |||||
| elif step_flag(tag_id): | |||||
| _on_step_event() | |||||
| elif fp_flag(tag_id): | |||||
| event_info['fp'] = sys_count | |||||
| elif bp_flag(tag_id): | |||||
| event_info['bp'] = sys_count | |||||
| else: | |||||
| _on_reduce_event(tag_id) | |||||
| def _validate_tag_id(self, job_id): | |||||
| """Check the job id in source step trace file is same as user set.""" | |||||
| if not self._job_id: | |||||
| self._job_id = job_id | |||||
| elif self._job_id != job_id: | |||||
| raise JobIdMismatchException() | |||||
| def _record_trace_event(self, step_trace): | |||||
| """Record trace event.""" | |||||
| self._step_num += 1 | |||||
| start_time = step_trace.get('start') | |||||
| end_time = step_trace.get('end') | |||||
| fp_time = step_trace.get('fp') | |||||
| bp_time = step_trace.get('bp') | |||||
| if not (start_time and end_time and fp_time and bp_time): | |||||
| log.warning("The step %d lacks basic time.", self._step_num) | |||||
| return | |||||
| if start_time == '-': | |||||
| start_time = fp_time | |||||
| row_data = { | |||||
| 'step_num': self._step_num, | |||||
| 'start_point': start_time, | |||||
| 'end_point': end_time, | |||||
| 'total': end_time - start_time, | |||||
| 'fp_point': fp_time, | |||||
| 'bp_point': bp_time, | |||||
| 'iteration_interval': fp_time - start_time, | |||||
| 'fp_and_bp': bp_time - fp_time, | |||||
| 'tail': end_time - bp_time | |||||
| } | |||||
| # update reduce info | |||||
| self._update_reduce_info(step_trace, row_data) | |||||
| # save the row data | |||||
| if not self._header: | |||||
| self._header = list(row_data.keys()) | |||||
| row_data_list = [row_data.get(header_name, 0) for header_name in self._header] | |||||
| self._result.append(row_data_list) | |||||
| def _update_reduce_info(self, step_trace, row_data): | |||||
| """Extract reduce info.""" | |||||
| reduce_time = step_trace.get('reduce', {}) | |||||
| for stream_id, time_points in reduce_time.items(): | |||||
| time_point_num = len(time_points) | |||||
| if time_point_num % 2: | |||||
| log.warning("Stream %d has %d reduce time points.", stream_id, time_point_num) | |||||
| continue | |||||
| for index, point_id in enumerate(range(0, time_point_num, 2)): | |||||
| field_name = f'stream_{stream_id}_{index}' | |||||
| reduce_info = self._get_single_reduce_event_info( | |||||
| field_name, time_points[point_id], time_points[point_id + 1]) | |||||
| row_data.update(reduce_info) | |||||
| def _get_single_reduce_event_info(self, field_name, start_point, end_point): | |||||
| """ | |||||
| Get single reduce info. | |||||
| Args: | |||||
| field_name (str): The field name. | |||||
| start_point (Tuple[int, int]): Start point time info, including (tag_id, sys_count). | |||||
| end_point (Tuple[int, int]): End point time info, including (tag_id, sys_count). | |||||
| Returns: | |||||
| dict, reduce info. | |||||
| """ | |||||
| reduce_info = {} | |||||
| if end_point[0] - start_point[0] != 1 or end_point[0] % 2: | |||||
| log.warning("Unmatched reduce event <%s, %s>.", start_point, end_point) | |||||
| return reduce_info | |||||
| op_type = self._tag_map.get(start_point[0]) | |||||
| # append field name with op type. | |||||
| if not op_type: | |||||
| log.warning("Can't recognize the inner type for point tag: %d.", start_point[0]) | |||||
| field_name += '_parallel' | |||||
| else: | |||||
| field_name += '_' + op_type | |||||
| reduce_info[field_name] = end_point[1] - start_point[1] | |||||
| reduce_info[field_name + '_start_point'] = start_point[1] | |||||
| reduce_info[field_name + '_end_point'] = end_point[1] | |||||
| return reduce_info | |||||
| def _record_average_info(self): | |||||
| """Calculate average info.""" | |||||
| result_size = len(self._result) | |||||
| # calculate average data for each column in result data | |||||
| average_data = [0] * len(self._header) | |||||
| if result_size >= 2: | |||||
| for row_info in self._result[1:]: | |||||
| average_data = [ | |||||
| Decimal(i) + Decimal(j) for i, j in zip(row_info, average_data) | |||||
| ] | |||||
| average_data = [ | |||||
| round((item / (result_size - 1))) for item in average_data | |||||
| ] | |||||
| # change step num info in average_data to None | |||||
| step_num_index = self._header.index('step_num') | |||||
| average_data[step_num_index] = '-' | |||||
| self._result.append(average_data) | |||||
| log.info("Finish add average info for step trace.") | |||||
| def _save(self): | |||||
| log.info("Start to save step trace file.") | |||||
| if not self._header: | |||||
| return | |||||
| with open(self._output_path, 'w') as file_handle: | |||||
| csv_writer = csv.writer(file_handle) | |||||
| csv_writer.writerow(self._header) | |||||
| for row_data in self._result: | |||||
| csv_writer.writerow(row_data) | |||||
| os.chmod(self._output_path, stat.S_IREAD) | |||||
| @@ -1,461 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Profiling api file.""" | |||||
| import os | |||||
| import time | |||||
| from marshmallow import ValidationError | |||||
| from tabulate import tabulate | |||||
| from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory | |||||
| from mindinsight.profiler.analyser.integrator import Integrator | |||||
| from mindinsight.profiler.common._utils import get_file_names, fwrite_format | |||||
| from mindinsight.profiler.common.exceptions.exceptions import ProfilerFileNotFoundException, \ | |||||
| ProfilerIOException | |||||
| from mindinsight.profiler.common.log import logger | |||||
| from mindinsight.profiler.common.validator.checkparam import \ | |||||
| check_bool, check_subgraph | |||||
| from mindinsight.profiler.common.validator.validate_path import \ | |||||
| validate_and_normalize_path | |||||
| from mindinsight.profiler.parser.aicpu_data_parser import DataPreProcessParser | |||||
| from mindinsight.profiler.parser.framework_parser import FrameworkParser | |||||
| from mindinsight.profiler.parser.hwts_log_parser import HWTSLogParser | |||||
| from mindinsight.profiler.parser.minddata_parser import MinddataParser | |||||
| from mindinsight.profiler.parser.minddata_pipeline_parser import \ | |||||
| MinddataPipelineParser | |||||
| from mindinsight.profiler.parser.optime_parser import OPComputeTimeParser | |||||
| from mindinsight.profiler.parser.step_trace_parser import StepTraceParser | |||||
| from mindinsight.utils.exceptions import MindInsightException | |||||
| PROFILING_LOG_BASE_PATH = "/var/log/npu/profiling" | |||||
| INIT_OP_NAME = 'Default/InitDataSetQueue' | |||||
| class Profiler: | |||||
| """ | |||||
| Performance profiling API. | |||||
| Enable MindSpore users to profile the performance of neural network. | |||||
| Args: | |||||
| subgraph (str): Define which subgraph to monitor and analyse, can be 'all', 'Default', 'Gradients'. | |||||
| is_detail (bool): Whether to show profiling data for op_instance level, only show optype level if False. | |||||
| is_show_op_path (bool): Whether to save the full path for each op instance. | |||||
| output_path (str): Output data path. | |||||
| optypes_to_deal (str): Op type names, the data of which optype should be collected and analysed, | |||||
| will deal with all op if null; Different op types should be seperated by comma. | |||||
| optypes_not_deal (str): Op type names, the data of which optype will not be collected and analysed; | |||||
| Different op types should be seperated by comma. | |||||
| Examples: | |||||
| >>> from mindinsight.profiler import Profiler | |||||
| >>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", | |||||
| >>> device_id=int(os.environ["DEVICE_ID"])) | |||||
| >>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data') | |||||
| >>> model = Model(train_network) | |||||
| >>> dataset = get_dataset() | |||||
| >>> model.train(2, dataset) | |||||
| >>> profiler.analyse() | |||||
| """ | |||||
| _base_profiling_container_path = "/var/log/npu/profiling/container" | |||||
| _hwts_output_filename_target = "output_format_data_hwts_" | |||||
| _opcompute_output_filename_target = "output_op_compute_time_" | |||||
| _aicpu_op_output_filename_target = "output_data_preprocess_aicpu_" | |||||
| def __init__(self, subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data', | |||||
| optypes_to_deal='', optypes_not_deal='Variable', job_id=""): | |||||
| # get device_id and device_target | |||||
| self._get_devid_and_devtarget() | |||||
| self._container_path = os.path.join(self._base_profiling_container_path, self._dev_id) | |||||
| data_path = os.path.join(self._container_path, "data") | |||||
| if not os.path.exists(data_path): | |||||
| os.makedirs(data_path, exist_ok=True) | |||||
| self._output_path = validate_and_normalize_path(output_path, | |||||
| 'Profiler output path (' + output_path + ')') | |||||
| self._output_path = os.path.join(self._output_path, "profiler") | |||||
| if not os.path.exists(self._output_path): | |||||
| os.makedirs(self._output_path, exist_ok=True) | |||||
| os.environ['PROFILING_MODE'] = 'true' | |||||
| os.environ['PROFILING_OPTIONS'] = 'training_trace:task_trace' | |||||
| os.environ['MINDDATA_PROFILING_DIR'] = self._output_path | |||||
| os.environ['DEVICE_ID'] = self._dev_id | |||||
| # use context interface to open profiling, for the new mindspore version(after 2020.5.21) | |||||
| try: | |||||
| import mindspore.context as context | |||||
| context.set_context(enable_profiling=True, profiling_options="training_trace:task_trace") | |||||
| except ImportError: | |||||
| logger.error("Profiling: fail to import context from mindspore.") | |||||
| except ValueError: | |||||
| logger.error("Profiling: fail to set context enable_profiling") | |||||
| os.environ['AICPU_PROFILING_MODE'] = 'true' | |||||
| os.environ['PROFILING_DIR'] = str(self._container_path) | |||||
| self._subgraph = check_subgraph(subgraph) | |||||
| self._valid_optype_name = optypes_to_deal.split(",") if optypes_to_deal else [] | |||||
| self._filt_optype_names = optypes_not_deal.split(",") if optypes_not_deal else [] | |||||
| self._detail = check_bool(is_detail, 'is_detail') | |||||
| self._withfullpath = check_bool(is_show_op_path, 'is_show_op_path') | |||||
| self._profiling_job_id = job_id | |||||
| # add job id env through user input later | |||||
| self._job_id_env = 0 | |||||
| self._start_time = int(time.time() * 10000000) | |||||
| logger.info("Profiling: profiling start time: %d", self._start_time) | |||||
| def analyse(self): | |||||
| """ | |||||
| Collect and analyse performance data, called after training or during training. | |||||
| Examples: | |||||
| >>> from mindinsight.profiler import Profiler | |||||
| >>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", | |||||
| >>> device_id=int(os.environ["DEVICE_ID"])) | |||||
| >>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data') | |||||
| >>> model = Model(train_network) | |||||
| >>> dataset = get_dataset() | |||||
| >>> model.train(2, dataset) | |||||
| >>> profiler.analyse() | |||||
| """ | |||||
| try: | |||||
| from mindspore.communication.management import release | |||||
| release() | |||||
| except ImportError: | |||||
| logger.error("Profiling: fail to import release from mindspore.") | |||||
| job_id = self._get_profiling_job_id() | |||||
| logger.info("Profiling: job id is %s ", job_id) | |||||
| source_path = os.path.join(PROFILING_LOG_BASE_PATH, job_id) | |||||
| # parse hwts.log.data.45.dev file, and get task profiling data | |||||
| hwts_output_filename = self._hwts_output_filename_target + self._dev_id + ".txt" | |||||
| hwts_output_filename = os.path.join(self._output_path, hwts_output_filename) | |||||
| hwtslog_parser = HWTSLogParser(source_path, hwts_output_filename) | |||||
| result = hwtslog_parser.execute() | |||||
| if not result: | |||||
| logger.error("Profiling: fail to parse hwts log file.") | |||||
| return | |||||
| # parse Framework file, and get the relation of op and tasks | |||||
| framework_parser = FrameworkParser(job_id, self._dev_id, self._output_path) | |||||
| framework_parser.parse() | |||||
| op_task_dict = framework_parser.to_task_id_full_op_name_dict() | |||||
| if not op_task_dict: | |||||
| logger.error("Profiling: fail to parse framework files.") | |||||
| return | |||||
| # get op compute time from hwts data and framework data, write output_op_compute_time.txt | |||||
| opcompute_output_filename = self._opcompute_output_filename_target + self._dev_id + ".txt" | |||||
| opcompute_output_filename = os.path.join(self._output_path, opcompute_output_filename) | |||||
| optime_parser = OPComputeTimeParser( | |||||
| hwts_output_filename, opcompute_output_filename, | |||||
| op_task_dict, self._output_path, self._dev_id | |||||
| ) | |||||
| optime_parser.execute() | |||||
| # parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt | |||||
| output_data_preprocess_aicpu = self._aicpu_op_output_filename_target + self._dev_id + ".txt" | |||||
| output_data_preprocess_aicpu = os.path.join(self._output_path, output_data_preprocess_aicpu) | |||||
| aicpu_data_parser = DataPreProcessParser(source_path, output_data_preprocess_aicpu) | |||||
| aicpu_data_parser.execute() | |||||
| # Parsing minddata AICPU profiling | |||||
| MinddataParser.execute(source_path, self._output_path, self._dev_id) | |||||
| # parse minddata pipeline operator and queue | |||||
| try: | |||||
| pipeline_parser = MinddataPipelineParser(self._output_path, self._dev_id, self._output_path) | |||||
| pipeline_parser.parse() | |||||
| except MindInsightException as err: | |||||
| logger.warning(err.message) | |||||
| # analyse op compute time info | |||||
| try: | |||||
| self._analyser_op_info() | |||||
| except MindInsightException as err: | |||||
| logger.warning(err.message) | |||||
| # analyse step trace info | |||||
| try: | |||||
| self._analyse_step_trace(source_path, framework_parser) | |||||
| except MindInsightException as err: | |||||
| logger.warning(err.message) | |||||
| # analyse timeline info | |||||
| try: | |||||
| self._analyse_timeline(aicpu_data_parser, optime_parser) | |||||
| except (ProfilerIOException, ProfilerFileNotFoundException, ValidationError) as err: | |||||
| logger.warning('Fail to write timeline data: %s', err) | |||||
| def _analyse_step_trace(self, source_path, framework_parser): | |||||
| """ | |||||
| Analyse step trace data and save the result. | |||||
| Args: | |||||
| source_path (str): The directory that contains the step trace original data. | |||||
| framework_parser (FrameworkParser): The framework parse instance. | |||||
| """ | |||||
| logger.info("Begin to parse step trace.") | |||||
| # construct output path | |||||
| step_trace_intermediate_file_path = os.path.join( | |||||
| self._output_path, | |||||
| f'step_trace_raw_{self._dev_id}_detail_time.csv' | |||||
| ) | |||||
| point_info_file_path = os.path.join( | |||||
| self._output_path, | |||||
| 'step_trace_point_info.json' | |||||
| ) | |||||
| # whether keep the first step | |||||
| skip_first_step_flag = framework_parser.check_op_name(INIT_OP_NAME) | |||||
| point_info = framework_parser.point_info | |||||
| # parser the step trace files and save the result to disk | |||||
| parser = StepTraceParser(input_dir=source_path, | |||||
| output_file_path=step_trace_intermediate_file_path, | |||||
| job_id=self._job_id_env, | |||||
| skip_first_step=skip_first_step_flag) | |||||
| parser.update_tag_op_type_map(point_info) | |||||
| parser.parse_and_save() | |||||
| point_info = parser.record_point_info(point_info, point_info_file_path) | |||||
| # print parser result | |||||
| parser.show() | |||||
| logger.info("Finish saving the intermediate result: %s", step_trace_intermediate_file_path) | |||||
| logger.info("The point info is: %s", point_info) | |||||
| def _analyse_timeline(self, aicpu_parser, optime_parser): | |||||
| """ | |||||
| Analyse and parse timeline info. | |||||
| Args: | |||||
| aicpu_parser (DataPreProcessParser): The parser instance for AI CPU operator | |||||
| execution time calculation. | |||||
| optime_parser (OPComputeTimeParserParser): The parser instance for AI Core | |||||
| operator execution time calculation. | |||||
| """ | |||||
| timeline_analyser = AnalyserFactory.instance().get_analyser( | |||||
| 'timeline', self._output_path, self._dev_id | |||||
| ) | |||||
| # Get framework info | |||||
| aicoredetail_analyser = AnalyserFactory.instance().get_analyser( | |||||
| 'aicore_detail', self._output_path, self._dev_id | |||||
| ) | |||||
| framework_info = aicoredetail_analyser.query() | |||||
| # Get all reduce info | |||||
| step_trace_analyser = AnalyserFactory.instance().get_analyser( | |||||
| 'step_trace', self._output_path, self._dev_id | |||||
| ) | |||||
| all_reduce_info = step_trace_analyser.query_for_all_reduce() | |||||
| # Get timeline info | |||||
| logger.info('Start writing timeline info...') | |||||
| logger.info('Warm Prompt: It could take a few minutes if you are training ' | |||||
| 'with a complex network or more than 10 steps.') | |||||
| # Add info into timeline, such as AI CPU, AllReduce, framework info. | |||||
| aicpu_info = aicpu_parser.query_aicpu_data() | |||||
| min_cycle_counter = min(aicpu_parser.min_cycle_counter, optime_parser.min_cycle_counter) | |||||
| timeline_analyser.init_timeline(all_reduce_info, framework_info, aicpu_info, min_cycle_counter) | |||||
| timeline_analyser.write_timeline() | |||||
| timeline_analyser.write_timeline_summary() | |||||
| def __del__(self): | |||||
| """Disable the profiling collection service, called after training.""" | |||||
| os.environ['PROFILING_MODE'] = str("false") | |||||
| try: | |||||
| import mindspore.context as context | |||||
| context.set_context(enable_profiling=False) | |||||
| except ImportError: | |||||
| pass | |||||
| def _get_profiling_job_id(self): | |||||
| """Get profiling job id, which was generated by ada service. | |||||
| Returns: | |||||
| str: profiling jon id. | |||||
| """ | |||||
| if self._profiling_job_id: | |||||
| return self._profiling_job_id | |||||
| job_id = "" | |||||
| cmd = "ls -t " + PROFILING_LOG_BASE_PATH + "|grep JOB|awk '{print $1}'" | |||||
| r = os.popen(cmd) | |||||
| profiling_job_dirs = r.readlines() | |||||
| r.close() | |||||
| for item in profiling_job_dirs: | |||||
| path = os.path.join(PROFILING_LOG_BASE_PATH, item.strip()) | |||||
| log_file = get_file_names(path, "host_start.log") | |||||
| if not log_file: | |||||
| logger.error("Profiling: job path %s, host_start.log not exist.", path) | |||||
| continue | |||||
| log_file = os.path.join(path, log_file[0]) | |||||
| item_dict = self._parse_host_start_log(log_file) | |||||
| if not item_dict: | |||||
| logger.error("Profiling: job path %s, fail to get job start info.", path) | |||||
| continue | |||||
| if self._start_time > int(item_dict["start_time"]): | |||||
| logger.info("Profiling: job path %s, start_time %s, training start_time %d.", | |||||
| path, item_dict["start_time"], self._start_time) | |||||
| break | |||||
| if self._dev_id != item_dict["device_id"]: | |||||
| logger.info("Profiling: job path %s, dev id %s, training device id %s.", | |||||
| path, item_dict["device_id"], self._dev_id) | |||||
| continue | |||||
| job_id = item.strip() | |||||
| break | |||||
| if not job_id: | |||||
| msg = ("Fail to get profiling job, please check whether job dir was generated") | |||||
| raise RuntimeError(msg) | |||||
| return job_id | |||||
| def _parse_host_start_log(self, input_file): | |||||
| """ | |||||
| Parse host start log file, get the device id and start time of the job. | |||||
| Args: | |||||
| input_file (str): The file path of the host start log file. | |||||
| Returns: | |||||
| dict, job start time and device id. | |||||
| """ | |||||
| item_dict = {} | |||||
| for line in open(input_file): | |||||
| if "Device" in line: | |||||
| item_dict["device_id"] = line[7:len(line)-2] | |||||
| elif "clock_realtime" in line: | |||||
| item_dict["start_time"] = line[16:len(line)-3] | |||||
| return item_dict | |||||
| def _analyser_op_info(self): | |||||
| """Analyse the operator information.""" | |||||
| integrator = Integrator(self._output_path, self._dev_id) | |||||
| integrator.integrate() | |||||
| aicore_type_result = self._query_op_type_info() | |||||
| detail_file_path = os.path.join( | |||||
| self._output_path, | |||||
| 'output_op_compute_time_detail_{}.txt'.format(self._dev_id) | |||||
| ) | |||||
| fwrite_format(detail_file_path, data_source='title:op compute time') | |||||
| display_names = [ | |||||
| 'optype_name', 'compute_time(ms, per-step)', | |||||
| 'called_times(per-step)', 'percent' | |||||
| ] | |||||
| data_source = tabulate(aicore_type_result, display_names) | |||||
| fwrite_format(detail_file_path, data_source=data_source, is_print=True) | |||||
| if self._detail: | |||||
| op_type_order = [item[0] for item in aicore_type_result] | |||||
| aicore_detail_result = self._query_op_detail_info(op_type_order) | |||||
| fwrite_format(detail_file_path, data_source='', is_print=True) | |||||
| fwrite_format(detail_file_path, data_source='Detail:', is_print=True) | |||||
| data_source = tabulate( | |||||
| aicore_detail_result.get('object'), | |||||
| aicore_detail_result.get('col_name') | |||||
| ) | |||||
| fwrite_format(detail_file_path, data_source=data_source, is_print=True) | |||||
| def _query_op_type_info(self): | |||||
| """ | |||||
| Query AICORE operator type information. | |||||
| Returns: | |||||
| list[list], the AICORE operator type and execution time information. | |||||
| """ | |||||
| condition = { | |||||
| 'sort_condition': { | |||||
| 'name': 'execution_time', | |||||
| 'type': 'descending' | |||||
| } | |||||
| } | |||||
| analyser = AnalyserFactory.instance().get_analyser( | |||||
| 'aicore_type', self._output_path, self._dev_id | |||||
| ) | |||||
| result = analyser.query(condition) | |||||
| return result.get('object') | |||||
| def _query_op_detail_info(self, op_type_order): | |||||
| """ | |||||
| Query AICORE operator detail information. | |||||
| Args: | |||||
| op_type_order(list): The name of the op type in order. | |||||
| Returns: | |||||
| dict, the AICORE operator detail information. | |||||
| """ | |||||
| op_type_condition = {} | |||||
| if self._valid_optype_name: | |||||
| op_type_condition['in'] = self._valid_optype_name | |||||
| if self._filt_optype_names: | |||||
| op_type_condition['not_in'] = self._filt_optype_names | |||||
| subgraph_condition = {} | |||||
| if self._subgraph != 'all': | |||||
| subgraph_condition['in'] = [self._subgraph] | |||||
| filter_condition = { | |||||
| 'op_type': op_type_condition, | |||||
| 'subgraph': subgraph_condition, | |||||
| 'is_display_detail': False, | |||||
| 'is_display_full_op_name': self._withfullpath | |||||
| } | |||||
| analyser = AnalyserFactory.instance().get_analyser( | |||||
| 'aicore_detail', self._output_path, self._dev_id | |||||
| ) | |||||
| result = analyser.query_and_sort_by_op_type( | |||||
| filter_condition, op_type_order | |||||
| ) | |||||
| return result | |||||
| def _get_devid_and_devtarget(self): | |||||
| """Get device id and target of this training.""" | |||||
| device_target = "" | |||||
| dev_id = "" | |||||
| try: | |||||
| import mindspore.context as context | |||||
| dev_id = str(context.get_context("device_id")) | |||||
| device_target = context.get_context("device_target") | |||||
| except ImportError: | |||||
| logger.error("Profiling: fail to import context from mindspore.") | |||||
| except ValueError as err: | |||||
| logger.error("Profiling: fail to get context, %s", err) | |||||
| if not dev_id or not dev_id.isdigit(): | |||||
| dev_id = os.getenv('DEVICE_ID') | |||||
| if not dev_id or not dev_id.isdigit(): | |||||
| dev_id = "0" | |||||
| logger.error("Fail to get DEVICE_ID, use 0 instead.") | |||||
| if device_target and device_target != "Davinci" \ | |||||
| and device_target != "Ascend": | |||||
| msg = ("Profiling: unsupport backend: %s" \ | |||||
| % device_target) | |||||
| raise RuntimeError(msg) | |||||
| self._dev_id = dev_id | |||||
| @@ -15,31 +15,11 @@ | |||||
| """The st config.""" | """The st config.""" | ||||
| import os | import os | ||||
| import shutil | |||||
| import sys | import sys | ||||
| import tempfile | |||||
| import pytest | |||||
| from tests.st.func.profiler import RAW_DATA_BASE | |||||
| from tests.utils import mindspore | from tests.utils import mindspore | ||||
| sys.modules['mindspore'] = mindspore | sys.modules['mindspore'] = mindspore | ||||
| BASE_SUMMARY_DIR = tempfile.mkdtemp(prefix='test_profiler_summary_dir_base_') | |||||
| @pytest.fixture(scope="session") | |||||
| def create_summary_dir(): | |||||
| """Create summary directory for profiler module.""" | |||||
| try: | |||||
| if os.path.exists(BASE_SUMMARY_DIR): | |||||
| shutil.rmtree(BASE_SUMMARY_DIR) | |||||
| permissions = os.R_OK | os.W_OK | os.X_OK | |||||
| mode = permissions << 6 | |||||
| if not os.path.exists(BASE_SUMMARY_DIR): | |||||
| os.mkdir(BASE_SUMMARY_DIR, mode=mode) | |||||
| yield | |||||
| finally: | |||||
| if os.path.exists(BASE_SUMMARY_DIR): | |||||
| shutil.rmtree(BASE_SUMMARY_DIR) | |||||
| BASE_SUMMARY_DIR = os.path.realpath(os.path.join(RAW_DATA_BASE, "run_1")) | |||||
| @@ -21,19 +21,16 @@ Usage: | |||||
| """ | """ | ||||
| import os | import os | ||||
| from unittest import mock, TestCase | |||||
| from unittest import TestCase | |||||
| import pytest | import pytest | ||||
| from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory | from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory | ||||
| from mindinsight.profiler.common.exceptions.exceptions import StepNumNotSupportedException, \ | from mindinsight.profiler.common.exceptions.exceptions import StepNumNotSupportedException, \ | ||||
| ProfilerParamValueErrorException | ProfilerParamValueErrorException | ||||
| from mindinsight.profiler.profiling import Profiler, FrameworkParser | |||||
| from tests.st.func.profiler import RAW_DATA_BASE | |||||
| from tests.st.func.profiler.conftest import BASE_SUMMARY_DIR | from tests.st.func.profiler.conftest import BASE_SUMMARY_DIR | ||||
| @pytest.mark.usefixtures('create_summary_dir') | |||||
| class TestProfilerAnalyse(TestCase): | class TestProfilerAnalyse(TestCase): | ||||
| """Test Converter module.""" | """Test Converter module.""" | ||||
| JOB_ID = 'JOB3' | JOB_ID = 'JOB3' | ||||
| @@ -42,26 +39,14 @@ class TestProfilerAnalyse(TestCase): | |||||
| def setup_class(cls): | def setup_class(cls): | ||||
| """Generate parsed files.""" | """Generate parsed files.""" | ||||
| cls.step_trace_file = 'step_trace_raw_1_detail_time.csv' | cls.step_trace_file = 'step_trace_raw_1_detail_time.csv' | ||||
| cls.generate_parsed_files() | |||||
| cls.summary_dir = os.path.join(BASE_SUMMARY_DIR, 'normal_run') | |||||
| cls.profiler = os.path.join(cls.summary_dir, 'profiler') | |||||
| def setUp(self): | def setUp(self): | ||||
| """Setup before each test.""" | """Setup before each test.""" | ||||
| self.step_trace_analyser = AnalyserFactory.instance().get_analyser( | self.step_trace_analyser = AnalyserFactory.instance().get_analyser( | ||||
| 'step_trace', self.profiler, '1') | 'step_trace', self.profiler, '1') | ||||
| @classmethod | |||||
| def generate_parsed_files(cls): | |||||
| """Test parse raw info about profiler.""" | |||||
| cls.summary_dir = os.path.join(BASE_SUMMARY_DIR, 'normal_run') | |||||
| cls.profiler = os.path.join(cls.summary_dir, 'profiler') | |||||
| FrameworkParser._raw_data_dir = RAW_DATA_BASE | |||||
| if not os.path.exists(cls.summary_dir): | |||||
| os.makedirs(cls.summary_dir) | |||||
| Profiler._base_profiling_container_path = os.path.join(RAW_DATA_BASE, 'container') | |||||
| with mock.patch('mindinsight.profiler.profiling.PROFILING_LOG_BASE_PATH', RAW_DATA_BASE): | |||||
| profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, | |||||
| output_path=cls.summary_dir, job_id=cls.JOB_ID) | |||||
| profiler.analyse() | |||||
| @pytest.mark.level0 | @pytest.mark.level0 | ||||
| @pytest.mark.env_single | @pytest.mark.env_single | ||||
| @@ -108,7 +93,7 @@ class TestProfilerAnalyse(TestCase): | |||||
| assert len(res['training_trace_graph']) == 13 | assert len(res['training_trace_graph']) == 13 | ||||
| assert res['training_trace_graph'][-1] == [ | assert res['training_trace_graph'][-1] == [ | ||||
| {'name': '', 'start': 0.2038, 'duration': 118.1667}, | {'name': '', 'start': 0.2038, 'duration': 118.1667}, | ||||
| {'name': 'stream_540_0_parallel', 'start': 118.3705, 'duration': 49.281}, | |||||
| {'name': 'stream_540_parallel_0', 'start': 118.3705, 'duration': 49.281}, | |||||
| {'name': '', 'start': 167.6515, 'duration': 37.7294}] | {'name': '', 'start': 167.6515, 'duration': 37.7294}] | ||||
| @pytest.mark.level0 | @pytest.mark.level0 | ||||
| @@ -19,19 +19,13 @@ Usage: | |||||
| pytest tests/st/func/profiler | pytest tests/st/func/profiler | ||||
| """ | """ | ||||
| import os | import os | ||||
| import shutil | |||||
| from unittest import mock | |||||
| import pytest | import pytest | ||||
| from mindinsight.profiler import Profiler | |||||
| from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory | from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory | ||||
| from mindinsight.profiler.parser.framework_parser import FrameworkParser | |||||
| from tests.st.func.profiler.conftest import BASE_SUMMARY_DIR | from tests.st.func.profiler.conftest import BASE_SUMMARY_DIR | ||||
| from tests.ut.profiler import RAW_DATA_BASE | |||||
| @pytest.mark.usefixtures('create_summary_dir') | |||||
| class TestMinddataPipelineAnalyser: | class TestMinddataPipelineAnalyser: | ||||
| """Test minddata pipeline analyser module.""" | """Test minddata pipeline analyser module.""" | ||||
| JOB_ID = 'JOB3' | JOB_ID = 'JOB3' | ||||
| @@ -39,29 +33,14 @@ class TestMinddataPipelineAnalyser: | |||||
| @classmethod | @classmethod | ||||
| def setup_class(cls): | def setup_class(cls): | ||||
| """Generate parsed files.""" | """Generate parsed files.""" | ||||
| cls.generate_parsed_files() | |||||
| cls.summary_dir = os.path.join(BASE_SUMMARY_DIR, 'normal_run') | |||||
| cls.profiler = os.path.join(cls.summary_dir, 'profiler') | |||||
| def setup_method(self): | def setup_method(self): | ||||
| """Create analyser.""" | """Create analyser.""" | ||||
| self._analyser = AnalyserFactory.instance().get_analyser( | self._analyser = AnalyserFactory.instance().get_analyser( | ||||
| 'minddata_pipeline', self.profiler, '1') | 'minddata_pipeline', self.profiler, '1') | ||||
| @classmethod | |||||
| def generate_parsed_files(cls): | |||||
| """Test parse raw info about profiler.""" | |||||
| cls.summary_dir = os.path.join(BASE_SUMMARY_DIR, 'normal_run') | |||||
| cls.profiler = os.path.join(cls.summary_dir, 'profiler') | |||||
| FrameworkParser._raw_data_dir = RAW_DATA_BASE | |||||
| if not os.path.exists(cls.summary_dir): | |||||
| os.makedirs(cls.summary_dir) | |||||
| os.makedirs(cls.profiler, exist_ok=True) | |||||
| pipeline_path = os.path.join(RAW_DATA_BASE, 'profiler', 'pipeline_profiling_1.json') | |||||
| shutil.copy(pipeline_path, cls.profiler) | |||||
| Profiler._base_profiling_container_path = os.path.join(RAW_DATA_BASE, 'container') | |||||
| with mock.patch('mindinsight.profiler.profiling.PROFILING_LOG_BASE_PATH', RAW_DATA_BASE): | |||||
| profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, | |||||
| output_path=cls.summary_dir, job_id=cls.JOB_ID) | |||||
| profiler.analyse() | |||||
| @pytest.mark.level0 | @pytest.mark.level0 | ||||
| @pytest.mark.env_single | @pytest.mark.env_single | ||||
| @@ -19,16 +19,11 @@ Usage: | |||||
| pytest tests/st/func/profiler | pytest tests/st/func/profiler | ||||
| """ | """ | ||||
| import os | import os | ||||
| from unittest import mock | |||||
| import pytest | import pytest | ||||
| from mindinsight.profiler import Profiler | |||||
| from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory | from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory | ||||
| from mindinsight.profiler.parser.framework_parser import FrameworkParser | |||||
| from tests.st.func.profiler.conftest import BASE_SUMMARY_DIR | from tests.st.func.profiler.conftest import BASE_SUMMARY_DIR | ||||
| from tests.ut.profiler import RAW_DATA_BASE | |||||
| OP_GATHER_V2_INFO = { | OP_GATHER_V2_INFO = { | ||||
| 'col_name': [ | 'col_name': [ | ||||
| @@ -84,7 +79,6 @@ OP_GATHER_V2_INFO = { | |||||
| } | } | ||||
| @pytest.mark.usefixtures('create_summary_dir') | |||||
| class TestOpAnalyser: | class TestOpAnalyser: | ||||
| """Test AICORE and AICPU analyser module.""" | """Test AICORE and AICPU analyser module.""" | ||||
| JOB_ID = 'JOB3' | JOB_ID = 'JOB3' | ||||
| @@ -92,7 +86,8 @@ class TestOpAnalyser: | |||||
| @classmethod | @classmethod | ||||
| def setup_class(cls): | def setup_class(cls): | ||||
| """Generate parsed files.""" | """Generate parsed files.""" | ||||
| cls.generate_parsed_files() | |||||
| cls.summary_dir = os.path.join(BASE_SUMMARY_DIR, 'normal_run') | |||||
| cls.profiler = os.path.join(cls.summary_dir, 'profiler') | |||||
| def setup_method(self): | def setup_method(self): | ||||
| """Create analyser.""" | """Create analyser.""" | ||||
| @@ -101,20 +96,6 @@ class TestOpAnalyser: | |||||
| self._analyser_aicore_detail = AnalyserFactory.instance().get_analyser( | self._analyser_aicore_detail = AnalyserFactory.instance().get_analyser( | ||||
| 'aicore_detail', self.profiler, '1') | 'aicore_detail', self.profiler, '1') | ||||
| @classmethod | |||||
| def generate_parsed_files(cls): | |||||
| """Test parse raw info about profiler.""" | |||||
| cls.summary_dir = os.path.join(BASE_SUMMARY_DIR, 'normal_run') | |||||
| cls.profiler = os.path.join(cls.summary_dir, 'profiler') | |||||
| FrameworkParser._raw_data_dir = RAW_DATA_BASE | |||||
| if not os.path.exists(cls.summary_dir): | |||||
| os.makedirs(cls.summary_dir) | |||||
| Profiler._base_profiling_container_path = os.path.join(RAW_DATA_BASE, 'container') | |||||
| with mock.patch('mindinsight.profiler.profiling.PROFILING_LOG_BASE_PATH', RAW_DATA_BASE): | |||||
| profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, | |||||
| output_path=cls.summary_dir, job_id=cls.JOB_ID) | |||||
| profiler.analyse() | |||||
| @pytest.mark.level0 | @pytest.mark.level0 | ||||
| @pytest.mark.env_single | @pytest.mark.env_single | ||||
| @pytest.mark.platform_x86_cpu | @pytest.mark.platform_x86_cpu | ||||
| @@ -1,14 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| @@ -1,74 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Test the aicpu parser.""" | |||||
| import os | |||||
| import tempfile | |||||
| import shutil | |||||
| from unittest import TestCase | |||||
| from mindinsight.profiler.parser.aicpu_data_parser import DataPreProcessParser | |||||
| def get_result(file_path): | |||||
| """ | |||||
| Get result from the aicpu file. | |||||
| Args: | |||||
| file_path (str): The aicpu file path. | |||||
| Returns: | |||||
| list[list], the parsed aicpu information. | |||||
| """ | |||||
| result = [] | |||||
| try: | |||||
| file = open(file_path, 'r') | |||||
| result.append(file.read()) | |||||
| return result | |||||
| finally: | |||||
| if file: | |||||
| file.close() | |||||
| class TestAicpuParser(TestCase): | |||||
| """Test the class of Aicpu Parser.""" | |||||
| def setUp(self) -> None: | |||||
| """Initialization before test case execution.""" | |||||
| self.profiling_dir = os.path.realpath(os.path.join(os.path.dirname(__file__), | |||||
| '../../../utils/resource/' | |||||
| 'JOB_AICPU/data')) | |||||
| self.expect_dir = os.path.realpath(os.path.join(os.path.dirname(__file__), | |||||
| '../../../utils/resource/' | |||||
| 'JOB_AICPU/expect')) | |||||
| self.output_path = tempfile.mkdtemp(prefix='output_data_preprocess_aicpu_') | |||||
| self.output_file = os.path.join(self.output_path, 'output_data_preprocess_aicpu_0.txt') | |||||
| self.expect_file = os.path.join(self.expect_dir, 'output_data_preprocess_aicpu_0.txt') | |||||
| def test_aicpu_parser(self): | |||||
| """Test the class of Aicpu Parser.""" | |||||
| data = DataPreProcessParser(self.profiling_dir, self.output_file) | |||||
| data.execute() | |||||
| expect_result = get_result(self.expect_file) | |||||
| result = get_result(self.output_file) | |||||
| shutil.rmtree(self.output_path) | |||||
| assert expect_result == result | |||||
| def test_aicpu_parser_file_not_exist(self): | |||||
| """Test the class of Aicpu Parser.""" | |||||
| profiling_dir = os.path.realpath(os.path.join(self.profiling_dir, 'data')) | |||||
| data = DataPreProcessParser(profiling_dir, self.output_file) | |||||
| data.execute() | |||||
| shutil.rmtree(self.output_path) | |||||
| @@ -1,158 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Test the framework parser module.""" | |||||
| import csv | |||||
| import os | |||||
| import shutil | |||||
| import tempfile | |||||
| from unittest import mock | |||||
| import pytest | |||||
| from marshmallow import ValidationError | |||||
| from mindinsight.profiler.common.exceptions.exceptions import \ | |||||
| ProfilerPathErrorException, ProfilerDirNotFoundException, \ | |||||
| ProfilerFileNotFoundException | |||||
| from mindinsight.profiler.parser.framework_parser import FrameworkParser | |||||
| from tests.ut.profiler import PROFILER_DIR, RAW_DATA_BASE | |||||
| def get_framework_result(file_path): | |||||
| """ | |||||
| Get framework result from the framework file. | |||||
| Args: | |||||
| file_path (str): The framework file path. | |||||
| Returns: | |||||
| list[list], the parsed framework information. | |||||
| """ | |||||
| result = [] | |||||
| with open(file_path, 'r') as file: | |||||
| csv_reader = csv.reader(file) | |||||
| for row in csv_reader: | |||||
| result.append(row) | |||||
| return result | |||||
| class TestFrameworkParser: | |||||
| """Test the class of `FrameworkParser`.""" | |||||
| def setup_method(self): | |||||
| """Initialization before test case execution.""" | |||||
| FrameworkParser._raw_data_dir = RAW_DATA_BASE | |||||
| self._output_path_1 = tempfile.mkdtemp(prefix='test_framework_parser_') | |||||
| self._parser_1 = FrameworkParser('JOB1', '0', self._output_path_1) | |||||
| self._output_path_2 = tempfile.mkdtemp(prefix='test_framework_parser_') | |||||
| self._parser_2 = FrameworkParser('JOB2', '0', self._output_path_2) | |||||
| self._output_path_4 = tempfile.mkdtemp(prefix='test_framework_parser_') | |||||
| self._parser_4 = FrameworkParser('JOB4', '0', self._output_path_4) | |||||
| def teardown_method(self) -> None: | |||||
| """Clear up after test case execution.""" | |||||
| shutil.rmtree(self._output_path_1) | |||||
| shutil.rmtree(self._output_path_2) | |||||
| shutil.rmtree(self._output_path_4) | |||||
| FrameworkParser._raw_data_dir = '/var/log/npu/profiling' | |||||
| def test_save_path(self): | |||||
| """Test the querying save path function.""" | |||||
| expect_result = os.path.join(self._output_path_1, 'framework_raw_0.csv') | |||||
| assert expect_result == self._parser_1.save_path | |||||
| expect_result = os.path.join(self._output_path_2, 'framework_raw_0.csv') | |||||
| assert expect_result == self._parser_2.save_path | |||||
| def test_point_info(self): | |||||
| """Test the querying point info function.""" | |||||
| expect_result = { | |||||
| 1: 'Default/Cast-op6', | |||||
| 2: 'Default/TransData-op7' | |||||
| } | |||||
| assert expect_result == self._parser_4.point_info | |||||
| def test_to_task_id_full_op_name_dict(self): | |||||
| """Test the querying task id and full operator name dict function.""" | |||||
| expect_result = { | |||||
| '51517': 'Default/Cast-op6', | |||||
| '51518': 'Default/TransData-op7', | |||||
| '51519': 'Default/network-WithLossCell/_backbone-ResNet/conv1-Conv2d/Cast-op5', | |||||
| '51522': 'Default/network-WithLossCell/_backbone-ResNet/' | |||||
| 'layer1-SequentialCell/0-ResidualBlock/conv1-Conv2d/Cast-op28' | |||||
| } | |||||
| assert expect_result == self._parser_1.to_task_id_full_op_name_dict() | |||||
| assert expect_result == self._parser_2.to_task_id_full_op_name_dict() | |||||
| expect_result = { | |||||
| '0_1': 'Default/Cast-op6', | |||||
| '0_2': 'Default/TransData-op7', | |||||
| '0_3': 'Default/network-WithLossCell/_backbone-ResNet/conv1-Conv2d/Cast-op5', | |||||
| '0_4': 'Default/network-WithLossCell/_backbone-ResNet/layer1-SequentialCell/' | |||||
| '0-ResidualBlock/conv1-Conv2d/Cast-op28' | |||||
| } | |||||
| assert expect_result == self._parser_4.to_task_id_full_op_name_dict() | |||||
| def test_parse(self): | |||||
| """Test the parse function.""" | |||||
| expect_framework_file = os.path.join(PROFILER_DIR, 'framework_raw_0.csv') | |||||
| expect_framework_file = os.path.realpath(expect_framework_file) | |||||
| expect_result = get_framework_result(expect_framework_file) | |||||
| self._parser_1.parse() | |||||
| framework_file = os.path.join(self._output_path_1, 'framework_raw_0.csv') | |||||
| result = get_framework_result(framework_file) | |||||
| assert expect_result == result | |||||
| self._parser_2.parse() | |||||
| framework_file = os.path.join(self._output_path_2, 'framework_raw_0.csv') | |||||
| result = get_framework_result(framework_file) | |||||
| assert expect_result == result | |||||
| @mock.patch('mindinsight.profiler.parser.framework_parser.validate_and_normalize_path') | |||||
| def test_create_framework_parser_fail_1(self, *args): | |||||
| """Test the function of fail to create framework parser.""" | |||||
| args[0].side_effect = ValidationError({'profiler': {"The path is invalid!"}}) | |||||
| with pytest.raises(ProfilerPathErrorException) as exc_info: | |||||
| FrameworkParser('JOB1', '0') | |||||
| assert exc_info.value.error_code == '50546081' | |||||
| assert exc_info.value.message == 'Path error. Profiling path is invalid.' | |||||
| @mock.patch('os.path.isdir') | |||||
| def test_create_framework_parser_fail_2(self, *args): | |||||
| """Test the function of fail to create framework parser.""" | |||||
| args[0].return_value = False | |||||
| FrameworkParser._raw_data_dir = '/var/log/npu/profiling' | |||||
| with pytest.raises(ProfilerDirNotFoundException) as exc_info: | |||||
| FrameworkParser('JOB1', '0') | |||||
| assert exc_info.value.error_code == '50546083' | |||||
| assert exc_info.value.message == \ | |||||
| 'The dir </var/log/npu/profiling/JOB1> not found.' | |||||
| @mock.patch('os.listdir') | |||||
| @mock.patch('os.path.isdir') | |||||
| def test_create_framework_parser_fail_3(self, *args): | |||||
| """Test the function of fail to create framework parser.""" | |||||
| args[0].return_value = True | |||||
| args[1].return_value = [] | |||||
| FrameworkParser._raw_data_dir = '/var/log/npu/profiling' | |||||
| with pytest.raises(ProfilerFileNotFoundException) as exc_info: | |||||
| FrameworkParser('JOB1', '0') | |||||
| assert exc_info.value.error_code == '50546084' | |||||
| assert exc_info.value.message == 'The file <Framework> not found.' | |||||
| @@ -1,93 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Test the minddata pipeline parser module.""" | |||||
| import csv | |||||
| import os | |||||
| import shutil | |||||
| import tempfile | |||||
| from mindinsight.profiler.parser.minddata_pipeline_parser import \ | |||||
| MinddataPipelineParser | |||||
| from tests.ut.profiler import PROFILER_DIR, RAW_DATA, RAW_DATA_JOB2 | |||||
| def get_minddata_pipeline_result(file_path): | |||||
| """ | |||||
| Get minddata pipeline result from the minddata pipeline file. | |||||
| Args: | |||||
| file_path (str): The minddata pipeline file path. | |||||
| Returns: | |||||
| list[list], the parsed minddata pipeline information. | |||||
| """ | |||||
| result = [] | |||||
| with open(file_path, 'r') as file: | |||||
| csv_reader = csv.reader(file) | |||||
| for row in csv_reader: | |||||
| result.append(row) | |||||
| return result | |||||
| class TestMinddataPipelineParser: | |||||
| """Test the class of `MinddataPipelineParser`.""" | |||||
| def setup_method(self): | |||||
| """Initialization before test case execution.""" | |||||
| self._output_path_1 = tempfile.mkdtemp( | |||||
| prefix='test_minddata_pipeline_parser_' | |||||
| ) | |||||
| self._parser_1 = MinddataPipelineParser( | |||||
| RAW_DATA, '0', self._output_path_1 | |||||
| ) | |||||
| self._output_path_2 = tempfile.mkdtemp( | |||||
| prefix='test_minddata_pipeline_parser_' | |||||
| ) | |||||
| self._parser_2 = MinddataPipelineParser( | |||||
| RAW_DATA_JOB2, '0', self._output_path_2 | |||||
| ) | |||||
| def teardown_method(self) -> None: | |||||
| """Clear up after test case execution.""" | |||||
| shutil.rmtree(self._output_path_1) | |||||
| shutil.rmtree(self._output_path_2) | |||||
| def test_save_path(self): | |||||
| """Test the querying save path function.""" | |||||
| expect_result = os.path.join( | |||||
| self._output_path_1, 'minddata_pipeline_raw_0.csv' | |||||
| ) | |||||
| assert expect_result == self._parser_1.save_path | |||||
| def test_parse(self): | |||||
| """Test the parse function.""" | |||||
| expect_pipeline_file = os.path.join( | |||||
| PROFILER_DIR, 'minddata_pipeline_raw_0.csv' | |||||
| ) | |||||
| expect_result = get_minddata_pipeline_result(expect_pipeline_file) | |||||
| self._parser_1.parse() | |||||
| pipeline_file = os.path.join( | |||||
| self._output_path_1, 'minddata_pipeline_raw_0.csv' | |||||
| ) | |||||
| result = get_minddata_pipeline_result(pipeline_file) | |||||
| assert expect_result == result | |||||
| self._parser_2.parse() | |||||
| pipeline_file = os.path.join( | |||||
| self._output_path_2, 'minddata_pipeline_raw_0.csv' | |||||
| ) | |||||
| result = get_minddata_pipeline_result(pipeline_file) | |||||
| assert expect_result == result | |||||
| @@ -0,0 +1,200 @@ | |||||
| full_op_name,execution_time | |||||
| Default/AssignAdd-op414,0.001688 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op29,0.0012020000000000002 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op30,0.0013606666666666667 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op31,0.0011659999999999997 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op32,0.001116 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op33,0.9352293333333332 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op35,0.010222666666666666 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/ReduceSum-op36,0.015073333333333333 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op37,0.003832666666666666 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op34,0.001396666666666667 | |||||
| Default/TransData-op216,0.006697333333333332 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Square-op38,0.009799333333333334 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Split-op39,0.09720533333333335 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Concat-op40,0.08841666666666667 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/StridedSlice-op41,0.012427333333333335 | |||||
| Default/AtomicAddrClean-op418,0.001378666666666667 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceSum-op42,0.009832666666666665 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op48,0.001400666666666667 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op44,0.0014346666666666666 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Mul-op28,0.001468 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op47,0.004459333333333333 | |||||
| Default/TransData-op281,0.0027733333333333334 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op46,0.004600000000000001 | |||||
| Default/TransData-op278,0.004403333333333333 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op45,0.00711 | |||||
| Default/TransData-op275,0.005461333333333334 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op52,0.023115999999999994 | |||||
| Default/TransData-op272,0.009749333333333332 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op43,0.0013153333333333335 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op53,0.004243333333333333 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op54,0.004824666666666667 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op49,0.003735 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op50,0.0045564285714285715 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/grad_VirtualDiv/RealDiv-op51,0.004516428571428571 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op55,42.220212142857136 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op56,0.00871357142857143 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradStridedSlice/StridedSliceGrad-op57,0.15243714285714288 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op58,0.9626657142857143 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op59,1.0643285714285715 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op60,0.9675764285714286 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op61,0.9675435714285714 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op62,1.0075085714285714 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op63,0.9250400000000002 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op64,1.1294107142857144 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op65,1.0091157142857143 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSplit/Concat-op66,0.051030714285714276 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Split-op67,2.617072142857143 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Concat-op68,3.084827142857143 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/StridedSlice-op69,0.3331414285714285 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op70,0.37437785714285715 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/ReLU-op71,0.32776857142857135 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Mul-op72,0.33151499999999995 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op73,0.2518214285714286 | |||||
| Default/TransData-op271,0.14980214285714283 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/MatMul-op74,0.45218500000000006 | |||||
| Default/TransData-op240,0.09184714285714284 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/RealDiv-op76,0.10391071428571431 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/BiasAdd-op77,0.11015571428571427 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/ReLU-op78,0.10085142857142855 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Mul-op79,0.10943071428571426 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op80,0.04727285714285715 | |||||
| Default/TransData-op274,0.03735642857142857 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/MatMul-op81,0.09832214285714284 | |||||
| Default/TransData-op245,0.037176428571428576 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/RealDiv-op83,0.036798571428571424 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/BiasAdd-op84,0.04016857142857143 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/ReLU-op85,0.027936428571428574 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Mul-op86,0.039065 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op87,0.02587642857142857 | |||||
| Default/TransData-op277,0.01939 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/MatMul-op88,0.03152 | |||||
| Default/TransData-op250,0.020935000000000002 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/RealDiv-op90,0.025487142857142854 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/BiasAdd-op91,0.021720714285714288 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/ReLU-op92,0.016717857142857142 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Mul-op93,0.021017857142857147 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op94,0.014929999999999999 | |||||
| Default/TransData-op280,0.012425714285714285 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/MatMul-op95,0.013189999999999997 | |||||
| Default/TransData-op255,0.014586428571428571 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/RealDiv-op97,0.015751428571428572 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/BiasAdd-op98,0.013145 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/ReLU-op99,0.010007857142857143 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Mul-op100,0.01205 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op101,0.009261428571428571 | |||||
| Default/TransData-op215,0.009404285714285714 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/MatMul-op102,0.007625 | |||||
| Default/TransData-op204,0.016274285714285713 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/RealDiv-op104,0.004828571428571428 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/BiasAdd-op105,0.004472857142857142 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op106,0.003925714285714286 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/SigmoidCrossEntropyWithLogits-op107,0.004808571428571428 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op109,0.004950714285714286 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op108,0.004631428571428572 | |||||
| Default/AtomicAddrClean-op425,0.0015150000000000003 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceMean-op110,0.004534999999999999 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradBiasAdd/BiasAddGrad-op112,0.0030614285714285717 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradRealDiv/RealDiv-op113,0.004547142857142856 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op111,0.0031428571428571426 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradCast/Cast-op115,0.0026614285714285715 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op114,0.027466428571428576 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op116,0.03313571428571428 | |||||
| Default/TransData-op257,0.06620642857142857 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op117,0.010132142857142855 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op121,0.020947142857142855 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op119,0.009299285714285715 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op120,0.009546428571428572 | |||||
| Default/AtomicAddrClean-op427,0.002937142857142857 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op123,7.355592142857143 | |||||
| Default/TransData-op235,0.014415714285714283 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMul/Mul-op128,0.012212857142857145 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradReLU/ReluGrad-op131,0.02228428571428571 | |||||
| Default/AtomicAddrClean-op428,0.001404285714285714 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradBiasAdd/BiasAddGrad-op134,0.008783571428571429 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradRealDiv/RealDiv-op135,0.013412857142857143 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradCast/Cast-op136,0.008197142857142856 | |||||
| Default/TransData-op252,0.008572857142857142 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op138,0.029589285714285724 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op139,0.016685 | |||||
| Default/TransData-op233,0.020412142857142858 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMul/Mul-op143,0.020592142857142857 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradReLU/ReluGrad-op145,0.03936785714285714 | |||||
| Default/AtomicAddrClean-op429,0.0014571428571428572 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradBiasAdd/BiasAddGrad-op147,0.012325714285714285 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradRealDiv/RealDiv-op148,0.021508571428571432 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradCast/Cast-op149,0.012591428571428571 | |||||
| Default/TransData-op247,0.012454999999999997 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op151,0.053485000000000005 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op152,0.03651357142857143 | |||||
| Default/TransData-op231,0.03276571428571429 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMul/Mul-op156,0.037129999999999996 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradReLU/ReluGrad-op158,0.09050499999999999 | |||||
| Default/AtomicAddrClean-op430,0.001497142857142857 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradBiasAdd/BiasAddGrad-op160,0.017480714285714283 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradRealDiv/RealDiv-op161,0.042566428571428575 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradCast/Cast-op162,0.02489785714285714 | |||||
| Default/TransData-op242,0.019189285714285714 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op164,0.10608857142857142 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op165,0.1160064285714286 | |||||
| Default/TransData-op229,0.09212928571428572 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMul/Mul-op169,0.10092642857142857 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradReLU/ReluGrad-op171,0.18744071428571424 | |||||
| Default/AtomicAddrClean-op431,0.0014599999999999997 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradBiasAdd/BiasAddGrad-op173,0.030029999999999998 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradRealDiv/RealDiv-op174,0.13704571428571427 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradCast/Cast-op175,0.04649285714285715 | |||||
| Default/TransData-op237,0.03681785714285714 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op177,0.42144428571428577 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op118,0.001617857142857143 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op124,0.0014600000000000001 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op178,0.5351814285714286 | |||||
| Default/TransData-op284,0.32571142857142854 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMul/Mul-op182,0.3179142857142857 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradReLU/ReluGrad-op184,0.5144707142857143 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op186,0.3859778571428571 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradStridedSlice/StridedSliceGrad-op187,1.3543971428571429 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op188,1.5460985714285713 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op189,1.5340514285714286 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op190,1.540242857142857 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op191,1.5514735714285715 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op192,1.5607435714285713 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op193,1.5385385714285713 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op194,1.537682857142857 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op195,1.5342942857142856 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradSplit/Concat-op196,2.584179285714286 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op130,0.005715714285714287 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op129,0.0015964285714285716 | |||||
| Default/Mul-op183,0.0016557142857142858 | |||||
| Default/Mul-op170,0.0015957142857142856 | |||||
| Default/Mul-op157,0.0015314285714285714 | |||||
| Default/Mul-op144,0.0014735714285714285 | |||||
| Default/Mul-op122,0.0012207142857142855 | |||||
| Default/TransData-op206,0.02777642857142857 | |||||
| Default/TransData-op208,0.008395714285714286 | |||||
| Default/TransData-op210,0.006270714285714287 | |||||
| Default/TransData-op212,0.003332857142857143 | |||||
| Default/TransData-op214,0.0024235714285714286 | |||||
| Default/Mul-op197,0.016677857142857147 | |||||
| Default/Mul-op176,0.007605000000000001 | |||||
| Default/Mul-op163,0.0062528571428571425 | |||||
| Default/Mul-op150,0.004635 | |||||
| Default/Mul-op137,0.0016078571428571429 | |||||
| Default/AtomicAddrClean-op434,0.007719285714285714 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op199,37.25223428571428 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/AddN-op200,0.012836428571428572 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op201,0.010897142857142855 | |||||
| Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op133,0.02319642857142857 | |||||
| Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op132,0.0022571428571428573 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op185,0.003688571428571429 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op172,0.003175714285714285 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op159,0.0029478571428571436 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op146,0.0028899999999999998 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op127,0.0022257142857142853 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op198,0.133745 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op179,0.03321571428571428 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op166,0.010665 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op153,0.006292857142857143 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op140,0.002818571428571428 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op202,0.08427071428571428 | |||||
| @@ -0,0 +1,30 @@ | |||||
| op_type,execution_time,execution_frequency,percent | |||||
| AssignAdd,0.001688,1,0.00 | |||||
| Mul,1.9029486666666665347,32,1.51 | |||||
| Assign,0.0024766666666666667,2,0.00 | |||||
| GatherV2,43.1554414761904692,2,34.13 | |||||
| ReduceSum,0.0307648571428571411,5,0.02 | |||||
| TensorAdd,0.0092183809523809521,3,0.01 | |||||
| Cast,0.4846848571428571735,15,0.38 | |||||
| TransData,1.1151575238095237340,30,0.88 | |||||
| Square,0.009799333333333334,1,0.01 | |||||
| Split,2.71427747619047635,2,2.15 | |||||
| Concat,5.808453809523809946,4,4.59 | |||||
| StridedSlice,0.345568761904761835,2,0.27 | |||||
| AtomicAddrClean,0.0193686666666666662,8,0.02 | |||||
| RealDiv,0.4228071904761904831,15,0.33 | |||||
| Tile,0.044158333333333339,4,0.03 | |||||
| StridedSliceGrad,1.50683428571428578,2,1.19 | |||||
| Slice,20.3763149999999997,16,16.12 | |||||
| ReLU,0.483282142857142759,5,0.38 | |||||
| MatMul,1.936681428571428733,15,1.53 | |||||
| BiasAdd,0.189662857142857130,5,0.15 | |||||
| SigmoidCrossEntropyWithLogits,0.004808571428571428,1,0.00 | |||||
| SigmoidCrossEntropyWithLogitsGrad,0.009582142857142858,2,0.01 | |||||
| ReduceMean,0.004534999999999999,1,0.00 | |||||
| BiasAddGrad,0.0716814285714285667,5,0.06 | |||||
| UnsortedSegmentSum,44.607826428571423,2,35.28 | |||||
| ReluGrad,0.85406857142857138,5,0.68 | |||||
| AddN,0.012836428571428572,1,0.01 | |||||
| ApplyFtrl,0.0254535714285714273,2,0.02 | |||||
| Adam,0.2859357142857142737,11,0.23 | |||||
| @@ -0,0 +1,200 @@ | |||||
| task_id,stream_id,block_dim,full_op_name,op_name,op_type,subgraph,op_info | |||||
| 30092,3,1,Default/AssignAdd-op414,AssignAdd-op414,AssignAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""1""}}" | |||||
| 30093,3,1,Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op29,Mul-op29,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||||
| 30094,3,1,Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op30,Assign-op30,Assign,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||||
| 30095,3,1,Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op31,Mul-op31,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||||
| 30096,3,1,Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op32,Assign-op32,Assign,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||||
| 30103,3,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op33,GatherV2-op33,GatherV2,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""16000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}}" | |||||
| 30104,3,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op35,Mul-op35,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}}" | |||||
| 30105,3,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/ReduceSum-op36,ReduceSum-op36,ReduceSum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||||
| 30106,3,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op37,TensorAdd-op37,TensorAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||||
| 30107,3,1,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op34,Cast-op34,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""128,1""}}" | |||||
| 30108,3,8,Default/TransData-op216,TransData-op216,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""128,1""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,8,16,16""}}" | |||||
| 30109,3,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Square-op38,Square-op38,Square,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 30453,7,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Split-op39,Split-op39,Split,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1477568,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 30454,7,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Concat-op40,Concat-op40,Concat,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}}" | |||||
| 30455,7,22,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/StridedSlice-op41,StridedSlice-op41,StridedSlice,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""23087,64""}}" | |||||
| 30456,7,1,Default/AtomicAddrClean-op418,AtomicAddrClean-op418,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||||
| 30457,7,33,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceSum-op42,ReduceSum-op42,ReduceSum,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""23087,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||||
| 30646,9,1,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op48,ReduceSum-op48,ReduceSum,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||||
| 30837,11,1,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op44,RealDiv-op44,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||||
| 30838,11,1,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Mul-op28,Mul-op28,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||||
| 30839,11,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op47,Cast-op47,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""256,128""}}" | |||||
| 30840,11,16,Default/TransData-op281,TransData-op281,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""256,128""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,16,16,16""}}" | |||||
| 30841,11,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op46,Cast-op46,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""512,256""}}" | |||||
| 30842,11,32,Default/TransData-op278,TransData-op278,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""512,256""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,32,16,16""}}" | |||||
| 30843,11,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op45,Cast-op45,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1024,512""}}" | |||||
| 30844,11,32,Default/TransData-op275,TransData-op275,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1024,512""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,64,16,16""}}" | |||||
| 30845,11,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op52,Cast-op52,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""2496,1024""}}" | |||||
| 30846,11,32,Default/TransData-op272,TransData-op272,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""2496,1024""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,156,16,16""}}" | |||||
| 30847,11,1,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op43,ReduceSum-op43,ReduceSum,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||||
| 31038,13,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op53,Tile-op53,Tile,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||||
| 31039,13,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op54,RealDiv-op54,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||||
| 31231,15,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op49,Tile-op49,Tile,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||||
| 31232,15,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op50,RealDiv-op50,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||||
| 31233,15,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/grad_VirtualDiv/RealDiv-op51,RealDiv-op51,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||||
| 31236,15,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op55,GatherV2-op55,GatherV2,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""128000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||||
| 31409,17,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op56,Tile-op56,Tile,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""23087,64""}}" | |||||
| 31410,17,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradStridedSlice/StridedSliceGrad-op57,StridedSliceGrad-op57,StridedSliceGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""23087,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}}" | |||||
| 31411,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op58,Slice-op58,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 31412,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op59,Slice-op59,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 31413,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op60,Slice-op60,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 31414,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op61,Slice-op61,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 31415,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op62,Slice-op62,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 31416,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op63,Slice-op63,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 31417,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op64,Slice-op64,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 31418,17,23087,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op65,Slice-op65,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 31419,17,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSplit/Concat-op66,Concat-op66,Concat,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1477568,8""}}" | |||||
| 31598,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Split-op67,Split-op67,Split,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024000,39,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||||
| 31599,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Concat-op68,Concat-op68,Concat,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}}" | |||||
| 31600,19,15,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/StridedSlice-op69,StridedSlice-op69,StridedSlice,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}}" | |||||
| 31601,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op70,Mul-op70,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}}" | |||||
| 31602,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/ReLU-op71,ReLU-op71,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}}" | |||||
| 31603,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Mul-op72,Mul-op72,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}}" | |||||
| 31604,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op73,Cast-op73,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,2496""}}" | |||||
| 31605,19,32,Default/TransData-op271,TransData-op271,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,2496""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""156,1000,16,16""}}" | |||||
| 31606,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/MatMul-op74,MatMul-op74,MatMul,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""156,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,156,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,1000,16,16""}}" | |||||
| 31607,19,32,Default/TransData-op240,TransData-op240,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||||
| 31608,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/RealDiv-op76,RealDiv-op76,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||||
| 31609,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/BiasAdd-op77,BiasAdd-op77,BiasAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||||
| 31610,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/ReLU-op78,ReLU-op78,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||||
| 31611,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Mul-op79,Mul-op79,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||||
| 31612,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op80,Cast-op80,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1024""}}" | |||||
| 31613,19,32,Default/TransData-op274,TransData-op274,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}}" | |||||
| 31614,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/MatMul-op81,MatMul-op81,MatMul,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,64,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1000,16,16""}}" | |||||
| 31615,19,32,Default/TransData-op245,TransData-op245,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||||
| 31616,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/RealDiv-op83,RealDiv-op83,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||||
| 31617,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/BiasAdd-op84,BiasAdd-op84,BiasAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||||
| 31618,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/ReLU-op85,ReLU-op85,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||||
| 31619,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Mul-op86,Mul-op86,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||||
| 31620,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op87,Cast-op87,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,512""}}" | |||||
| 31621,19,32,Default/TransData-op277,TransData-op277,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}}" | |||||
| 31622,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/MatMul-op88,MatMul-op88,MatMul,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,32,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,1000,16,16""}}" | |||||
| 31623,19,32,Default/TransData-op250,TransData-op250,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||||
| 31624,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/RealDiv-op90,RealDiv-op90,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||||
| 31625,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/BiasAdd-op91,BiasAdd-op91,BiasAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||||
| 31626,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/ReLU-op92,ReLU-op92,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||||
| 31627,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Mul-op93,Mul-op93,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||||
| 31628,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op94,Cast-op94,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,256""}}" | |||||
| 31629,19,32,Default/TransData-op280,TransData-op280,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}}" | |||||
| 31630,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/MatMul-op95,MatMul-op95,MatMul,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,16,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,1000,16,16""}}" | |||||
| 31631,19,32,Default/TransData-op255,TransData-op255,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||||
| 31632,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/RealDiv-op97,RealDiv-op97,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||||
| 31633,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/BiasAdd-op98,BiasAdd-op98,BiasAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||||
| 31634,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/ReLU-op99,ReLU-op99,ReLU,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||||
| 31635,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Mul-op100,Mul-op100,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||||
| 31636,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op101,Cast-op101,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,128""}}" | |||||
| 31637,19,32,Default/TransData-op215,TransData-op215,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}}" | |||||
| 31638,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/MatMul-op102,MatMul-op102,MatMul,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,8,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1,1000,16,16""}}" | |||||
| 31639,19,32,Default/TransData-op204,TransData-op204,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||||
| 31640,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/RealDiv-op104,RealDiv-op104,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||||
| 31641,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/BiasAdd-op105,BiasAdd-op105,BiasAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||||
| 31642,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op106,TensorAdd-op106,TensorAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||||
| 31643,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/SigmoidCrossEntropyWithLogits-op107,SigmoidCrossEntropyWithLogits-op107,SigmoidCrossEntropyWithLogits,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||||
| 31644,19,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op109,SigmoidCrossEntropyWithLogitsGrad-op109,SigmoidCrossEntropyWithLogitsGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||||
| 31645,19,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op108,SigmoidCrossEntropyWithLogitsGrad-op108,SigmoidCrossEntropyWithLogitsGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||||
| 31646,19,1,Default/AtomicAddrClean-op425,AtomicAddrClean-op425,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||||
| 31647,19,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceMean-op110,ReduceMean-op110,ReduceMean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||||
| 31648,19,1,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradBiasAdd/BiasAddGrad-op112,BiasAddGrad-op112,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||||
| 31649,19,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradRealDiv/RealDiv-op113,RealDiv-op113,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}}" | |||||
| 31650,19,1,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op111,ReduceSum-op111,ReduceSum,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" | |||||
| 31839,21,16,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradCast/Cast-op115,Cast-op115,Cast,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1""}}" | |||||
| 31840,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op114,Tile-op114,Tile,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}}" | |||||
| 31843,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op116,Mul-op116,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 31844,21,32,Default/TransData-op257,TransData-op257,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,1000,16,16""}}" | |||||
| 31845,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op117,Mul-op117,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}}" | |||||
| 31846,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op121,Mul-op121,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 31847,21,8,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op119,MatMul-op119,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,1000,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1,8,16,16""}}" | |||||
| 31848,21,63,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op120,MatMul-op120,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""1,8,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,1000,16,16""}}" | |||||
| 31849,21,16,Default/AtomicAddrClean-op427,AtomicAddrClean-op427,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}}" | |||||
| 31850,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op123,UnsortedSegmentSum-op123,UnsortedSegmentSum,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""16000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}}" | |||||
| 31851,21,32,Default/TransData-op235,TransData-op235,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||||
| 31852,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMul/Mul-op128,Mul-op128,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||||
| 31853,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradReLU/ReluGrad-op131,ReluGrad-op131,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||||
| 31854,21,1,Default/AtomicAddrClean-op428,AtomicAddrClean-op428,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}}" | |||||
| 31855,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradBiasAdd/BiasAddGrad-op134,BiasAddGrad-op134,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}}" | |||||
| 31856,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradRealDiv/RealDiv-op135,RealDiv-op135,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}}" | |||||
| 31857,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradCast/Cast-op136,Cast-op136,Cast,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,128""}}" | |||||
| 31858,21,32,Default/TransData-op252,TransData-op252,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,128""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}}" | |||||
| 31859,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op138,MatMul-op138,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,16,16,16""}}" | |||||
| 31860,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op139,MatMul-op139,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""8,16,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,1000,16,16""}}" | |||||
| 31861,21,32,Default/TransData-op233,TransData-op233,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||||
| 31862,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMul/Mul-op143,Mul-op143,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||||
| 31863,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradReLU/ReluGrad-op145,ReluGrad-op145,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||||
| 31864,21,1,Default/AtomicAddrClean-op429,AtomicAddrClean-op429,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}}" | |||||
| 31865,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradBiasAdd/BiasAddGrad-op147,BiasAddGrad-op147,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}}" | |||||
| 31866,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradRealDiv/RealDiv-op148,RealDiv-op148,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}}" | |||||
| 31867,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradCast/Cast-op149,Cast-op149,Cast,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,256""}}" | |||||
| 31868,21,32,Default/TransData-op247,TransData-op247,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,256""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}}" | |||||
| 31869,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op151,MatMul-op151,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,32,16,16""}}" | |||||
| 31870,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op152,MatMul-op152,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16,32,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1000,16,16""}}" | |||||
| 31871,21,32,Default/TransData-op231,TransData-op231,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||||
| 31872,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMul/Mul-op156,Mul-op156,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||||
| 31873,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradReLU/ReluGrad-op158,ReluGrad-op158,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||||
| 31874,21,1,Default/AtomicAddrClean-op430,AtomicAddrClean-op430,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}}" | |||||
| 31875,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradBiasAdd/BiasAddGrad-op160,BiasAddGrad-op160,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}}" | |||||
| 31876,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradRealDiv/RealDiv-op161,RealDiv-op161,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}}" | |||||
| 31877,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradCast/Cast-op162,Cast-op162,Cast,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,512""}}" | |||||
| 31878,21,32,Default/TransData-op242,TransData-op242,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,512""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}}" | |||||
| 31879,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op164,MatMul-op164,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,64,16,16""}}" | |||||
| 31880,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op165,MatMul-op165,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,64,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,1000,16,16""}}" | |||||
| 31881,21,32,Default/TransData-op229,TransData-op229,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||||
| 31882,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMul/Mul-op169,Mul-op169,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||||
| 31883,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradReLU/ReluGrad-op171,ReluGrad-op171,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||||
| 31884,21,1,Default/AtomicAddrClean-op431,AtomicAddrClean-op431,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}}" | |||||
| 31885,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradBiasAdd/BiasAddGrad-op173,BiasAddGrad-op173,BiasAddGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}}" | |||||
| 31886,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradRealDiv/RealDiv-op174,RealDiv-op174,RealDiv,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}}" | |||||
| 31887,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradCast/Cast-op175,Cast-op175,Cast,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1024""}}" | |||||
| 31888,21,32,Default/TransData-op237,TransData-op237,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""16000,1024""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}}" | |||||
| 31889,21,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op177,MatMul-op177,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""156,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,156,16,16""}}" | |||||
| 32218,23,1,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op118,RealDiv-op118,RealDiv,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||||
| 32219,23,1,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op124,TensorAdd-op124,TensorAdd,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||||
| 32220,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op178,MatMul-op178,MatMul,Gradients,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,1000,16,16""}, ""input_1"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""64,156,16,16""}, ""output_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""156,1000,16,16""}}" | |||||
| 32221,23,32,Default/TransData-op284,TransData-op284,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""156,1000,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}}" | |||||
| 32222,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMul/Mul-op182,Mul-op182,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}}" | |||||
| 32223,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradReLU/ReluGrad-op184,ReluGrad-op184,ReluGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}}" | |||||
| 32224,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op186,Mul-op186,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,2496""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}}" | |||||
| 32225,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradStridedSlice/StridedSliceGrad-op187,StridedSliceGrad-op187,StridedSliceGrad,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}}" | |||||
| 32226,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op188,Slice-op188,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||||
| 32227,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op189,Slice-op189,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||||
| 32228,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op190,Slice-op190,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||||
| 32229,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op191,Slice-op191,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||||
| 32230,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op192,Slice-op192,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||||
| 32231,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op193,Slice-op193,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||||
| 32232,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op194,Slice-op194,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||||
| 32233,23,640,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op195,Slice-op195,Slice,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,64""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}}" | |||||
| 32234,23,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradSplit/Concat-op196,Concat-op196,Concat,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024000,39,8""}}" | |||||
| 32414,25,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op130,Mul-op130,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}}" | |||||
| 32415,25,1,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op129,Mul-op129,Mul,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||||
| 32416,25,2,Default/Mul-op183,Mul-op183,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}}" | |||||
| 32417,25,1,Default/Mul-op170,Mul-op170,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}}" | |||||
| 32418,25,1,Default/Mul-op157,Mul-op157,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}}" | |||||
| 32419,25,1,Default/Mul-op144,Mul-op144,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}}" | |||||
| 32420,25,1,Default/Mul-op122,Mul-op122,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||||
| 32421,25,32,Default/TransData-op206,TransData-op206,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""64,156,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}}" | |||||
| 32422,25,32,Default/TransData-op208,TransData-op208,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,64,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}}" | |||||
| 32423,25,32,Default/TransData-op210,TransData-op210,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""16,32,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}}" | |||||
| 32424,25,16,Default/TransData-op212,TransData-op212,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""8,16,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}}" | |||||
| 32425,25,8,Default/TransData-op214,TransData-op214,TransData,Default,"{""input_0"": {""format"": ""FRACTAL_NZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1,8,16,16""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}}" | |||||
| 32426,25,32,Default/Mul-op197,Mul-op197,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}}" | |||||
| 32427,25,32,Default/Mul-op176,Mul-op176,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}}" | |||||
| 32428,25,32,Default/Mul-op163,Mul-op163,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}}" | |||||
| 32429,25,32,Default/Mul-op150,Mul-op150,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}}" | |||||
| 32430,25,1,Default/Mul-op137,Mul-op137,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}}" | |||||
| 32431,25,31,Default/AtomicAddrClean-op434,AtomicAddrClean-op434,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 32434,25,32,Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op199,UnsortedSegmentSum-op199,UnsortedSegmentSum,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128000,39,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_INT32"", ""shape"": ""128000,39""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 32435,25,32,Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/AddN-op200,AddN-op200,AddN,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 32436,25,32,Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op201,Mul-op201,Mul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| 32437,25,29,Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op133,ApplyFtrl-op133,ApplyFtrl,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,1""}}" | |||||
| 32438,25,1,Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op132,ApplyFtrl-op132,ApplyFtrl,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||||
| 32439,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op185,Adam-op185,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024""}}" | |||||
| 32440,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op172,Adam-op172,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512""}}" | |||||
| 32441,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op159,Adam-op159,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256""}}" | |||||
| 32442,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op146,Adam-op146,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128""}}" | |||||
| 32443,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op127,Adam-op127,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}}" | |||||
| 32444,25,32,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op198,Adam-op198,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""2496,1024""}}" | |||||
| 32445,25,31,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op179,Adam-op179,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1024,512""}}" | |||||
| 32446,25,31,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op166,Adam-op166,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""512,256""}}" | |||||
| 32447,25,16,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op153,Adam-op153,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""256,128""}}" | |||||
| 32448,25,1,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op140,Adam-op140,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""128,1""}}" | |||||
| 32449,25,31,Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op202,Adam-op202,Adam,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""input_3"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_4"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""1""}, ""input_5"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_6"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_7"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_8"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}, ""input_9"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}, ""output_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""184696,8""}}" | |||||
| @@ -0,0 +1 @@ | |||||
| 43806841592.0 | |||||
| @@ -0,0 +1,5 @@ | |||||
| op_id,op_type,num_workers,output_queue_size,output_queue_average_size,output_queue_length,output_queue_usage_rate,sample_interval,parent_id,children_id | |||||
| 0,Batch,4,,,,,10,,[1] | |||||
| 1,Shuffle,1,"[10, 20, 30]",20.0,64,0.3125,10,0,"[2, 3]" | |||||
| 2,TFReader,4,"[10, 20, 30]",20.0,64,0.3125,10,1, | |||||
| 3,TFReader,4,"[10, 20, 30]",20.0,64,0.3125,10,1, | |||||
| @@ -0,0 +1,203 @@ | |||||
| ====================op compute time==================== | |||||
| op_name compute_time(ms) stream_id | |||||
| ------------ --------------- --------- | |||||
| Default/AssignAdd-op414 0.001688 519 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op29 0.0012020000000000002 519 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op30 0.0013606666666666667 519 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op31 0.0011659999999999997 519 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Assign-op32 0.001116 519 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op33 0.9352293333333332 519 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op35 0.010222666666666666 519 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/ReduceSum-op36 0.015073333333333333 519 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op37 0.003832666666666666 519 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op34 0.001396666666666667 519 | |||||
| Default/TransData-op216 0.006697333333333332 519 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Square-op38 0.009799333333333334 519 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Split-op39 0.09720533333333335 523 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Concat-op40 0.08841666666666667 523 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/StridedSlice-op41 0.012427333333333335 523 | |||||
| Default/AtomicAddrClean-op418 0.001378666666666667 523 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceSum-op42 0.009832666666666665 523 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op48 0.001400666666666667 525 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op44 0.0014346666666666666 527 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/Mul-op28 0.001468 527 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op47 0.004459333333333333 527 | |||||
| Default/TransData-op281 0.0027733333333333334 527 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op46 0.004600000000000001 527 | |||||
| Default/TransData-op278 0.004403333333333333 527 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op45 0.00711 527 | |||||
| Default/TransData-op275 0.005461333333333334 527 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op52 0.023115999999999994 527 | |||||
| Default/TransData-op272 0.009749333333333332 527 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op43 0.0013153333333333335 527 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op53 0.004243333333333333 529 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op54 0.004824666666666667 529 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op49 0.003735 531 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/RealDiv-op50 0.0045564285714285715 531 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/grad_VirtualDiv/RealDiv-op51 0.004516428571428571 531 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op55 42.220212142857136 531 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op56 0.00871357142857143 533 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradStridedSlice/StridedSliceGrad-op57 0.15243714285714288 533 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op58 0.9626657142857143 533 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op59 1.0643285714285715 533 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op60 0.9675764285714286 533 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op61 0.9675435714285714 533 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op62 1.0075085714285714 533 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op63 0.9250400000000002 533 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op64 1.1294107142857144 533 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradConcat/Slice-op65 1.0091157142857143 533 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSplit/Concat-op66 0.051030714285714276 533 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Split-op67 2.617072142857143 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Concat-op68 3.084827142857143 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/StridedSlice-op69 0.3331414285714285 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/Mul-op70 0.37437785714285715 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/ReLU-op71 0.32776857142857135 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Mul-op72 0.33151499999999995 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/Cast-op73 0.2518214285714286 535 | |||||
| Default/TransData-op271 0.14980214285714283 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/MatMul-op74 0.45218500000000006 535 | |||||
| Default/TransData-op240 0.09184714285714284 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/RealDiv-op76 0.10391071428571431 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/BiasAdd-op77 0.11015571428571427 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/ReLU-op78 0.10085142857142855 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Mul-op79 0.10943071428571426 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/Cast-op80 0.04727285714285715 535 | |||||
| Default/TransData-op274 0.03735642857142857 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/MatMul-op81 0.09832214285714284 535 | |||||
| Default/TransData-op245 0.037176428571428576 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/RealDiv-op83 0.036798571428571424 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/BiasAdd-op84 0.04016857142857143 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/ReLU-op85 0.027936428571428574 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Mul-op86 0.039065 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/Cast-op87 0.02587642857142857 535 | |||||
| Default/TransData-op277 0.01939 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/MatMul-op88 0.03152 535 | |||||
| Default/TransData-op250 0.020935000000000002 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/RealDiv-op90 0.025487142857142854 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/BiasAdd-op91 0.021720714285714288 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/ReLU-op92 0.016717857142857142 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Mul-op93 0.021017857142857147 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/Cast-op94 0.014929999999999999 535 | |||||
| Default/TransData-op280 0.012425714285714285 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/MatMul-op95 0.013189999999999997 535 | |||||
| Default/TransData-op255 0.014586428571428571 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/RealDiv-op97 0.015751428571428572 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/BiasAdd-op98 0.013145 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/ReLU-op99 0.010007857142857143 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Mul-op100 0.01205 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/Cast-op101 0.009261428571428571 535 | |||||
| Default/TransData-op215 0.009404285714285714 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/MatMul-op102 0.007625 535 | |||||
| Default/TransData-op204 0.016274285714285713 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/RealDiv-op104 0.004828571428571428 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/BiasAdd-op105 0.004472857142857142 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op106 0.003925714285714286 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/SigmoidCrossEntropyWithLogits-op107 0.004808571428571428 535 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op109 0.004950714285714286 535 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSigmoidCrossEntropyWithLogits/SigmoidCrossEntropyWithLogitsGrad-op108 0.004631428571428572 535 | |||||
| Default/AtomicAddrClean-op425 0.0015150000000000003 535 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/ReduceMean-op110 0.004534999999999999 535 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradBiasAdd/BiasAddGrad-op112 0.0030614285714285717 535 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradRealDiv/RealDiv-op113 0.004547142857142856 535 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradRealDiv/ReduceSum-op111 0.0031428571428571426 535 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradCast/Cast-op115 0.0026614285714285715 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradReduceMean/Tile-op114 0.027466428571428576 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op116 0.03313571428571428 537 | |||||
| Default/TransData-op257 0.06620642857142857 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op117 0.010132142857142855 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/gradSquare/Mul-op121 0.020947142857142855 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op119 0.009299285714285715 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMatMul/MatMul-op120 0.009546428571428572 537 | |||||
| Default/AtomicAddrClean-op427 0.002937142857142857 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op123 7.355592142857143 537 | |||||
| Default/TransData-op235 0.014415714285714283 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradMul/Mul-op128 0.012212857142857145 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_5-DenseLayer/gradReLU/ReluGrad-op131 0.02228428571428571 537 | |||||
| Default/AtomicAddrClean-op428 0.001404285714285714 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradBiasAdd/BiasAddGrad-op134 0.008783571428571429 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradRealDiv/RealDiv-op135 0.013412857142857143 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradCast/Cast-op136 0.008197142857142856 537 | |||||
| Default/TransData-op252 0.008572857142857142 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op138 0.029589285714285724 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMatMul/MatMul-op139 0.016685 537 | |||||
| Default/TransData-op233 0.020412142857142858 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradMul/Mul-op143 0.020592142857142857 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_4-DenseLayer/gradReLU/ReluGrad-op145 0.03936785714285714 537 | |||||
| Default/AtomicAddrClean-op429 0.0014571428571428572 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradBiasAdd/BiasAddGrad-op147 0.012325714285714285 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradRealDiv/RealDiv-op148 0.021508571428571432 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradCast/Cast-op149 0.012591428571428571 537 | |||||
| Default/TransData-op247 0.012454999999999997 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op151 0.053485000000000005 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMatMul/MatMul-op152 0.03651357142857143 537 | |||||
| Default/TransData-op231 0.03276571428571429 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradMul/Mul-op156 0.037129999999999996 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_3-DenseLayer/gradReLU/ReluGrad-op158 0.09050499999999999 537 | |||||
| Default/AtomicAddrClean-op430 0.001497142857142857 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradBiasAdd/BiasAddGrad-op160 0.017480714285714283 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradRealDiv/RealDiv-op161 0.042566428571428575 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradCast/Cast-op162 0.02489785714285714 537 | |||||
| Default/TransData-op242 0.019189285714285714 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op164 0.10608857142857142 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMatMul/MatMul-op165 0.1160064285714286 537 | |||||
| Default/TransData-op229 0.09212928571428572 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradMul/Mul-op169 0.10092642857142857 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_2-DenseLayer/gradReLU/ReluGrad-op171 0.18744071428571424 537 | |||||
| Default/AtomicAddrClean-op431 0.0014599999999999997 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradBiasAdd/BiasAddGrad-op173 0.030029999999999998 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradRealDiv/RealDiv-op174 0.13704571428571427 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradCast/Cast-op175 0.04649285714285715 537 | |||||
| Default/TransData-op237 0.03681785714285714 537 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op177 0.42144428571428577 537 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/RealDiv-op118 0.001617857142857143 539 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/TensorAdd-op124 0.0014600000000000001 539 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMatMul/MatMul-op178 0.5351814285714286 539 | |||||
| Default/TransData-op284 0.32571142857142854 539 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradMul/Mul-op182 0.3179142857142857 539 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/dense_layer_1-DenseLayer/gradReLU/ReluGrad-op184 0.5144707142857143 539 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradMul/Mul-op186 0.3859778571428571 539 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradStridedSlice/StridedSliceGrad-op187 1.3543971428571429 539 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op188 1.5460985714285713 539 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op189 1.5340514285714286 539 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op190 1.540242857142857 539 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op191 1.5514735714285715 539 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op192 1.5607435714285713 539 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op193 1.5385385714285713 539 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op194 1.537682857142857 539 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradConcat/Slice-op195 1.5342942857142856 539 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradSplit/Concat-op196 2.584179285714286 539 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op130 0.005715714285714287 541 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/grad_MirrorOperator/Mul-op129 0.0015964285714285716 541 | |||||
| Default/Mul-op183 0.0016557142857142858 541 | |||||
| Default/Mul-op170 0.0015957142857142856 541 | |||||
| Default/Mul-op157 0.0015314285714285714 541 | |||||
| Default/Mul-op144 0.0014735714285714285 541 | |||||
| Default/Mul-op122 0.0012207142857142855 541 | |||||
| Default/TransData-op206 0.02777642857142857 541 | |||||
| Default/TransData-op208 0.008395714285714286 541 | |||||
| Default/TransData-op210 0.006270714285714287 541 | |||||
| Default/TransData-op212 0.003332857142857143 541 | |||||
| Default/TransData-op214 0.0024235714285714286 541 | |||||
| Default/Mul-op197 0.016677857142857147 541 | |||||
| Default/Mul-op176 0.007605000000000001 541 | |||||
| Default/Mul-op163 0.0062528571428571425 541 | |||||
| Default/Mul-op150 0.004635 541 | |||||
| Default/Mul-op137 0.0016078571428571429 541 | |||||
| Default/AtomicAddrClean-op434 0.007719285714285714 541 | |||||
| Gradients/Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/network-WideDeepModel/gradGatherV2/UnsortedSegmentSum-op199 37.25223428571428 541 | |||||
| Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/_backbone-NetWithLossClass/AddN-op200 0.012836428571428572 541 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Mul-op201 0.010897142857142855 541 | |||||
| Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op133 0.02319642857142857 541 | |||||
| Default/network-TrainStepWrap/optimizer_w-FTRL/ApplyFtrl-op132 0.0022571428571428573 541 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op185 0.003688571428571429 541 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op172 0.003175714285714285 541 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op159 0.0029478571428571436 541 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op146 0.0028899999999999998 541 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op127 0.0022257142857142853 541 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op198 0.133745 541 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op179 0.03321571428571428 541 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op166 0.010665 541 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op153 0.006292857142857143 541 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op140 0.002818571428571428 541 | |||||
| Default/network-TrainStepWrap/optimizer_d-Adam/Adam-op202 0.08427071428571428 541 | |||||
| total op 126.43631757142849 0 | |||||
| @@ -0,0 +1,705 @@ | |||||
| ====================op compute time==================== | |||||
| optype_name compute_time(ms, per-step) called_times(per-step) percent | |||||
| --------------------------------- ---------------------------- ------------------------ --------- | |||||
| UnsortedSegmentSum 44.6078 2 35.28 | |||||
| GatherV2 43.1554 2 34.13 | |||||
| Slice 20.3763 16 16.12 | |||||
| Concat 5.80845 4 4.59 | |||||
| Split 2.71428 2 2.15 | |||||
| MatMul 1.93668 15 1.53 | |||||
| Mul 1.90295 32 1.51 | |||||
| StridedSliceGrad 1.50683 2 1.19 | |||||
| TransData 1.11516 30 0.88 | |||||
| ReluGrad 0.854069 5 0.68 | |||||
| Cast 0.484685 15 0.38 | |||||
| ReLU 0.483282 5 0.38 | |||||
| RealDiv 0.422807 15 0.33 | |||||
| StridedSlice 0.345569 2 0.27 | |||||
| Adam 0.285936 11 0.23 | |||||
| BiasAdd 0.189663 5 0.15 | |||||
| BiasAddGrad 0.071681 5 0.06 | |||||
| Tile 0.044158 4 0.03 | |||||
| ReduceSum 0.030765 5 0.02 | |||||
| ApplyFtrl 0.025454 2 0.02 | |||||
| AtomicAddrClean 0.019369 8 0.02 | |||||
| AddN 0.012836 1 0.01 | |||||
| Square 0.009799 1 0.01 | |||||
| SigmoidCrossEntropyWithLogitsGrad 0.009582 2 0.01 | |||||
| TensorAdd 0.009218 3 0.01 | |||||
| SigmoidCrossEntropyWithLogits 0.004809 1 0 | |||||
| ReduceMean 0.004535 1 0 | |||||
| Assign 0.002477 2 0 | |||||
| AssignAdd 0.001688 1 0 | |||||
| Detail: | |||||
| op_name op_type avg_execution_time subgraph | |||||
| --------------------------------------- --------------------------------- -------------------- ---------- | |||||
| UnsortedSegmentSum-op199 UnsortedSegmentSum 37.2522 Gradients | |||||
| UnsortedSegmentSum-op123 UnsortedSegmentSum 7.35559 Gradients | |||||
| GatherV2-op55 GatherV2 42.2202 Default | |||||
| GatherV2-op33 GatherV2 0.935229 Default | |||||
| Slice-op192 Slice 1.56074 Gradients | |||||
| Slice-op191 Slice 1.55147 Gradients | |||||
| Slice-op188 Slice 1.5461 Gradients | |||||
| Slice-op190 Slice 1.54024 Gradients | |||||
| Slice-op193 Slice 1.53854 Gradients | |||||
| Slice-op194 Slice 1.53768 Gradients | |||||
| Slice-op195 Slice 1.53429 Gradients | |||||
| Slice-op189 Slice 1.53405 Gradients | |||||
| Slice-op64 Slice 1.12941 Gradients | |||||
| Slice-op59 Slice 1.06433 Gradients | |||||
| Slice-op65 Slice 1.00912 Gradients | |||||
| Slice-op62 Slice 1.00751 Gradients | |||||
| Slice-op60 Slice 0.967576 Gradients | |||||
| Slice-op61 Slice 0.967544 Gradients | |||||
| Slice-op58 Slice 0.962666 Gradients | |||||
| Slice-op63 Slice 0.92504 Gradients | |||||
| Concat-op68 Concat 3.08483 Default | |||||
| Concat-op196 Concat 2.58418 Gradients | |||||
| Concat-op40 Concat 0.0884167 Default | |||||
| Concat-op66 Concat 0.0510307 Gradients | |||||
| Split-op67 Split 2.61707 Default | |||||
| Split-op39 Split 0.0972053 Default | |||||
| MatMul-op178 MatMul 0.535181 Gradients | |||||
| MatMul-op74 MatMul 0.452185 Default | |||||
| MatMul-op177 MatMul 0.421444 Gradients | |||||
| MatMul-op165 MatMul 0.116006 Gradients | |||||
| MatMul-op164 MatMul 0.106089 Gradients | |||||
| MatMul-op81 MatMul 0.0983221 Default | |||||
| MatMul-op151 MatMul 0.053485 Gradients | |||||
| MatMul-op152 MatMul 0.0365136 Gradients | |||||
| MatMul-op88 MatMul 0.03152 Default | |||||
| MatMul-op138 MatMul 0.0295893 Gradients | |||||
| MatMul-op139 MatMul 0.016685 Gradients | |||||
| MatMul-op95 MatMul 0.01319 Default | |||||
| MatMul-op120 MatMul 0.00954643 Gradients | |||||
| MatMul-op119 MatMul 0.00929929 Gradients | |||||
| MatMul-op102 MatMul 0.007625 Default | |||||
| Mul-op186 Mul 0.385978 Gradients | |||||
| Mul-op70 Mul 0.374378 Default | |||||
| Mul-op72 Mul 0.331515 Default | |||||
| Mul-op182 Mul 0.317914 Gradients | |||||
| Mul-op79 Mul 0.109431 Default | |||||
| Mul-op169 Mul 0.100926 Gradients | |||||
| Mul-op86 Mul 0.039065 Default | |||||
| Mul-op156 Mul 0.03713 Gradients | |||||
| Mul-op116 Mul 0.0331357 Gradients | |||||
| Mul-op93 Mul 0.0210179 Default | |||||
| Mul-op121 Mul 0.0209471 Gradients | |||||
| Mul-op143 Mul 0.0205921 Gradients | |||||
| Mul-op197 Mul 0.0166779 Default | |||||
| Mul-op128 Mul 0.0122129 Gradients | |||||
| Mul-op100 Mul 0.01205 Default | |||||
| Mul-op201 Mul 0.0108971 Default | |||||
| Mul-op35 Mul 0.0102227 Default | |||||
| Mul-op117 Mul 0.0101321 Gradients | |||||
| Mul-op176 Mul 0.007605 Default | |||||
| Mul-op163 Mul 0.00625286 Default | |||||
| Mul-op130 Mul 0.00571571 Gradients | |||||
| Mul-op150 Mul 0.004635 Default | |||||
| Mul-op183 Mul 0.00165571 Default | |||||
| Mul-op137 Mul 0.00160786 Default | |||||
| Mul-op129 Mul 0.00159643 Gradients | |||||
| Mul-op170 Mul 0.00159571 Default | |||||
| Mul-op157 Mul 0.00153143 Default | |||||
| Mul-op144 Mul 0.00147357 Default | |||||
| Mul-op28 Mul 0.001468 Default | |||||
| Mul-op122 Mul 0.00122071 Default | |||||
| Mul-op29 Mul 0.001202 Default | |||||
| Mul-op31 Mul 0.001166 Default | |||||
| StridedSliceGrad-op187 StridedSliceGrad 1.3544 Gradients | |||||
| StridedSliceGrad-op57 StridedSliceGrad 0.152437 Gradients | |||||
| TransData-op284 TransData 0.325711 Default | |||||
| TransData-op271 TransData 0.149802 Default | |||||
| TransData-op229 TransData 0.0921293 Default | |||||
| TransData-op240 TransData 0.0918471 Default | |||||
| TransData-op257 TransData 0.0662064 Default | |||||
| TransData-op274 TransData 0.0373564 Default | |||||
| TransData-op245 TransData 0.0371764 Default | |||||
| TransData-op237 TransData 0.0368179 Default | |||||
| TransData-op231 TransData 0.0327657 Default | |||||
| TransData-op206 TransData 0.0277764 Default | |||||
| TransData-op250 TransData 0.020935 Default | |||||
| TransData-op233 TransData 0.0204121 Default | |||||
| TransData-op277 TransData 0.01939 Default | |||||
| TransData-op242 TransData 0.0191893 Default | |||||
| TransData-op204 TransData 0.0162743 Default | |||||
| TransData-op255 TransData 0.0145864 Default | |||||
| TransData-op235 TransData 0.0144157 Default | |||||
| TransData-op247 TransData 0.012455 Default | |||||
| TransData-op280 TransData 0.0124257 Default | |||||
| TransData-op272 TransData 0.00974933 Default | |||||
| TransData-op215 TransData 0.00940429 Default | |||||
| TransData-op252 TransData 0.00857286 Default | |||||
| TransData-op208 TransData 0.00839571 Default | |||||
| TransData-op216 TransData 0.00669733 Default | |||||
| TransData-op210 TransData 0.00627071 Default | |||||
| TransData-op275 TransData 0.00546133 Default | |||||
| TransData-op278 TransData 0.00440333 Default | |||||
| TransData-op212 TransData 0.00333286 Default | |||||
| TransData-op281 TransData 0.00277333 Default | |||||
| TransData-op214 TransData 0.00242357 Default | |||||
| ReluGrad-op184 ReluGrad 0.514471 Gradients | |||||
| ReluGrad-op171 ReluGrad 0.187441 Gradients | |||||
| ReluGrad-op158 ReluGrad 0.090505 Gradients | |||||
| ReluGrad-op145 ReluGrad 0.0393679 Gradients | |||||
| ReluGrad-op131 ReluGrad 0.0222843 Gradients | |||||
| Cast-op73 Cast 0.251821 Default | |||||
| Cast-op80 Cast 0.0472729 Default | |||||
| Cast-op175 Cast 0.0464929 Gradients | |||||
| Cast-op87 Cast 0.0258764 Default | |||||
| Cast-op162 Cast 0.0248979 Gradients | |||||
| Cast-op52 Cast 0.023116 Default | |||||
| Cast-op94 Cast 0.01493 Default | |||||
| Cast-op149 Cast 0.0125914 Gradients | |||||
| Cast-op101 Cast 0.00926143 Default | |||||
| Cast-op136 Cast 0.00819714 Gradients | |||||
| Cast-op45 Cast 0.00711 Default | |||||
| Cast-op46 Cast 0.0046 Default | |||||
| Cast-op47 Cast 0.00445933 Default | |||||
| Cast-op115 Cast 0.00266143 Gradients | |||||
| Cast-op34 Cast 0.00139667 Default | |||||
| ReLU-op71 ReLU 0.327769 Default | |||||
| ReLU-op78 ReLU 0.100851 Default | |||||
| ReLU-op85 ReLU 0.0279364 Default | |||||
| ReLU-op92 ReLU 0.0167179 Default | |||||
| ReLU-op99 ReLU 0.0100079 Default | |||||
| RealDiv-op174 RealDiv 0.137046 Gradients | |||||
| RealDiv-op76 RealDiv 0.103911 Default | |||||
| RealDiv-op161 RealDiv 0.0425664 Gradients | |||||
| RealDiv-op83 RealDiv 0.0367986 Default | |||||
| RealDiv-op90 RealDiv 0.0254871 Default | |||||
| RealDiv-op148 RealDiv 0.0215086 Gradients | |||||
| RealDiv-op97 RealDiv 0.0157514 Default | |||||
| RealDiv-op135 RealDiv 0.0134129 Gradients | |||||
| RealDiv-op104 RealDiv 0.00482857 Default | |||||
| RealDiv-op54 RealDiv 0.00482467 Gradients | |||||
| RealDiv-op50 RealDiv 0.00455643 Gradients | |||||
| RealDiv-op113 RealDiv 0.00454714 Gradients | |||||
| RealDiv-op51 RealDiv 0.00451643 Gradients | |||||
| RealDiv-op118 RealDiv 0.00161786 Default | |||||
| RealDiv-op44 RealDiv 0.00143467 Default | |||||
| StridedSlice-op69 StridedSlice 0.333141 Default | |||||
| StridedSlice-op41 StridedSlice 0.0124273 Default | |||||
| Adam-op198 Adam 0.133745 Default | |||||
| Adam-op202 Adam 0.0842707 Default | |||||
| Adam-op179 Adam 0.0332157 Default | |||||
| Adam-op166 Adam 0.010665 Default | |||||
| Adam-op153 Adam 0.00629286 Default | |||||
| Adam-op185 Adam 0.00368857 Default | |||||
| Adam-op172 Adam 0.00317571 Default | |||||
| Adam-op159 Adam 0.00294786 Default | |||||
| Adam-op146 Adam 0.00289 Default | |||||
| Adam-op140 Adam 0.00281857 Default | |||||
| Adam-op127 Adam 0.00222571 Default | |||||
| BiasAdd-op77 BiasAdd 0.110156 Default | |||||
| BiasAdd-op84 BiasAdd 0.0401686 Default | |||||
| BiasAdd-op91 BiasAdd 0.0217207 Default | |||||
| BiasAdd-op98 BiasAdd 0.013145 Default | |||||
| BiasAdd-op105 BiasAdd 0.00447286 Default | |||||
| BiasAddGrad-op173 BiasAddGrad 0.03003 Gradients | |||||
| BiasAddGrad-op160 BiasAddGrad 0.0174807 Gradients | |||||
| BiasAddGrad-op147 BiasAddGrad 0.0123257 Gradients | |||||
| BiasAddGrad-op134 BiasAddGrad 0.00878357 Gradients | |||||
| BiasAddGrad-op112 BiasAddGrad 0.00306143 Gradients | |||||
| Tile-op114 Tile 0.0274664 Gradients | |||||
| Tile-op56 Tile 0.00871357 Gradients | |||||
| Tile-op53 Tile 0.00424333 Gradients | |||||
| Tile-op49 Tile 0.003735 Gradients | |||||
| ReduceSum-op36 ReduceSum 0.0150733 Default | |||||
| ReduceSum-op42 ReduceSum 0.00983267 Default | |||||
| ReduceSum-op111 ReduceSum 0.00314286 Gradients | |||||
| ReduceSum-op48 ReduceSum 0.00140067 Gradients | |||||
| ReduceSum-op43 ReduceSum 0.00131533 Gradients | |||||
| ApplyFtrl-op133 ApplyFtrl 0.0231964 Default | |||||
| ApplyFtrl-op132 ApplyFtrl 0.00225714 Default | |||||
| AtomicAddrClean-op434 AtomicAddrClean 0.00771929 Default | |||||
| AtomicAddrClean-op427 AtomicAddrClean 0.00293714 Default | |||||
| AtomicAddrClean-op425 AtomicAddrClean 0.001515 Default | |||||
| AtomicAddrClean-op430 AtomicAddrClean 0.00149714 Default | |||||
| AtomicAddrClean-op431 AtomicAddrClean 0.00146 Default | |||||
| AtomicAddrClean-op429 AtomicAddrClean 0.00145714 Default | |||||
| AtomicAddrClean-op428 AtomicAddrClean 0.00140429 Default | |||||
| AtomicAddrClean-op418 AtomicAddrClean 0.00137867 Default | |||||
| AddN-op200 AddN 0.0128364 Default | |||||
| Square-op38 Square 0.00979933 Default | |||||
| SigmoidCrossEntropyWithLogitsGrad-op109 SigmoidCrossEntropyWithLogitsGrad 0.00495071 Gradients | |||||
| SigmoidCrossEntropyWithLogitsGrad-op108 SigmoidCrossEntropyWithLogitsGrad 0.00463143 Gradients | |||||
| TensorAdd-op106 TensorAdd 0.00392571 Default | |||||
| TensorAdd-op37 TensorAdd 0.00383267 Default | |||||
| TensorAdd-op124 TensorAdd 0.00146 Default | |||||
| SigmoidCrossEntropyWithLogits-op107 SigmoidCrossEntropyWithLogits 0.00480857 Default | |||||
| ReduceMean-op110 ReduceMean 0.004535 Default | |||||
| Assign-op30 Assign 0.00136067 Default | |||||
| Assign-op32 Assign 0.001116 Default | |||||
| AssignAdd-op414 AssignAdd 0.001688 Default | |||||
| ====================op compute time==================== | |||||
| optype_name compute_time(ms, per-step) called_times(per-step) percent | |||||
| --------------------------------- ---------------------------- ------------------------ --------- | |||||
| UnsortedSegmentSum 44.6078 2 35.28 | |||||
| GatherV2 43.1554 2 34.13 | |||||
| Slice 20.3763 16 16.12 | |||||
| Concat 5.80845 4 4.59 | |||||
| Split 2.71428 2 2.15 | |||||
| MatMul 1.93668 15 1.53 | |||||
| Mul 1.90295 32 1.51 | |||||
| StridedSliceGrad 1.50683 2 1.19 | |||||
| TransData 1.11516 30 0.88 | |||||
| ReluGrad 0.854069 5 0.68 | |||||
| Cast 0.484685 15 0.38 | |||||
| ReLU 0.483282 5 0.38 | |||||
| RealDiv 0.422807 15 0.33 | |||||
| StridedSlice 0.345569 2 0.27 | |||||
| Adam 0.285936 11 0.23 | |||||
| BiasAdd 0.189663 5 0.15 | |||||
| BiasAddGrad 0.071681 5 0.06 | |||||
| Tile 0.044158 4 0.03 | |||||
| ReduceSum 0.030765 5 0.02 | |||||
| ApplyFtrl 0.025454 2 0.02 | |||||
| AtomicAddrClean 0.019369 8 0.02 | |||||
| AddN 0.012836 1 0.01 | |||||
| Square 0.009799 1 0.01 | |||||
| SigmoidCrossEntropyWithLogitsGrad 0.009582 2 0.01 | |||||
| TensorAdd 0.009218 3 0.01 | |||||
| SigmoidCrossEntropyWithLogits 0.004809 1 0 | |||||
| ReduceMean 0.004535 1 0 | |||||
| Assign 0.002477 2 0 | |||||
| AssignAdd 0.001688 1 0 | |||||
| Detail: | |||||
| op_name op_type avg_execution_time subgraph | |||||
| --------------------------------------- --------------------------------- -------------------- ---------- | |||||
| UnsortedSegmentSum-op199 UnsortedSegmentSum 37.2522 Gradients | |||||
| UnsortedSegmentSum-op123 UnsortedSegmentSum 7.35559 Gradients | |||||
| GatherV2-op55 GatherV2 42.2202 Default | |||||
| GatherV2-op33 GatherV2 0.935229 Default | |||||
| Slice-op192 Slice 1.56074 Gradients | |||||
| Slice-op191 Slice 1.55147 Gradients | |||||
| Slice-op188 Slice 1.5461 Gradients | |||||
| Slice-op190 Slice 1.54024 Gradients | |||||
| Slice-op193 Slice 1.53854 Gradients | |||||
| Slice-op194 Slice 1.53768 Gradients | |||||
| Slice-op195 Slice 1.53429 Gradients | |||||
| Slice-op189 Slice 1.53405 Gradients | |||||
| Slice-op64 Slice 1.12941 Gradients | |||||
| Slice-op59 Slice 1.06433 Gradients | |||||
| Slice-op65 Slice 1.00912 Gradients | |||||
| Slice-op62 Slice 1.00751 Gradients | |||||
| Slice-op60 Slice 0.967576 Gradients | |||||
| Slice-op61 Slice 0.967544 Gradients | |||||
| Slice-op58 Slice 0.962666 Gradients | |||||
| Slice-op63 Slice 0.92504 Gradients | |||||
| Concat-op68 Concat 3.08483 Default | |||||
| Concat-op196 Concat 2.58418 Gradients | |||||
| Concat-op40 Concat 0.0884167 Default | |||||
| Concat-op66 Concat 0.0510307 Gradients | |||||
| Split-op67 Split 2.61707 Default | |||||
| Split-op39 Split 0.0972053 Default | |||||
| MatMul-op178 MatMul 0.535181 Gradients | |||||
| MatMul-op74 MatMul 0.452185 Default | |||||
| MatMul-op177 MatMul 0.421444 Gradients | |||||
| MatMul-op165 MatMul 0.116006 Gradients | |||||
| MatMul-op164 MatMul 0.106089 Gradients | |||||
| MatMul-op81 MatMul 0.0983221 Default | |||||
| MatMul-op151 MatMul 0.053485 Gradients | |||||
| MatMul-op152 MatMul 0.0365136 Gradients | |||||
| MatMul-op88 MatMul 0.03152 Default | |||||
| MatMul-op138 MatMul 0.0295893 Gradients | |||||
| MatMul-op139 MatMul 0.016685 Gradients | |||||
| MatMul-op95 MatMul 0.01319 Default | |||||
| MatMul-op120 MatMul 0.00954643 Gradients | |||||
| MatMul-op119 MatMul 0.00929929 Gradients | |||||
| MatMul-op102 MatMul 0.007625 Default | |||||
| Mul-op186 Mul 0.385978 Gradients | |||||
| Mul-op70 Mul 0.374378 Default | |||||
| Mul-op72 Mul 0.331515 Default | |||||
| Mul-op182 Mul 0.317914 Gradients | |||||
| Mul-op79 Mul 0.109431 Default | |||||
| Mul-op169 Mul 0.100926 Gradients | |||||
| Mul-op86 Mul 0.039065 Default | |||||
| Mul-op156 Mul 0.03713 Gradients | |||||
| Mul-op116 Mul 0.0331357 Gradients | |||||
| Mul-op93 Mul 0.0210179 Default | |||||
| Mul-op121 Mul 0.0209471 Gradients | |||||
| Mul-op143 Mul 0.0205921 Gradients | |||||
| Mul-op197 Mul 0.0166779 Default | |||||
| Mul-op128 Mul 0.0122129 Gradients | |||||
| Mul-op100 Mul 0.01205 Default | |||||
| Mul-op201 Mul 0.0108971 Default | |||||
| Mul-op35 Mul 0.0102227 Default | |||||
| Mul-op117 Mul 0.0101321 Gradients | |||||
| Mul-op176 Mul 0.007605 Default | |||||
| Mul-op163 Mul 0.00625286 Default | |||||
| Mul-op130 Mul 0.00571571 Gradients | |||||
| Mul-op150 Mul 0.004635 Default | |||||
| Mul-op183 Mul 0.00165571 Default | |||||
| Mul-op137 Mul 0.00160786 Default | |||||
| Mul-op129 Mul 0.00159643 Gradients | |||||
| Mul-op170 Mul 0.00159571 Default | |||||
| Mul-op157 Mul 0.00153143 Default | |||||
| Mul-op144 Mul 0.00147357 Default | |||||
| Mul-op28 Mul 0.001468 Default | |||||
| Mul-op122 Mul 0.00122071 Default | |||||
| Mul-op29 Mul 0.001202 Default | |||||
| Mul-op31 Mul 0.001166 Default | |||||
| StridedSliceGrad-op187 StridedSliceGrad 1.3544 Gradients | |||||
| StridedSliceGrad-op57 StridedSliceGrad 0.152437 Gradients | |||||
| TransData-op284 TransData 0.325711 Default | |||||
| TransData-op271 TransData 0.149802 Default | |||||
| TransData-op229 TransData 0.0921293 Default | |||||
| TransData-op240 TransData 0.0918471 Default | |||||
| TransData-op257 TransData 0.0662064 Default | |||||
| TransData-op274 TransData 0.0373564 Default | |||||
| TransData-op245 TransData 0.0371764 Default | |||||
| TransData-op237 TransData 0.0368179 Default | |||||
| TransData-op231 TransData 0.0327657 Default | |||||
| TransData-op206 TransData 0.0277764 Default | |||||
| TransData-op250 TransData 0.020935 Default | |||||
| TransData-op233 TransData 0.0204121 Default | |||||
| TransData-op277 TransData 0.01939 Default | |||||
| TransData-op242 TransData 0.0191893 Default | |||||
| TransData-op204 TransData 0.0162743 Default | |||||
| TransData-op255 TransData 0.0145864 Default | |||||
| TransData-op235 TransData 0.0144157 Default | |||||
| TransData-op247 TransData 0.012455 Default | |||||
| TransData-op280 TransData 0.0124257 Default | |||||
| TransData-op272 TransData 0.00974933 Default | |||||
| TransData-op215 TransData 0.00940429 Default | |||||
| TransData-op252 TransData 0.00857286 Default | |||||
| TransData-op208 TransData 0.00839571 Default | |||||
| TransData-op216 TransData 0.00669733 Default | |||||
| TransData-op210 TransData 0.00627071 Default | |||||
| TransData-op275 TransData 0.00546133 Default | |||||
| TransData-op278 TransData 0.00440333 Default | |||||
| TransData-op212 TransData 0.00333286 Default | |||||
| TransData-op281 TransData 0.00277333 Default | |||||
| TransData-op214 TransData 0.00242357 Default | |||||
| ReluGrad-op184 ReluGrad 0.514471 Gradients | |||||
| ReluGrad-op171 ReluGrad 0.187441 Gradients | |||||
| ReluGrad-op158 ReluGrad 0.090505 Gradients | |||||
| ReluGrad-op145 ReluGrad 0.0393679 Gradients | |||||
| ReluGrad-op131 ReluGrad 0.0222843 Gradients | |||||
| Cast-op73 Cast 0.251821 Default | |||||
| Cast-op80 Cast 0.0472729 Default | |||||
| Cast-op175 Cast 0.0464929 Gradients | |||||
| Cast-op87 Cast 0.0258764 Default | |||||
| Cast-op162 Cast 0.0248979 Gradients | |||||
| Cast-op52 Cast 0.023116 Default | |||||
| Cast-op94 Cast 0.01493 Default | |||||
| Cast-op149 Cast 0.0125914 Gradients | |||||
| Cast-op101 Cast 0.00926143 Default | |||||
| Cast-op136 Cast 0.00819714 Gradients | |||||
| Cast-op45 Cast 0.00711 Default | |||||
| Cast-op46 Cast 0.0046 Default | |||||
| Cast-op47 Cast 0.00445933 Default | |||||
| Cast-op115 Cast 0.00266143 Gradients | |||||
| Cast-op34 Cast 0.00139667 Default | |||||
| ReLU-op71 ReLU 0.327769 Default | |||||
| ReLU-op78 ReLU 0.100851 Default | |||||
| ReLU-op85 ReLU 0.0279364 Default | |||||
| ReLU-op92 ReLU 0.0167179 Default | |||||
| ReLU-op99 ReLU 0.0100079 Default | |||||
| RealDiv-op174 RealDiv 0.137046 Gradients | |||||
| RealDiv-op76 RealDiv 0.103911 Default | |||||
| RealDiv-op161 RealDiv 0.0425664 Gradients | |||||
| RealDiv-op83 RealDiv 0.0367986 Default | |||||
| RealDiv-op90 RealDiv 0.0254871 Default | |||||
| RealDiv-op148 RealDiv 0.0215086 Gradients | |||||
| RealDiv-op97 RealDiv 0.0157514 Default | |||||
| RealDiv-op135 RealDiv 0.0134129 Gradients | |||||
| RealDiv-op104 RealDiv 0.00482857 Default | |||||
| RealDiv-op54 RealDiv 0.00482467 Gradients | |||||
| RealDiv-op50 RealDiv 0.00455643 Gradients | |||||
| RealDiv-op113 RealDiv 0.00454714 Gradients | |||||
| RealDiv-op51 RealDiv 0.00451643 Gradients | |||||
| RealDiv-op118 RealDiv 0.00161786 Default | |||||
| RealDiv-op44 RealDiv 0.00143467 Default | |||||
| StridedSlice-op69 StridedSlice 0.333141 Default | |||||
| StridedSlice-op41 StridedSlice 0.0124273 Default | |||||
| Adam-op198 Adam 0.133745 Default | |||||
| Adam-op202 Adam 0.0842707 Default | |||||
| Adam-op179 Adam 0.0332157 Default | |||||
| Adam-op166 Adam 0.010665 Default | |||||
| Adam-op153 Adam 0.00629286 Default | |||||
| Adam-op185 Adam 0.00368857 Default | |||||
| Adam-op172 Adam 0.00317571 Default | |||||
| Adam-op159 Adam 0.00294786 Default | |||||
| Adam-op146 Adam 0.00289 Default | |||||
| Adam-op140 Adam 0.00281857 Default | |||||
| Adam-op127 Adam 0.00222571 Default | |||||
| BiasAdd-op77 BiasAdd 0.110156 Default | |||||
| BiasAdd-op84 BiasAdd 0.0401686 Default | |||||
| BiasAdd-op91 BiasAdd 0.0217207 Default | |||||
| BiasAdd-op98 BiasAdd 0.013145 Default | |||||
| BiasAdd-op105 BiasAdd 0.00447286 Default | |||||
| BiasAddGrad-op173 BiasAddGrad 0.03003 Gradients | |||||
| BiasAddGrad-op160 BiasAddGrad 0.0174807 Gradients | |||||
| BiasAddGrad-op147 BiasAddGrad 0.0123257 Gradients | |||||
| BiasAddGrad-op134 BiasAddGrad 0.00878357 Gradients | |||||
| BiasAddGrad-op112 BiasAddGrad 0.00306143 Gradients | |||||
| Tile-op114 Tile 0.0274664 Gradients | |||||
| Tile-op56 Tile 0.00871357 Gradients | |||||
| Tile-op53 Tile 0.00424333 Gradients | |||||
| Tile-op49 Tile 0.003735 Gradients | |||||
| ReduceSum-op36 ReduceSum 0.0150733 Default | |||||
| ReduceSum-op42 ReduceSum 0.00983267 Default | |||||
| ReduceSum-op111 ReduceSum 0.00314286 Gradients | |||||
| ReduceSum-op48 ReduceSum 0.00140067 Gradients | |||||
| ReduceSum-op43 ReduceSum 0.00131533 Gradients | |||||
| ApplyFtrl-op133 ApplyFtrl 0.0231964 Default | |||||
| ApplyFtrl-op132 ApplyFtrl 0.00225714 Default | |||||
| AtomicAddrClean-op434 AtomicAddrClean 0.00771929 Default | |||||
| AtomicAddrClean-op427 AtomicAddrClean 0.00293714 Default | |||||
| AtomicAddrClean-op425 AtomicAddrClean 0.001515 Default | |||||
| AtomicAddrClean-op430 AtomicAddrClean 0.00149714 Default | |||||
| AtomicAddrClean-op431 AtomicAddrClean 0.00146 Default | |||||
| AtomicAddrClean-op429 AtomicAddrClean 0.00145714 Default | |||||
| AtomicAddrClean-op428 AtomicAddrClean 0.00140429 Default | |||||
| AtomicAddrClean-op418 AtomicAddrClean 0.00137867 Default | |||||
| AddN-op200 AddN 0.0128364 Default | |||||
| Square-op38 Square 0.00979933 Default | |||||
| SigmoidCrossEntropyWithLogitsGrad-op109 SigmoidCrossEntropyWithLogitsGrad 0.00495071 Gradients | |||||
| SigmoidCrossEntropyWithLogitsGrad-op108 SigmoidCrossEntropyWithLogitsGrad 0.00463143 Gradients | |||||
| TensorAdd-op106 TensorAdd 0.00392571 Default | |||||
| TensorAdd-op37 TensorAdd 0.00383267 Default | |||||
| TensorAdd-op124 TensorAdd 0.00146 Default | |||||
| SigmoidCrossEntropyWithLogits-op107 SigmoidCrossEntropyWithLogits 0.00480857 Default | |||||
| ReduceMean-op110 ReduceMean 0.004535 Default | |||||
| Assign-op30 Assign 0.00136067 Default | |||||
| Assign-op32 Assign 0.001116 Default | |||||
| AssignAdd-op414 AssignAdd 0.001688 Default | |||||
| ====================op compute time==================== | |||||
| optype_name compute_time(ms, per-step) called_times(per-step) percent | |||||
| --------------------------------- ---------------------------- ------------------------ --------- | |||||
| UnsortedSegmentSum 44.6078 2 35.28 | |||||
| GatherV2 43.1554 2 34.13 | |||||
| Slice 20.3763 16 16.12 | |||||
| Concat 5.80845 4 4.59 | |||||
| Split 2.71428 2 2.15 | |||||
| MatMul 1.93668 15 1.53 | |||||
| Mul 1.90295 32 1.51 | |||||
| StridedSliceGrad 1.50683 2 1.19 | |||||
| TransData 1.11516 30 0.88 | |||||
| ReluGrad 0.854069 5 0.68 | |||||
| Cast 0.484685 15 0.38 | |||||
| ReLU 0.483282 5 0.38 | |||||
| RealDiv 0.422807 15 0.33 | |||||
| StridedSlice 0.345569 2 0.27 | |||||
| Adam 0.285936 11 0.23 | |||||
| BiasAdd 0.189663 5 0.15 | |||||
| BiasAddGrad 0.071681 5 0.06 | |||||
| Tile 0.044158 4 0.03 | |||||
| ReduceSum 0.030765 5 0.02 | |||||
| ApplyFtrl 0.025454 2 0.02 | |||||
| AtomicAddrClean 0.019369 8 0.02 | |||||
| AddN 0.012836 1 0.01 | |||||
| Square 0.009799 1 0.01 | |||||
| SigmoidCrossEntropyWithLogitsGrad 0.009582 2 0.01 | |||||
| TensorAdd 0.009218 3 0.01 | |||||
| SigmoidCrossEntropyWithLogits 0.004809 1 0 | |||||
| ReduceMean 0.004535 1 0 | |||||
| Assign 0.002477 2 0 | |||||
| AssignAdd 0.001688 1 0 | |||||
| Detail: | |||||
| op_name op_type avg_execution_time subgraph | |||||
| --------------------------------------- --------------------------------- -------------------- ---------- | |||||
| UnsortedSegmentSum-op199 UnsortedSegmentSum 37.2522 Gradients | |||||
| UnsortedSegmentSum-op123 UnsortedSegmentSum 7.35559 Gradients | |||||
| GatherV2-op55 GatherV2 42.2202 Default | |||||
| GatherV2-op33 GatherV2 0.935229 Default | |||||
| Slice-op192 Slice 1.56074 Gradients | |||||
| Slice-op191 Slice 1.55147 Gradients | |||||
| Slice-op188 Slice 1.5461 Gradients | |||||
| Slice-op190 Slice 1.54024 Gradients | |||||
| Slice-op193 Slice 1.53854 Gradients | |||||
| Slice-op194 Slice 1.53768 Gradients | |||||
| Slice-op195 Slice 1.53429 Gradients | |||||
| Slice-op189 Slice 1.53405 Gradients | |||||
| Slice-op64 Slice 1.12941 Gradients | |||||
| Slice-op59 Slice 1.06433 Gradients | |||||
| Slice-op65 Slice 1.00912 Gradients | |||||
| Slice-op62 Slice 1.00751 Gradients | |||||
| Slice-op60 Slice 0.967576 Gradients | |||||
| Slice-op61 Slice 0.967544 Gradients | |||||
| Slice-op58 Slice 0.962666 Gradients | |||||
| Slice-op63 Slice 0.92504 Gradients | |||||
| Concat-op68 Concat 3.08483 Default | |||||
| Concat-op196 Concat 2.58418 Gradients | |||||
| Concat-op40 Concat 0.0884167 Default | |||||
| Concat-op66 Concat 0.0510307 Gradients | |||||
| Split-op67 Split 2.61707 Default | |||||
| Split-op39 Split 0.0972053 Default | |||||
| MatMul-op178 MatMul 0.535181 Gradients | |||||
| MatMul-op74 MatMul 0.452185 Default | |||||
| MatMul-op177 MatMul 0.421444 Gradients | |||||
| MatMul-op165 MatMul 0.116006 Gradients | |||||
| MatMul-op164 MatMul 0.106089 Gradients | |||||
| MatMul-op81 MatMul 0.0983221 Default | |||||
| MatMul-op151 MatMul 0.053485 Gradients | |||||
| MatMul-op152 MatMul 0.0365136 Gradients | |||||
| MatMul-op88 MatMul 0.03152 Default | |||||
| MatMul-op138 MatMul 0.0295893 Gradients | |||||
| MatMul-op139 MatMul 0.016685 Gradients | |||||
| MatMul-op95 MatMul 0.01319 Default | |||||
| MatMul-op120 MatMul 0.00954643 Gradients | |||||
| MatMul-op119 MatMul 0.00929929 Gradients | |||||
| MatMul-op102 MatMul 0.007625 Default | |||||
| Mul-op186 Mul 0.385978 Gradients | |||||
| Mul-op70 Mul 0.374378 Default | |||||
| Mul-op72 Mul 0.331515 Default | |||||
| Mul-op182 Mul 0.317914 Gradients | |||||
| Mul-op79 Mul 0.109431 Default | |||||
| Mul-op169 Mul 0.100926 Gradients | |||||
| Mul-op86 Mul 0.039065 Default | |||||
| Mul-op156 Mul 0.03713 Gradients | |||||
| Mul-op116 Mul 0.0331357 Gradients | |||||
| Mul-op93 Mul 0.0210179 Default | |||||
| Mul-op121 Mul 0.0209471 Gradients | |||||
| Mul-op143 Mul 0.0205921 Gradients | |||||
| Mul-op197 Mul 0.0166779 Default | |||||
| Mul-op128 Mul 0.0122129 Gradients | |||||
| Mul-op100 Mul 0.01205 Default | |||||
| Mul-op201 Mul 0.0108971 Default | |||||
| Mul-op35 Mul 0.0102227 Default | |||||
| Mul-op117 Mul 0.0101321 Gradients | |||||
| Mul-op176 Mul 0.007605 Default | |||||
| Mul-op163 Mul 0.00625286 Default | |||||
| Mul-op130 Mul 0.00571571 Gradients | |||||
| Mul-op150 Mul 0.004635 Default | |||||
| Mul-op183 Mul 0.00165571 Default | |||||
| Mul-op137 Mul 0.00160786 Default | |||||
| Mul-op129 Mul 0.00159643 Gradients | |||||
| Mul-op170 Mul 0.00159571 Default | |||||
| Mul-op157 Mul 0.00153143 Default | |||||
| Mul-op144 Mul 0.00147357 Default | |||||
| Mul-op28 Mul 0.001468 Default | |||||
| Mul-op122 Mul 0.00122071 Default | |||||
| Mul-op29 Mul 0.001202 Default | |||||
| Mul-op31 Mul 0.001166 Default | |||||
| StridedSliceGrad-op187 StridedSliceGrad 1.3544 Gradients | |||||
| StridedSliceGrad-op57 StridedSliceGrad 0.152437 Gradients | |||||
| TransData-op284 TransData 0.325711 Default | |||||
| TransData-op271 TransData 0.149802 Default | |||||
| TransData-op229 TransData 0.0921293 Default | |||||
| TransData-op240 TransData 0.0918471 Default | |||||
| TransData-op257 TransData 0.0662064 Default | |||||
| TransData-op274 TransData 0.0373564 Default | |||||
| TransData-op245 TransData 0.0371764 Default | |||||
| TransData-op237 TransData 0.0368179 Default | |||||
| TransData-op231 TransData 0.0327657 Default | |||||
| TransData-op206 TransData 0.0277764 Default | |||||
| TransData-op250 TransData 0.020935 Default | |||||
| TransData-op233 TransData 0.0204121 Default | |||||
| TransData-op277 TransData 0.01939 Default | |||||
| TransData-op242 TransData 0.0191893 Default | |||||
| TransData-op204 TransData 0.0162743 Default | |||||
| TransData-op255 TransData 0.0145864 Default | |||||
| TransData-op235 TransData 0.0144157 Default | |||||
| TransData-op247 TransData 0.012455 Default | |||||
| TransData-op280 TransData 0.0124257 Default | |||||
| TransData-op272 TransData 0.00974933 Default | |||||
| TransData-op215 TransData 0.00940429 Default | |||||
| TransData-op252 TransData 0.00857286 Default | |||||
| TransData-op208 TransData 0.00839571 Default | |||||
| TransData-op216 TransData 0.00669733 Default | |||||
| TransData-op210 TransData 0.00627071 Default | |||||
| TransData-op275 TransData 0.00546133 Default | |||||
| TransData-op278 TransData 0.00440333 Default | |||||
| TransData-op212 TransData 0.00333286 Default | |||||
| TransData-op281 TransData 0.00277333 Default | |||||
| TransData-op214 TransData 0.00242357 Default | |||||
| ReluGrad-op184 ReluGrad 0.514471 Gradients | |||||
| ReluGrad-op171 ReluGrad 0.187441 Gradients | |||||
| ReluGrad-op158 ReluGrad 0.090505 Gradients | |||||
| ReluGrad-op145 ReluGrad 0.0393679 Gradients | |||||
| ReluGrad-op131 ReluGrad 0.0222843 Gradients | |||||
| Cast-op73 Cast 0.251821 Default | |||||
| Cast-op80 Cast 0.0472729 Default | |||||
| Cast-op175 Cast 0.0464929 Gradients | |||||
| Cast-op87 Cast 0.0258764 Default | |||||
| Cast-op162 Cast 0.0248979 Gradients | |||||
| Cast-op52 Cast 0.023116 Default | |||||
| Cast-op94 Cast 0.01493 Default | |||||
| Cast-op149 Cast 0.0125914 Gradients | |||||
| Cast-op101 Cast 0.00926143 Default | |||||
| Cast-op136 Cast 0.00819714 Gradients | |||||
| Cast-op45 Cast 0.00711 Default | |||||
| Cast-op46 Cast 0.0046 Default | |||||
| Cast-op47 Cast 0.00445933 Default | |||||
| Cast-op115 Cast 0.00266143 Gradients | |||||
| Cast-op34 Cast 0.00139667 Default | |||||
| ReLU-op71 ReLU 0.327769 Default | |||||
| ReLU-op78 ReLU 0.100851 Default | |||||
| ReLU-op85 ReLU 0.0279364 Default | |||||
| ReLU-op92 ReLU 0.0167179 Default | |||||
| ReLU-op99 ReLU 0.0100079 Default | |||||
| RealDiv-op174 RealDiv 0.137046 Gradients | |||||
| RealDiv-op76 RealDiv 0.103911 Default | |||||
| RealDiv-op161 RealDiv 0.0425664 Gradients | |||||
| RealDiv-op83 RealDiv 0.0367986 Default | |||||
| RealDiv-op90 RealDiv 0.0254871 Default | |||||
| RealDiv-op148 RealDiv 0.0215086 Gradients | |||||
| RealDiv-op97 RealDiv 0.0157514 Default | |||||
| RealDiv-op135 RealDiv 0.0134129 Gradients | |||||
| RealDiv-op104 RealDiv 0.00482857 Default | |||||
| RealDiv-op54 RealDiv 0.00482467 Gradients | |||||
| RealDiv-op50 RealDiv 0.00455643 Gradients | |||||
| RealDiv-op113 RealDiv 0.00454714 Gradients | |||||
| RealDiv-op51 RealDiv 0.00451643 Gradients | |||||
| RealDiv-op118 RealDiv 0.00161786 Default | |||||
| RealDiv-op44 RealDiv 0.00143467 Default | |||||
| StridedSlice-op69 StridedSlice 0.333141 Default | |||||
| StridedSlice-op41 StridedSlice 0.0124273 Default | |||||
| Adam-op198 Adam 0.133745 Default | |||||
| Adam-op202 Adam 0.0842707 Default | |||||
| Adam-op179 Adam 0.0332157 Default | |||||
| Adam-op166 Adam 0.010665 Default | |||||
| Adam-op153 Adam 0.00629286 Default | |||||
| Adam-op185 Adam 0.00368857 Default | |||||
| Adam-op172 Adam 0.00317571 Default | |||||
| Adam-op159 Adam 0.00294786 Default | |||||
| Adam-op146 Adam 0.00289 Default | |||||
| Adam-op140 Adam 0.00281857 Default | |||||
| Adam-op127 Adam 0.00222571 Default | |||||
| BiasAdd-op77 BiasAdd 0.110156 Default | |||||
| BiasAdd-op84 BiasAdd 0.0401686 Default | |||||
| BiasAdd-op91 BiasAdd 0.0217207 Default | |||||
| BiasAdd-op98 BiasAdd 0.013145 Default | |||||
| BiasAdd-op105 BiasAdd 0.00447286 Default | |||||
| BiasAddGrad-op173 BiasAddGrad 0.03003 Gradients | |||||
| BiasAddGrad-op160 BiasAddGrad 0.0174807 Gradients | |||||
| BiasAddGrad-op147 BiasAddGrad 0.0123257 Gradients | |||||
| BiasAddGrad-op134 BiasAddGrad 0.00878357 Gradients | |||||
| BiasAddGrad-op112 BiasAddGrad 0.00306143 Gradients | |||||
| Tile-op114 Tile 0.0274664 Gradients | |||||
| Tile-op56 Tile 0.00871357 Gradients | |||||
| Tile-op53 Tile 0.00424333 Gradients | |||||
| Tile-op49 Tile 0.003735 Gradients | |||||
| ReduceSum-op36 ReduceSum 0.0150733 Default | |||||
| ReduceSum-op42 ReduceSum 0.00983267 Default | |||||
| ReduceSum-op111 ReduceSum 0.00314286 Gradients | |||||
| ReduceSum-op48 ReduceSum 0.00140067 Gradients | |||||
| ReduceSum-op43 ReduceSum 0.00131533 Gradients | |||||
| ApplyFtrl-op133 ApplyFtrl 0.0231964 Default | |||||
| ApplyFtrl-op132 ApplyFtrl 0.00225714 Default | |||||
| AtomicAddrClean-op434 AtomicAddrClean 0.00771929 Default | |||||
| AtomicAddrClean-op427 AtomicAddrClean 0.00293714 Default | |||||
| AtomicAddrClean-op425 AtomicAddrClean 0.001515 Default | |||||
| AtomicAddrClean-op430 AtomicAddrClean 0.00149714 Default | |||||
| AtomicAddrClean-op431 AtomicAddrClean 0.00146 Default | |||||
| AtomicAddrClean-op429 AtomicAddrClean 0.00145714 Default | |||||
| AtomicAddrClean-op428 AtomicAddrClean 0.00140429 Default | |||||
| AtomicAddrClean-op418 AtomicAddrClean 0.00137867 Default | |||||
| AddN-op200 AddN 0.0128364 Default | |||||
| Square-op38 Square 0.00979933 Default | |||||
| SigmoidCrossEntropyWithLogitsGrad-op109 SigmoidCrossEntropyWithLogitsGrad 0.00495071 Gradients | |||||
| SigmoidCrossEntropyWithLogitsGrad-op108 SigmoidCrossEntropyWithLogitsGrad 0.00463143 Gradients | |||||
| TensorAdd-op106 TensorAdd 0.00392571 Default | |||||
| TensorAdd-op37 TensorAdd 0.00383267 Default | |||||
| TensorAdd-op124 TensorAdd 0.00146 Default | |||||
| SigmoidCrossEntropyWithLogits-op107 SigmoidCrossEntropyWithLogits 0.00480857 Default | |||||
| ReduceMean-op110 ReduceMean 0.004535 Default | |||||
| Assign-op30 Assign 0.00136067 Default | |||||
| Assign-op32 Assign 0.001116 Default | |||||
| AssignAdd-op414 AssignAdd 0.001688 Default | |||||
| @@ -0,0 +1,55 @@ | |||||
| { | |||||
| "sampling_interval": 10, | |||||
| "op_info": [ | |||||
| { | |||||
| "op_id": 4, | |||||
| "op_type": "TFReader", | |||||
| "num_workers": 4, | |||||
| "metrics": null, | |||||
| "children": [3] | |||||
| }, | |||||
| { | |||||
| "op_id": 3, | |||||
| "op_type": "TFReader", | |||||
| "num_workers": 4, | |||||
| "metrics": { | |||||
| "output_queue": { | |||||
| "size": [10, 20, 30], | |||||
| "length": 64 | |||||
| } | |||||
| }, | |||||
| "children": null | |||||
| }, | |||||
| { | |||||
| "op_id": 2, | |||||
| "op_type": "TFReader", | |||||
| "num_workers": 4, | |||||
| "metrics": { | |||||
| "output_queue": { | |||||
| "size": [10, 20, 30], | |||||
| "length": 64 | |||||
| } | |||||
| }, | |||||
| "children": null | |||||
| }, | |||||
| { | |||||
| "op_id": 1, | |||||
| "op_type": "Shuffle", | |||||
| "num_workers": 1, | |||||
| "metrics": { | |||||
| "output_queue": { | |||||
| "size": [10, 20, 30], | |||||
| "length": 64 | |||||
| } | |||||
| }, | |||||
| "children": [2, 4] | |||||
| }, | |||||
| { | |||||
| "op_id": 0, | |||||
| "op_type": "Batch", | |||||
| "num_workers": 4, | |||||
| "metrics": null, | |||||
| "children": [1] | |||||
| } | |||||
| ] | |||||
| } | |||||
| @@ -0,0 +1 @@ | |||||
| {"fp_start": "Default/Cast-op6", "bp_end": "Default/TransData-op7"} | |||||
| @@ -0,0 +1,324 @@ | |||||
| step_num,start_point,end_point,total,fp_point,bp_point,iteration_interval,fp_and_bp,tail,stream_520_parallel_0_start_point,stream_520_parallel_0_end_point,stream_520_parallel_0,stream_522_parallel_0_start_point,stream_522_parallel_0_end_point,stream_522_parallel_0,stream_524_parallel_0_start_point,stream_524_parallel_0_end_point,stream_524_parallel_0,stream_526_parallel_0_start_point,stream_526_parallel_0_end_point,stream_526_parallel_0,stream_528_parallel_0_start_point,stream_528_parallel_0_end_point,stream_528_parallel_0,stream_530_parallel_0_start_point,stream_530_parallel_0_end_point,stream_530_parallel_0,stream_532_parallel_0_start_point,stream_532_parallel_0_end_point,stream_532_parallel_0,stream_534_parallel_0_start_point,stream_534_parallel_0_end_point,stream_534_parallel_0,stream_536_parallel_0_start_point,stream_536_parallel_0_end_point,stream_536_parallel_0,stream_538_parallel_0_start_point,stream_538_parallel_0_end_point,stream_538_parallel_0,stream_540_parallel_0_start_point,stream_540_parallel_0_end_point,stream_540_parallel_0 | |||||
| 1,43806850547,43835277665,28427118,43806850547,43826228662,0,19378115,9049003,43806979896,43814842766,7862870,43806997260,43814823508,7826248,43814882574,43814951269,68695,43814897323,43814966482,69159,43814991920,43815057378,65458,43815007147,43815080232,73085,43819302977,43822500665,3197688,43820137280,43822971125,2833845,43823438328,43823872228,433900,43824391883,43824924486,532603,43826239844,43831503539,5263695 | |||||
| 2,43835277665,43855846023,20568358,43835298746,43847098504,21081,11799758,8747519,43835428735,43835587759,159024,43835446892,43835568336,121444,43835632036,43835698380,66344,43835647043,43835704260,57217,43835739468,43835804439,64971,43835755107,43835821006,65899,43840063039,43843367407,3304368,43840897501,43843617882,2720381,43844308717,43844483817,175100,43845261812,43845551222,289410,43847109710,43852068173,4958463 | |||||
| 3,43855846023,43876218381,20372358,43855867006,43867655651,20983,11788645,8562730,43855991963,43856247793,255830,43856012795,43856229529,216734,43856291502,43856359411,67909,43856306186,43856365396,59210,43856398907,43856465191,66284,43856413995,43856484203,70208,43860715348,43863925058,3209710,43861549249,43864142055,2592806,43864864400,43865008182,143782,43865816432,43866069437,253005,43867666988,43872445556,4778568 | |||||
| 4,43876218381,43897172276,20953895,43876239059,43888460022,20678,12220963,8712254,43876369610,43876746322,376712,43876385030,43876725158,340128,43876790071,43876860921,70850,43876804890,43876877372,72482,43876902198,43876971196,68998,43876917454,43876985846,68392,43881226133,43884733998,3507865,43882060892,43885045635,2984743,43885670218,43885948862,278644,43886622918,43887012071,389153,43888471284,43893401563,4930279 | |||||
| 5,43897172276,43917707811,20535535,43897191998,43908941162,19722,11749164,8766649,43897321990,43897699897,377907,43897339693,43897680160,340467,43897743226,43897808808,65582,43897758593,43897814916,56323,43897851731,43897916500,64769,43897867291,43897937027,69736,43902163059,43905207327,3044268,43902997385,43905512623,2515238,43906149013,43906381080,232067,43907100473,43907448679,348206,43908952497,43913935443,4982946 | |||||
| 6,43917707811,43938161846,20454035,43917728809,43929327116,20998,11598307,8834730,43917860261,43917993893,133632,43917876162,43917974858,98696,43918038157,43918110816,72659,43918053012,43918116712,63700,43918145652,43918212335,66683,43918160497,43918232430,71933,43922458494,43925595193,3136699,43923292954,43925907495,2614541,43926538047,43926749154,211107,43927491223,43927838477,347254,43929338506,43934392334,5053828 | |||||
| 7,43938161846,43958535430,20373584,43938182876,43949894421,21030,11711545,8641009,43938307880,43938446657,138777,43938328316,43938428000,99684,43938491158,43938557464,66306,43938506079,43938563337,57258,43938598021,43938664019,65998,43938612975,43938684109,71134,43942909878,43946164608,3254730,43943742728,43946406003,2663275,43947105292,43947287615,182323,43948059338,43948325564,266226,43949905802,43954760434,4854632 | |||||
| 8,43958535430,43979232092,20696662,43958555666,43970434656,20236,11878990,8797436,43958680407,43958897054,216647,43958700864,43958881663,180799,43958940269,43959004707,64438,43958955366,43959021160,65794,43959045582,43959115504,69922,43959060531,43959131768,71237,43963372975,43966711479,3338504,43964207329,43967134018,2926689,43967648960,43968037525,388565,43968600109,43969094684,494575,43970445776,43975458456,5012680 | |||||
| 9,43979232092,43999782337,20550245,43979251995,43991063130,19903,11811135,8719207,43979376376,43979706536,330160,43979396713,43979690712,293999,43979750477,43979815531,65054,43979765411,43979821365,55954,43979858807,43979923746,64939,43979874150,43979943872,69722,43984171782,43987335571,3163789,43985006524,43987650562,2644038,43988274564,43988544965,270401,43989230199,43989615413,385214,43991074319,43996010406,4936087 | |||||
| 10,43999782337,44020359512,20577175,43999802475,44011672067,20138,11869592,8687445,43999933281,44000280477,347196,43999950992,44000263921,312929,44000324676,44000391615,66939,44000340183,44000397671,57488,44000433008,44000492199,59191,44000448206,44000517652,69446,44004744078,44007943564,3199486,44005578563,44008263274,2684711,44008881520,44009156021,274501,44009835235,44010212205,376970,44011683328,44016584555,4901227 | |||||
| 11,44020359512,44040830470,20470958,44020380513,44032160326,21001,11779813,8670144,44020506069,44020828900,322831,44020526088,44020810600,284512,44020874774,44020942302,67528,44020889732,44020948448,58716,44020982718,44021055809,73091,44020997980,44021050334,52354,44025306347,44028435807,3129460,44026140576,44028683277,2542701,44029376823,44029507036,130213,44030331082,44030568009,236927,44032171437,44037054963,4883526 | |||||
| 12,44040830470,44061233790,20403320,44040850650,44052562196,20180,11711546,8671594,44040974833,44041254568,279735,44040996133,44041235788,239655,44041297900,44041371854,73954,44041313296,44041366070,52774,44041407112,44041479679,72567,44041422437,44041474339,51902,44045730630,44048831898,3101268,44046564329,44049067588,2503259,44049770219,44049909494,139275,44050724408,44050948028,223620,44052573727,44057461611,4887884 | |||||
| 13,44061233790,44081950527,20716737,44061255244,44073216905,21454,11961661,8733622,44061379908,44061893089,513181,44061401219,44061876080,474861,44061936864,44062001710,64846,44061951642,44062022167,70525,44062038754,44062104281,65527,44062053666,44062137472,83806,44066351492,44069474485,3122993,44067186144,44069765772,2579628,44070416505,44070632298,215793,44071370376,44071716663,346287,44073228041,44078180756,4952715 | |||||
| 14,44081950527,44102275100,20324573,44081971039,44093572595,20512,11601556,8702505,44082095740,44082254342,158602,44082117532,44082235828,118296,44082297218,44082371430,74212,44082312372,44082365749,53377,44082405668,44082471976,66308,44082420571,44082491933,71362,44086716911,44089834738,3117827,44087550457,44090198905,2648448,44090777077,44091076759,299682,44091731156,44092142213,411057,44093583473,44098500996,4917523 | |||||
| 15,44102275100,44122744042,20468942,44102296037,44114089124,20937,11793087,8654918,44102420935,44102756031,335096,44102442610,44102735251,292641,44102799286,44102872347,73061,44102814240,44102878935,64695,44102912472,44102977329,64857,44102927580,44102993993,66413,44107234464,44110359484,3125020,44108068982,44110617441,2548459,44111300290,44111462959,162669,44112253299,44112504828,251529,44114100468,44118970414,4869946 | |||||
| 16,44122744042,44143315003,20570961,44122764305,44134692985,20263,11928680,8622018,44122890022,44123220007,329985,44122911498,44123200422,288924,44123264580,44123336418,71838,44123280022,44123330728,50706,44123371411,44123444431,73020,44123386800,44123450607,63807,44127695887,44130962833,3266946,44128530435,44131075158,2544723,44131899651,44131934803,35152,44132855346,44132998290,142944,44134704170,44139539120,4834950 | |||||
| 17,44143315003,44163811607,20496604,44143335731,44154940676,20728,11604945,8870931,44143465932,44143639577,173645,44143483061,44143620861,137800,44143684261,44143755366,71105,44143699486,44143749910,50424,44143790901,44143860757,69856,44143805691,44143866565,60874,44148117390,44151215001,3097611,44148951672,44151617256,2665584,44152155635,44152508152,352517,44153109865,44153576019,466154,44154951688,44160038877,5087189 | |||||
| 18,44163811607,44184532237,20720630,44163834416,44175685871,22809,11851455,8846366,44163964743,44164288611,323868,44163982124,44164271306,289182,44164333259,44164403911,70652,44164348231,44164398457,50226,44164439547,44164505525,65978,44164454802,44164522197,67395,44168763295,44171953638,3190343,44169597212,44172535265,2938053,44172892958,44173447551,554593,44173846575,44174479801,633226,44175697196,44180757817,5060621 | |||||
| 19,44184532237,44205247211,20714974,44184552395,44196593427,20158,12041032,8653784,44184683087,44185191372,508285,44184698849,44185169555,470706,44185234793,44185300719,65926,44185250310,44185306494,56184,44185341254,44185410828,69574,44185356360,44185416704,60344,44189668776,44192858543,3189767,44190502809,44193129716,2626907,44193798521,44193991414,192893,44194751763,44195078040,326277,44196604576,44201470956,4866380 | |||||
| 20,44205247211,44226075868,20828657,44205267835,44217063903,20624,11796068,9011965,44205393267,44205594023,200756,44205415066,44205576020,160954,44205638750,44205708958,70208,44205653578,44205703487,49909,44205743734,44205810062,66328,44205758532,44205825868,67336,44210069241,44213331232,3261991,44210903344,44213671693,2768349,44214271387,44214580674,309287,44215223881,44215625434,401553,44217074939,44222303626,5228687 | |||||
| 21,44226075868,44246732558,20656690,44226096489,44238055680,20621,11959191,8676878,44226222783,44226706275,483492,44226240074,44226567217,327143,44226752995,44226844414,91419,44226770382,44226837942,67560,44226884146,44226955988,71842,44226901191,44226983628,82437,44231202468,44234327937,3125469,44232036890,44234605189,2568299,44235266830,44235453461,186631,44236220003,44236496196,276193,44238066815,44242960452,4893637 | |||||
| 22,44246732558,44267092056,20359498,44246752565,44258416435,20007,11663870,8675621,44246879243,44247093290,214047,44246900033,44247077208,177175,44247136767,44247210762,73995,44247152458,44247205323,52865,44247245857,44247311587,65730,44247261292,44247317428,56136,44251568669,44254691670,3123001,44252403022,44254988667,2585645,44255630655,44255852325,221670,44256584287,44256932144,347857,44258427482,44263317869,4890387 | |||||
| 23,44267092056,44287698474,20606418,44267112083,44278745384,20027,11633301,8953090,44267237301,44267472653,235352,44267258376,44267449193,190817,44267516762,44267586073,69311,44267532297,44267592178,59881,44267626729,44267693252,66523,44267642154,44267719271,77117,44271938966,44275021062,3082096,44272773006,44275375073,2602067,44275961109,44276248132,287023,44276913233,44277324449,411216,44278756444,44283923934,5167490 | |||||
| 24,44287698474,44308003844,20305370,44287718195,44299399792,19721,11681597,8604052,44287850598,44287991369,140771,44287868459,44287967179,98720,44288036485,44288107603,71118,44288051898,44288101979,50081,44288142961,44288214952,71991,44288158497,44288209380,50883,44292465688,44295659694,3194006,44293299781,44295789139,2489358,44296599423,44296633501,34078,44297554668,44297659629,104961,44299411080,44304230130,4819050 | |||||
| 25,44308003844,44328174524,20170680,44308023634,44319643109,19790,11619475,8531415,44308149120,44308292267,143147,44308169291,44308271101,101810,44308337014,44308405078,68064,44308352956,44308421266,68310,44308446074,44308517238,71164,44308460770,44308539711,78941,44312762533,44315914249,3151716,44313596658,44316061970,2465312,44316855197,44316911814,56617,44317807713,44317961066,153353,44319654245,44324403480,4749235 | |||||
| 26,44328174524,44349218767,21044243,44328194895,44340530725,20371,12335830,8688042,44328324877,44328756715,431838,44328343117,44328736625,393508,44328799962,44328869563,69601,44328815207,44328875546,60339,44328910573,44328977676,67103,44328925620,44328983526,57906,44333234873,44336801006,3566133,44334068955,44336877628,2808673,44337737798,44337778270,40472,44338693697,44338808234,114537,44340542133,44345441908,4899775 | |||||
| 27,44349218767,44369954247,20735480,44349239349,44361048685,20582,11809336,8905562,44349369187,44349624583,255396,44349387477,44349609405,221928,44349668836,44349733323,64487,44349683598,44349753414,69816,44349770250,44349836461,66211,44349785048,44349856711,71663,44354085497,44357320940,3235443,44354920002,44357720199,2800197,44358260541,44358627401,366860,44359215178,44359664034,448856,44361059775,44366181481,5121706 | |||||
| 28,44369954247,44390402255,20448008,44369974952,44381636133,20705,11661181,8766122,44370104802,44370256353,151551,44370122718,44370237848,115130,44370299893,44370364562,64669,44370314756,44370381753,66997,44370406511,44370472913,66402,44370421381,44370489271,67890,44374730824,44377900392,3169568,44375564525,44378407269,2842744,44378840692,44379322703,482011,44379794108,44380370321,576213,44381647256,44386627300,4980044 | |||||
| 29,44390402255,44410750143,20347888,44390422567,44402189967,20312,11767400,8560176,44390546834,44390897715,350881,44390568351,44390876882,308531,44390941423,44391007190,65767,44390956597,44391012937,56340,44391047535,44391114020,66485,44391062668,44391130460,67792,44395371077,44398450594,3079517,44396205220,44398650380,2445160,44399388935,44399479235,90300,44400346281,44400512571,166290,44402201237,44406978159,4776922 | |||||
| 30,44410750143,44431176759,20426616,44410770333,44422533396,20190,11763063,8643363,44410900536,44411188299,287763,44410918054,44411169659,251605,44411232720,44411303537,70817,44411247878,44411297989,50111,44411338952,44411404707,65755,44411354023,44411421120,67097,44415661742,44418800039,3138297,44416496416,44419061181,2564765,44419736702,44419898739,162037,44420691235,44420959444,268209,44422544465,44427404747,4860282 | |||||
| 31,44431176759,44451449009,20272250,44431197646,44442826372,20887,11628726,8622637,44431322635,44431557540,234905,44431344114,44431539249,195135,44431601564,44431676304,74740,44431616664,44431670689,54025,44431711243,44431778042,66799,44431725975,44431794292,68317,44436035020,44439090705,3055685,44436869437,44439294665,2425228,44440029085,44440161633,132548,44440981622,44441202116,220494,44442838668,44447674211,4835543 | |||||
| 32,44451449009,44471700374,20251365,44451470446,44463058183,21437,11587737,8642191,44451595167,44451794540,199373,44451616306,44451781155,164849,44451841721,44451910357,68636,44451858109,44451928315,70206,44451955717,44452024781,69064,44451972222,44452031814,59592,44456283303,44459330164,3046861,44457117418,44459670488,2553070,44460268774,44460566352,297578,44461220580,44461636596,416016,44463069303,44467926267,4856964 | |||||
| 33,44471700374,44492104077,20403703,44471721264,44483362543,20890,11641279,8741534,44471847485,44472103367,255882,44471868669,44472082240,213571,44472146845,44472214301,67456,44472161746,44472220052,58306,44472255485,44472319968,64483,44472270172,44472336529,66357,44476578837,44479632447,3053610,44477412818,44480003904,2591086,44480574431,44480893122,318691,44481528168,44481965151,436983,44483373758,44488332031,4958273 | |||||
| 34,44492104077,44512405791,20301714,44492124623,44503815754,20546,11691131,8590037,44492249300,44492556437,307137,44492269463,44492535870,266407,44492599587,44492667927,68340,44492614354,44492683993,69639,44492708859,44492776225,67366,44492723987,44492803704,79717,44497020499,44500092590,3072091,44497855055,44500451777,2596722,44501030806,44501361798,330992,44501984567,44502410372,425805,44503826742,44508635470,4808728 | |||||
| 35,44512405791,44533110373,20704582,44512425077,44524520826,19286,12095749,8589547,44512550220,44513066413,516193,44512570919,44513048122,477203,44513109453,44513183725,74272,44513124186,44513178048,53862,44513218326,44513283749,65423,44513233451,44513303643,70192,44517530416,44520796389,3265973,44518364463,44520927189,2562726,44521731705,44521766390,34685,44522684196,44522802383,118187,44524532673,44529340236,4807563 | |||||
| 36,44533110373,44553740439,20630066,44533130591,44544852781,20218,11722190,8887658,44533260037,44533421556,161519,44533277391,44533405356,127965,44533466460,44533544247,77787,44533482223,44533538613,56390,44533578408,44533636711,58303,44533593376,44533663038,69662,44537889908,44541128315,3238407,44538724144,44541532641,2808497,44542071591,44542449191,377600,44543022019,44543482811,460792,44544863816,44549966882,5103066 | |||||
| 37,44553740439,44574302959,20562520,44553761786,44565509826,21347,11748040,8793133,44553886934,44554162975,276041,44553907934,44554144984,237050,44554206220,44554278788,72568,44554221554,44554273196,51642,44554313802,44554372983,59181,44554328823,44554399155,70332,44558624935,44561785580,3160645,44559458808,44562017271,2558463,44562724376,44562874113,149737,44563677712,44563940976,263264,44565520608,44570525174,5004566 | |||||
| 38,44574302959,44594604155,20301196,44574323295,44585986001,20336,11662706,8618154,44574448836,44574588860,140024,44574470256,44574571502,101246,44574633074,44574703925,70851,44574647998,44574698319,50321,44574739655,44574812213,72558,44574754577,44574806730,52153,44579063189,44582257230,3194041,44579897497,44582426359,2528862,44583195690,44583294085,98395,44584148501,44584361271,212770,44585996762,44590833492,4836730 | |||||
| 39,44594604155,44615049308,20445153,44594624707,44606298520,20552,11673813,8750788,44594749809,44594917111,167302,44594769799,44594903186,133387,44594960361,44595028360,67999,44594975963,44595034887,58924,44595068900,44595135118,66218,44595083676,44595153924,70248,44599380444,44602572172,3191728,44600214467,44602778707,2564240,44603511099,44603634130,123031,44604464603,44604661983,197380,44606310088,44611274316,4964228 | |||||
| 40,44615049308,44635354303,20304995,44615070682,44626679418,21374,11608736,8674885,44615196845,44615335405,138560,44615213494,44615316140,102646,44615380223,44615446678,66455,44615395217,44615452717,57500,44615487101,44615551774,64673,44615501932,44615568494,66562,44619809881,44622949181,3139300,44620643742,44623200596,2556854,44623891046,44624020958,129912,44624844423,44625071374,226951,44626690453,44631582228,4891775 | |||||
| 41,44635354303,44655612335,20258032,44635374539,44647033301,20236,11658762,8579034,44635503732,44635744801,241069,44635521586,44635725238,203652,44635788469,44635866333,77864,44635803335,44635860499,57164,44635900227,44635972514,72287,44635915142,44635966977,51835,44640223225,44643309053,3085828,44641057583,44643552762,2495179,44644249082,44644390324,141242,44645201958,44645418205,216247,44647044559,44651839709,4795150 | |||||
| 42,44655612335,44676048392,20436057,44655634905,44667367927,22570,11733022,8680465,44655765450,44656010910,245460,44655783912,44655994984,211072,44656056057,44656127364,71307,44656071616,44656133952,62336,44656170224,44656236211,65987,44656185437,44656253376,67939,44660493864,44663630908,3137044,44661328277,44663905426,2577149,44664570059,44664765516,195457,44665525623,44665847476,321853,44667379192,44672274676,4895484 | |||||
| 43,44676048392,44696806203,20757811,44676069249,44688205458,20857,12136209,8600745,44676195168,44676816387,621219,44676212116,44676712404,500288,44676863674,44676961117,97443,44676880791,44676979162,98371,44677006913,44677082354,75441,44677024494,44677100315,75821,44681342462,44684474690,3132228,44682176610,44684753535,2576925,44685416367,44685593702,177335,44686370322,44686648451,278129,44688216869,44693030237,4813368 | |||||
| 44,44696806203,44717411825,20605622,44696826194,44708707638,19991,11881444,8704187,44696953320,44697286302,332982,44696974393,44697269420,295027,44697329926,44697394272,64346,44697345046,44697414455,69409,44697431683,44697487333,55650,44697446585,44697515866,69281,44701742664,44704979643,3236979,44702576613,44705194631,2618018,44705921343,44706031518,110175,44706875875,44707110244,234369,44708718782,44713639286,4920504 | |||||
| 45,44717411825,44738091890,20680065,44717432066,44729482066,20241,12050000,8609824,44717561566,44717768410,206844,44717578562,44717752023,173461,44717812043,44717881382,69339,44717827079,44717909864,82785,44717915781,44717983474,67693,44717958068,44718009597,51529,44722236198,44725745576,3509378,44723069782,44725807480,2737698,44726680693,44726715801,35108,44727636869,44727752058,115189,44729493189,44734316446,4823257 | |||||
| 46,44738091890,44758577345,20485455,44738112200,44749783859,20310,11671659,8793486,44738238466,44738397277,158811,44738259334,44738381179,121845,44738442571,44738508637,66066,44738458011,44738529263,71252,44738546382,44738611120,64738,44738560955,44738616778,55823,44742868084,44746055043,3186959,44743702103,44746324424,2622321,44746999413,44747164568,165155,44747954715,44748209532,254817,44749795450,44754802187,5006737 | |||||
| 47,44758577345,44779070917,20493572,44758597452,44770240550,20107,11643098,8830367,44758722948,44758868280,145332,44758744585,44758848887,104302,44758912235,44758987178,74943,44758928183,44758981654,53471,44759021924,44759087325,65401,44759037276,44759106626,69350,44763333629,44766514402,3180773,44764168174,44766758705,2590531,44767453868,44767598674,144806,44768407493,44768674768,267275,44770252124,44775300885,5048761 | |||||
| 48,44779070917,44799856051,20785134,44779090764,44791177493,19847,12086729,8678558,44779220747,44779361021,140274,44779238669,44779342361,103692,44779404743,44779471122,66379,44779419902,44779476899,56997,44779511190,44779579337,68147,44779526016,44779585216,59200,44783837602,44787447102,3609500,44784671161,44787523773,2852612,44788381886,44788417872,35986,44789335464,44789457946,122482,44791188759,44796080225,4891466 | |||||
| 49,44799856051,44820221054,20365003,44799876304,44811569002,20253,11692698,8652052,44800001089,44800144726,143637,44800021719,44800127404,105685,44800189058,44800254876,65818,44800204082,44800260967,56885,44800295661,44800363090,67429,44800310551,44800379674,69123,44804620471,44807832244,3211773,44805454241,44808139831,2685590,44808774637,44809040930,266293,44809725887,44810112500,386613,44811580089,44816446341,4866252 | |||||
| 50,44820221054,44840791793,20570739,44820242387,44832208137,21333,11965750,8583656,44820366892,44820744517,377625,44820382939,44820727180,344241,44820788150,44820864532,76382,44820803118,44820858726,55608,44820900043,44820972773,72730,44820915347,44820967190,51843,44825224042,44828482001,3257959,44826058436,44828656652,2598216,44829419252,44829534104,114852,44830373172,44830600585,227413,44832219150,44837018994,4799844 | |||||
| 51,44840791793,44861151364,20359571,44840812650,44852468928,20857,11656278,8682436,44840943390,44841229008,285618,44840960994,44841209251,248257,44841272729,44841339645,66916,44841287808,44841356649,68841,44841381342,44841448373,67031,44841396148,44841454225,58077,44845704023,44848734196,3030173,44846538373,44849135368,2596995,44849674431,44850021232,346801,44850627454,44851086290,458836,44852480358,44857377373,4897015 | |||||
| 52,44861151364,44882179817,21028453,44861170798,44873136615,19434,11965817,9043202,44861299774,44861612818,313044,44861317380,44861592652,275272,44861656073,44861721824,65751,44861670837,44861727637,56800,44861762784,44861831853,69069,44861778114,44861849296,71182,44866089746,44869414292,3324546,44866923561,44869928598,3005037,44870350748,44870853115,502367,44871303379,44871892120,588741,44873147862,44878407097,5259235 | |||||
| 53,44882179817,44902538088,20358271,44882199634,44893860666,19817,11661032,8677422,44882323958,44882514760,190802,44882345160,44882492425,147265,44882558458,44882623498,65040,44882573390,44882639818,66428,44882664713,44882731386,66673,44882679605,44882747865,68260,44886987817,44890130024,3142207,44887821163,44890487110,2665947,44891069757,44891370431,300674,44892022557,44892446077,423520,44893871698,44898770632,4898934 | |||||
| 54,44902538088,44923227550,20689462,44902558199,44914195451,20111,11637252,9032099,44902682369,44902972683,290314,44902702861,44902954454,251593,44903015578,44903084896,69318,44903030807,44903100635,69828,44903125058,44903189528,64470,44903140486,44903209572,69086,44907435631,44910457363,3021732,44908269987,44910875918,2605931,44911402907,44911738797,335890,44912354906,44912799854,444948,44914206696,44919454907,5248211 | |||||
| 55,44923227550,44943547928,20320378,44923248032,44934819664,20482,11571632,8728264,44923377543,44923559432,181889,44923394792,44923543225,148433,44923602764,44923675628,72864,44923617792,44923670092,52300,44923710373,44923774009,63636,44923725091,44923793839,68748,44928021597,44931078067,3056470,44928856074,44931405513,2549439,44932019688,44932269858,250170,44932971532,44933357053,385521,44934832047,44939773549,4941502 | |||||
| 56,44943547928,44964125283,20577355,44943567519,44955484083,19591,11916564,8641200,44943691979,44943910355,218376,44943712855,44943885850,172995,44943954443,44944024542,70099,44943969179,44944019086,49907,44944059582,44944124258,64676,44944074673,44944144946,70273,44948369018,44951748302,3379284,44949202782,44951871355,2668573,44952689347,44952757441,68094,44953642384,44953792837,150453,44955495682,44960354249,4858567 | |||||
| 57,44964125283,44984724570,20599287,44964145589,44976013814,20306,11868225,8710756,44964276034,44964665943,389909,44964294036,44964645208,351172,44964709773,44964775501,65728,44964724565,44964781354,56789,44964815872,44964891025,75153,44964832684,44964885405,52721,44969143397,44972279794,3136397,44969977428,44972508118,2530690,44973220542,44973364756,144214,44974173585,44974393980,220395,44976025005,44980952893,4927888 | |||||
| 58,44984724570,45005041220,20316650,44984745371,44996532292,20801,11786921,8508928,44984875625,44985132132,256507,44984893647,44985114453,220806,44985174993,44985242622,67629,44985190216,44985248564,58348,44985282081,44985347177,65096,44985296786,44985367031,70245,44989594310,44992797454,3203144,44990428499,44992955065,2526566,44993739369,44993774757,35388,44994695847,44994822764,126917,44996543451,45001270389,4726938 | |||||
| 59,45005041220,45025766783,20725563,45005061163,45017300803,19943,12239640,8465980,45005190753,45005392904,202151,45005208934,45005379305,170371,45005436780,45005502642,65862,45005451595,45005508574,56979,45005542883,45005608489,65606,45005557661,45005624024,66363,45009865198,45013575691,3710493,45010698748,45013630882,2932134,45014509775,45014544774,34999,45015462233,45015589100,126867,45017311827,45021996300,4684473 | |||||
| 60,45025766783,45046023678,20256895,45025787292,45037437461,20509,11650169,8586217,45025919082,45026074133,155051,45025936551,45026051990,115439,45026118744,45026190775,72031,45026134376,45026185476,51100,45026224911,45026283370,58459,45026240133,45026308802,68669,45030536243,45033699663,3163420,45031369821,45034024150,2654329,45034639148,45034884325,245177,45035595027,45035963146,368119,45037448678,45042250926,4802248 | |||||
| 61,45046023678,45066597032,20573354,45046044954,45057851150,21276,11806196,8745882,45046174824,45046636603,461779,45046192061,45046616072,424011,45046679786,45046756561,76775,45046694388,45046751104,56716,45046786964,45046849889,62925,45046801661,45046867716,66055,45051109115,45054113437,3004322,45051945246,45054412640,2467394,45055053529,45055282128,228599,45056007498,45056342604,335106,45057862142,45062825494,4963352 | |||||
| 62,45066597032,45086816467,20219435,45066617431,45078396412,20399,11778981,8420055,45066747799,45066998584,250785,45066765260,45066979077,213817,45067042289,45067110052,67763,45067057696,45067125969,68273,45067151032,45067214670,63638,45067166085,45067235238,69153,45071461888,45074660695,3198807,45072295975,45074794609,2498634,45075599641,45075635618,35977,45076553745,45076708829,155084,45078407807,45083045697,4637890 | |||||
| 63,45086816467,45107476568,20660101,45086838485,45098605280,22018,11766795,8871288,45086968662,45087176390,207728,45086983912,45087159282,175370,45087221033,45087288383,67350,45087237016,45087294299,57283,45087329066,45087392981,63915,45087344287,45087409870,65583,45091653429,45094884625,3231196,45092488118,45095263977,2775859,45095820751,45096157003,336252,45096772853,45097213123,440270,45098616417,45103700942,5084525 | |||||
| 64,45107476568,45127934462,20457894,45107496481,45119123360,19913,11626879,8811102,45107626056,45107865190,239134,45107644194,45107845968,201774,45107908882,45107974670,65788,45107924161,45107994837,70676,45108011235,45108081054,69819,45108026060,45108103494,77434,45112326584,45115381693,3055109,45113160610,45115710742,2550132,45116320677,45116582757,262080,45117272783,45117664190,391407,45119134392,45124160609,5026217 | |||||
| 65,45127934462,45148627916,20693454,45127955657,45139964131,21195,12008474,8663785,45128081970,45128585829,503859,45128099308,45128502978,403670,45128631733,45128727358,95625,45128648628,45128764839,116211,45128771118,45128841029,69911,45128814427,45128884611,70184,45133102762,45136235993,3133231,45133937524,45136398442,2460918,45137174909,45137232243,57334,45138128477,45138261124,132647,45139975704,45144854232,4878528 | |||||
| 66,45148627916,45169072950,20445034,45148648841,45160353655,20925,11704814,8719295,45148774446,45149048285,273839,45148795424,45149030470,235046,45149091805,45149164559,72754,45149107298,45149159184,51886,45149200149,45149270550,70401,45149215181,45149265024,49843,45153521315,45156625747,3104432,45154355967,45156847299,2491332,45157566019,45157696053,130034,45158519633,45158736196,216563,45160365051,45165297234,4932183 | |||||
| 67,45169072950,45189702264,20629314,45169093532,45180912171,20582,11818639,8790093,45169220544,45169417319,196775,45169242338,45169396395,154057,45169461458,45169527317,65859,45169476222,45169534340,58118,45169569273,45169642935,73662,45169584663,45169637291,52628,45173893384,45177184267,3290883,45174727569,45177462823,2735254,45178122809,45178363119,240310,45179075513,45179436008,360495,45180923191,45185930230,5007039 | |||||
| 68,45189702264,45210141553,20439289,45189723773,45201394522,21509,11670749,8747031,45189849457,45190063027,213570,45189869739,45190045471,175732,45190106370,45190171235,64865,45190121433,45190187561,66128,45190212095,45190278347,66252,45190226946,45190294669,67723,45194534928,45197666224,3131296,45195369167,45198047972,2678805,45198604945,45198943284,338339,45199558854,45199999233,440379,45201405771,45206373056,4967285 | |||||
| 69,45210141553,45230768616,20627063,45210161182,45222062955,19629,11901773,8705661,45210285650,45210788527,502877,45210305624,45210769429,463805,45210836451,45210900971,64520,45210851633,45210918077,66444,45210942579,45211009103,66524,45210957536,45211015198,57662,45215266209,45218317408,3051199,45216100026,45218621504,2521478,45219261182,45219482720,221538,45220215992,45220556747,340755,45222074163,45226994518,4920355 | |||||
| 70,45230768616,45251266566,20497950,45230789254,45242548294,20638,11759040,8718272,45230919816,45231234404,314588,45230937953,45231216371,278418,45231278092,45231345013,66921,45231293109,45231350917,57808,45231385961,45231454112,68151,45231401220,45231459999,58779,45235710291,45238819995,3109704,45236544334,45239100730,2556396,45239762296,45239940079,177783,45240714824,45240981848,267024,45242559286,45247491710,4932424 | |||||
| 71,45251266566,45271659038,20392472,45251287555,45263164796,20989,11877241,8494242,45251417849,45251556002,138153,45251436067,45251537020,100953,45251600717,45251670890,70173,45251617111,45251677323,60212,45251714425,45251783575,69150,45251730536,45251789618,59082,45256041305,45259426902,3385597,45256875333,45259536305,2660972,45260365236,45260400732,35496,45261319741,45261458368,138627,45263175845,45267889679,4713834 | |||||
| 72,45271659038,45291986946,20327908,45271679763,45283347633,20725,11667870,8639313,45271809709,45272048671,238962,45271827638,45272029696,202058,45272092638,45272167150,74512,45272110357,45272173385,63028,45272209506,45272277329,67823,45272225135,45272298130,72995,45276524214,45279611919,3087705,45277357982,45279772363,2414381,45280553307,45280613417,60110,45281510941,45281645306,134365,45283359087,45288214763,4855676 | |||||
| 73,45291986946,45312473301,20486355,45292007737,45303574261,20791,11566524,8899040,45292138009,45292276105,138096,45292155638,45292258120,102482,45292319670,45292386433,66763,45292335399,45292392239,56840,45292426848,45292493970,67122,45292441968,45292509974,68006,45296749737,45299843306,3093569,45297583500,45300196504,2613004,45300781824,45301064252,282428,45301734832,45302146815,411983,45303585142,45308700412,5115270 | |||||
| 74,45312473301,45333034562,20561261,45312492712,45324250442,19411,11757730,8784120,45312623362,45312761899,138537,45312643024,45312743905,100881,45312805188,45312881528,76340,45312820144,45312897996,77852,45312922382,45312999241,76859,45312937861,45313015792,77931,45317256281,45320523779,3267498,45318090794,45320735823,2645029,45321460685,45321621061,160376,45322414804,45322672755,257951,45324261640,45329262876,5001236 | |||||
| 75,45333034562,45353577168,20542606,45333055278,45344619564,20716,11564286,8957604,45333185783,45333395556,209773,45333201306,45333378220,176914,45333439301,45333505060,65759,45333454414,45333510923,56509,45333545544,45333612518,66974,45333560642,45333628416,67774,45337869017,45340879533,3010516,45338702941,45341308925,2605984,45341824703,45342176923,352220,45342777345,45343234567,457222,45344631091,45349803605,5172514 | |||||
| 76,45353577168,45374038242,20461074,45353599053,45365419184,21885,11820131,8619058,45353729970,45353919737,189767,45353748122,45353904455,156333,45353963564,45354030237,66673,45353978650,45354046527,67877,45354070870,45354138223,67353,45354086050,45354158504,72454,45358383218,45361679640,3296422,45359217394,45361994735,2777341,45362619443,45362881123,261680,45363572713,45363947421,374708,45365430824,45370266520,4835696 | |||||
| 77,45374038242,45394750668,20712426,45374058559,45386006173,20317,11947614,8744495,45374187974,45374518585,330611,45374205688,45374500110,294422,45374562028,45374625947,63919,45374577110,45374646809,69699,45374663380,45374728323,64943,45374678055,45374748206,70151,45378975203,45382273987,3298784,45379809153,45382547287,2738134,45383210680,45383448778,238098,45384162084,45384512801,350717,45386017520,45390979709,4962189 | |||||
| 78,45394750668,45415231006,20480338,45394770783,45406531067,20115,11760284,8699939,45394901078,45395086745,185667,45394918616,45395065891,147275,45395130975,45395201017,70042,45395146957,45395207060,60103,45395242085,45395309592,67507,45395257129,45395329172,72043,45399555531,45402797255,3241724,45400390392,45403340774,2950382,45403736022,45404260840,524818,45404691668,45405298924,607256,45406541950,45411457600,4915650 | |||||
| 79,45415231006,45435682452,20451446,45415251079,45427130837,20073,11879758,8551615,45415379772,45415843278,463506,45415396904,45415821776,424872,45415886632,45415961691,75059,45415901719,45415956130,54411,45415996424,45416055689,59265,45416011542,45416081216,69674,45420307829,45423394945,3087116,45421142650,45423688498,2545848,45424337890,45424570393,232503,45425290203,45425646718,356515,45427142240,45431908536,4766296 | |||||
| 80,45435682452,45456443309,20760857,45435701969,45447594639,19517,11892670,8848670,45435833743,45436213357,379614,45435851983,45436195247,343264,45436256782,45436322537,65755,45436271588,45436339065,67477,45436363849,45436433104,69255,45436379133,45436448999,69866,45440689707,45443862065,3172358,45441523851,45444219803,2695952,45444803819,45445120385,316566,45445758301,45446173004,414703,45447605610,45452673217,5067607 | |||||
| 81,45456443309,45476658061,20214752,45456464050,45468068628,20741,11604578,8589433,45456588937,45456728962,140025,45456610384,45456711359,100975,45456773339,45456844759,71420,45456788916,45456850813,61897,45456884911,45456945985,61074,45456900323,45456971478,71155,45461198942,45464339732,3140790,45462034043,45464596175,2562132,45465280835,45465442509,161674,45466234692,45466488992,254300,45468079740,45472887769,4808029 | |||||
| 82,45476658061,45497554028,20895967,45476677850,45488523394,19789,11845544,9030634,45476807499,45477055402,247903,45476825374,45477038248,212874,45477099386,45477168982,69596,45477114499,45477174825,60326,45477208409,45477274817,66408,45477223621,45477293515,69894,45481519924,45484797200,3277276,45482354190,45485275018,2920828,45485736714,45486187633,450919,45486689893,45487221561,531668,45488534749,45493779491,5244742 | |||||
| 83,45497554028,45517902092,20348064,45497574796,45509368741,20768,11793945,8533351,45497699980,45497934453,234473,45497720349,45497914569,194220,45497978832,45498043025,64193,45497993823,45498063556,69733,45498080320,45498144011,63691,45498094851,45498166250,71399,45502390399,45505641114,3250715,45503224324,45505778888,2554564,45506580814,45506615903,35089,45507533566,45507650352,116786,45509379740,45514130317,4750577 | |||||
| 84,45517902092,45538044642,20142550,45517922444,45529578467,20352,11656023,8466175,45518053159,45518244926,191767,45518070415,45518227788,157373,45518288244,45518355449,67205,45518303340,45518361437,58097,45518396410,45518467173,70763,45518411170,45518461694,50524,45522719436,45525842676,3123240,45523553654,45526109883,2556229,45526783592,45526943357,159765,45527738164,45527980199,242035,45529590137,45534275353,4685216 | |||||
| 85,45538044642,45558701218,20656576,45538064284,45549931575,19642,11867291,8769643,45538194402,45538547396,352994,45538211767,45538530617,318850,45538591042,45538655982,64940,45538606179,45538676271,70092,45538692741,45538763564,70823,45538707368,45538782956,75588,45543010479,45546207232,3196753,45543844771,45546720562,2875791,45547148722,45547636657,487935,45548101319,45548667203,565884,45549942726,45554926322,4983596 | |||||
| 86,45558701218,45579512821,20811603,45558721936,45570689487,20718,11967551,8823334,45558847517,45559288498,440981,45558869130,45559271512,402382,45559331666,45559396986,65320,45559347185,45559413825,66640,45559438818,45559504125,65307,45559453995,45559520906,66911,45563762610,45566959971,3197361,45564596793,45567475009,2878216,45567900119,45568385403,485284,45568854141,45569433111,578970,45570700823,45575735680,5034857 | |||||
| 87,45579512821,45600519658,21006837,45579532916,45591723931,20095,12191015,8795727,45579658178,45580398490,740312,45579679357,45580261788,582431,45580445925,45580529997,84072,45580462258,45580548193,85935,45580577072,45580650993,73921,45580593583,45580673450,79867,45584898695,45587988232,3089537,45585732754,45588341530,2608776,45588928852,45589205017,276165,45589883382,45590289015,405633,45591735838,45596746399,5010561 | |||||
| 88,45600519658,45621533425,21013767,45600540141,45612426020,20483,11885879,9107405,45600665107,45600907624,242517,45600686963,45600892496,205533,45600951005,45601026022,75017,45600966189,45601020393,54204,45601060533,45601125886,65353,45601075616,45601146713,71097,45605371685,45608700599,3328914,45606206303,45609267900,3061597,45609637981,45610210318,572337,45610591163,45611258225,667062,45612437360,45617760270,5322910 | |||||
| 89,45621533425,45642028518,20495093,45621553344,45633183620,19919,11630276,8844898,45621678183,45621879704,201521,45621699425,45621859319,159894,45621922885,45621990357,67472,45621938079,45621996229,58150,45622031985,45622098217,66232,45622047499,45622114393,66894,45626355641,45629443611,3087970,45627189819,45629826203,2636384,45630386662,45630686981,300319,45631340615,45631750148,409533,45633195163,45638254250,5059087 | |||||
| 90,45642028518,45662483187,20454669,45642048849,45653649302,20331,11600453,8833885,45642178669,45642413911,235242,45642196583,45642398321,201738,45642457148,45642521709,64561,45642472444,45642538201,65757,45642562822,45642626422,63600,45642577767,45642650281,72514,45646872496,45649922705,3050209,45647706215,45650355474,2649259,45650862796,45651266453,403657,45651817874,45652306594,488720,45653660719,45658707999,5047280 | |||||
| 91,45662483187,45682711021,20227834,45662503499,45674161942,20312,11658443,8549079,45662628372,45662877446,249074,45662650340,45662862446,212106,45662921311,45662995543,74232,45662937473,45662989769,52296,45663030787,45663096752,65965,45663045499,45663112849,67350,45667352920,45670427988,3075068,45668186898,45670708602,2521704,45671368529,45671569629,201100,45672324034,45672631378,307344,45674173098,45678936061,4762963 | |||||
| 92,45682711021,45703507591,20796570,45682730945,45695066306,19924,12335361,8441285,45682856932,45683410583,553651,45682873285,45683390897,517612,45683454274,45683527958,73684,45683469474,45683522572,53098,45683562871,45683628751,65880,45683578083,45683644980,66897,45687886139,45691327728,3441589,45688720149,45691478004,2757855,45692268567,45692342287,73720,45693220736,45693392597,171861,45695077543,45699736677,4659134 | |||||
| 93,45703507591,45724101294,20593703,45703526975,45715374151,19384,11847176,8727143,45703656931,45704031278,374347,45703674518,45704011400,336882,45704074608,45704153136,78528,45704089714,45704147618,57904,45704183327,45704250781,67454,45704198314,45704267010,68696,45708508329,45711635435,3127106,45709342763,45711975127,2632364,45712574886,45712870992,296106,45713530620,45713923655,393035,45715385475,45720329518,4944043 | |||||
| 94,45724101294,45744521815,20420521,45724121122,45735870198,19828,11749076,8651617,45724250315,45724494587,244272,45724266352,45724476441,210089,45724538837,45724604092,65255,45724553532,45724610159,56627,45724645023,45724719997,74974,45724660196,45724714100,53904,45728969355,45732142024,3172669,45729803765,45732382443,2578678,45733081479,45733241417,159938,45734034896,45734287808,252912,45735881357,45740750850,4869493 | |||||
| 95,45744521815,45765030516,20508701,45744542452,45756400133,20637,11857681,8630383,45744671724,45745030502,358778,45744688843,45745012337,323494,45745073808,45745151458,77650,45745088419,45745145639,57220,45745181095,45745246623,65528,45745196387,45745262831,66444,45749506422,45752665312,3158890,45750340446,45752898036,2557590,45753605038,45753748714,143676,45754559694,45754819130,259436,45756411668,45761255964,4844296 | |||||
| 96,45765030516,45785577749,20547233,45765050712,45777091566,20196,12040854,8486183,45765174867,45765449397,274530,45765196305,45765432601,236296,45765494223,45765561721,67498,45765509312,45765567617,58305,45765602513,45765676194,73681,45765617838,45765670870,53032,45769927700,45773354503,3426803,45770761441,45773465727,2704286,45774291978,45774326196,34218,45775245996,45775404707,158711,45777102446,45781804595,4702149 | |||||
| 97,45785577749,45806090141,20512392,45785597913,45797311670,20164,11713757,8778471,45785727578,45786076009,348431,45785745824,45786059547,313723,45786118890,45786187052,68162,45786134326,45786193010,58684,45786227297,45786295286,67989,45786242882,45786314596,71714,45790541346,45793580317,3038971,45791376181,45794028583,2652402,45794527441,45794899042,371601,45795480402,45795957391,476989,45797322871,45802316887,4994016 | |||||
| 98,45806090141,45826478105,20387964,45806110135,45817795691,19994,11685556,8682414,45806241273,45806501436,260163,45806257175,45806486709,229534,45806546076,45806613869,67793,45806561795,45806619798,58003,45806655050,45806726651,71601,45806669944,45806721029,51085,45810980080,45814062560,3082480,45811813725,45814414367,2600642,45815001915,45815299187,297272,45815952252,45816368653,416401,45817806740,45822706778,4900038 | |||||
| 99,45826478105,45846839534,20361429,45826498344,45838325097,20239,11826753,8514437,45826628761,45826964178,335417,45826646935,45826942698,295763,45827007549,45827080870,73321,45827022468,45827075103,52635,45827116123,45827183470,67347,45827131766,45827199783,68017,45831440823,45834594262,3153439,45832275050,45834743374,2468324,45835532774,45835615366,82592,45836485156,45836651146,165990,45838336359,45843067264,4730905 | |||||
| 100,45846839534,45867593001,20753467,45846859859,45858818962,20325,11959103,8774039,45846989480,45847519585,530105,45847006657,45847502940,496283,45847562467,45847637657,75190,45847577953,45847631897,53944,45847672360,45847740351,67991,45847687472,45847746435,58963,45851998213,45855085170,3086957,45852833629,45855448869,2615240,45856026862,45856322951,296089,45856980897,45857399155,418258,45858832014,45863820150,4988136 | |||||
| 101,45867593001,45888095056,20502055,45867613618,45879333865,20617,11720247,8761191,45867743957,45868075717,331760,45867761265,45868055398,294133,45868119122,45868197049,77927,45868134583,45868191392,56809,45868227647,45868287610,59963,45868243527,45868313573,70046,45872541266,45875592259,3050993,45873375371,45875929649,2554278,45876537938,45876793374,255436,45877491289,45877862858,371569,45879345173,45884326191,4981018 | |||||
| 102,45888095056,45908634987,20539931,45888115196,45900061291,20140,11946095,8573696,45888240018,45888454059,214041,45888261215,45888436610,175395,45888498074,45888563540,65466,45888513104,45888579542,66438,45888603993,45888668204,64211,45888619274,45888689535,70261,45892913875,45896337562,3423687,45893748309,45896582985,2834676,45897277442,45897481481,204039,45898229111,45898513962,284851,45900072601,45904858346,4785745 | |||||
| 103,45908634987,45928919220,20284233,45908654992,45920436567,20005,11781575,8482653,45908780002,45909042147,262145,45908796092,45909023948,227856,45909085770,45909158347,72577,45909100955,45909164432,63477,45909195328,45909261122,65794,45909210288,45909280630,70342,45913508474,45916706417,3197943,45914342576,45916910106,2567530,45917646590,45917777411,130821,45918599569,45918820270,220701,45920447905,45925148117,4700212 | |||||
| 104,45928919220,45949773536,20854316,45928939515,45941003799,20295,12064284,8769737,45929064772,45929547929,483157,45929086576,45929528359,441783,45929592370,45929670762,78392,45929607757,45929664934,57177,45929700804,45929774252,73448,45929715531,45929768771,53240,45934024998,45937273415,3248417,45934859195,45937594185,2734990,45938211389,45938494041,282652,45939165935,45939549779,383844,45941015540,45946000469,4984929 | |||||
| 105,45949773536,45970247418,20473882,45949794034,45961611426,20498,11817392,8635992,45949924374,45950271850,347476,45949943083,45950254826,311743,45950315438,45950382537,67099,45950331030,45950388425,57395,45950422559,45950487551,64992,45950438545,45950507371,68826,45954735931,45957879549,3143618,45955570182,45958140827,2570645,45958819554,45958975096,155542,45959773770,45960046176,272406,45961622716,45966476381,4853665 | |||||
| 106,45970247418,45991246813,20999395,45970267159,45982768573,19741,12501414,8478240,45970392087,45970865744,473657,45970413361,45970845345,431984,45970908772,45970977480,68708,45970924156,45970993426,69270,45971018687,45971086355,67668,45971033941,45971102861,68920,45975343853,45979038946,3695093,45976178441,45979118264,2939823,45979975509,45980010601,35092,45980927989,45981040426,112437,45982779803,45987475766,4695963 | |||||
| 107,45991246813,46011422985,20176172,45991266499,46002863937,19686,11597438,8559048,45991396306,45991576173,179867,45991414170,45991555293,141123,45991619353,45991688760,69407,45991634806,45991695314,60508,45991731174,45991790094,58920,45991746576,45991808851,62275,45996048826,45999126805,3077979,45996883457,45999407208,2523751,46000068219,46000301854,233635,46001021654,46001383294,361640,46002875644,46007649084,4773440 | |||||
| 108,46011422985,46031854429,20431444,46011442672,46023241670,19687,11798998,8612759,46011572830,46011888020,315190,46011590586,46011868926,278340,46011931925,46012003484,71559,46011947122,46011998113,50991,46012038973,46012105090,66117,46012053915,46012121286,67371,46016361398,46019504569,3143171,46017195476,46019688570,2493094,46020444451,46020526802,82351,46021399755,46021568239,168484,46023252998,46028082547,4829549 | |||||
| 109,46031854429,46052732633,20878204,46031874324,46044109346,19895,12235022,8623287,46032000783,46032727420,726637,46032017606,46032601387,583781,46032775150,46032857271,82121,46032792408,46032875802,83394,46032903116,46032977685,74569,46032919794,46033004603,84809,46037225010,46040374631,3149621,46038059667,46040600604,2540937,46041315618,46041416601,100983,46042268392,46042437431,169039,46044120798,46048962507,4841709 | |||||
| 110,46052732633,46073860354,21127721,46052753848,46064569263,21215,11815415,9291091,46052879694,46053308936,429242,46052900985,46053286317,385332,46053352252,46053422021,69769,46053367366,46053427909,60543,46053464349,46053539163,74814,46053480349,46053533280,52931,46057791789,46060844582,3052793,46058625893,46061514527,2888634,46061781765,46062430430,648665,46062737204,46063468476,731272,46064580090,46070085009,5504919 | |||||
| 111,46073860354,46094396910,20536556,46073880900,46085478054,20546,11597154,8918856,46074006555,46074143998,137443,46074022443,46074130259,107816,46074187234,46074258488,71254,46074202532,46074253077,50545,46074293622,46074358838,65216,46074308655,46074378764,70109,46078609446,46081750885,3141439,46079443719,46082149284,2705565,46082689309,46083022056,332747,46083643825,46084082155,438330,46085489016,46090622500,5133484 | |||||
| 112,46094396910,46114670537,20273627,46094417533,46106048838,20623,11631305,8621699,46094543078,46094693853,150775,46094563610,46094674941,111331,46094737615,46094804186,66571,46094753052,46094810412,57360,46094846242,46094912408,66166,46094861643,46094932652,71009,46099161141,46102321515,3160374,46099995470,46102550597,2555127,46103262509,46103418052,155543,46104218127,46104506088,287961,46106060034,46110894964,4834930 | |||||
| 113,46114670537,46135341936,20671399,46114690409,46126438190,19872,11747781,8903746,46114816016,46115206721,390705,46114839254,46115186041,346787,46115250567,46115314092,63525,46115265399,46115330516,65117,46115355299,46115420956,65657,46115370296,46115441571,71275,46119666876,46122721081,3054205,46120501243,46123135129,2633886,46123660832,46124067540,406708,46124613349,46125121173,507824,46126449718,46131568733,5119015 | |||||
| 114,46135341936,46155601774,20259838,46135362493,46147000826,20557,11638333,8600948,46135491862,46135631623,139761,46135510028,46135614275,104247,46135675599,46135741957,66358,46135691260,46135747820,56560,46135781926,46135842251,60325,46135796983,46135867999,71016,46140095222,46143271046,3175824,46140929922,46143464200,2534278,46144211872,46144297171,85299,46145165530,46145356274,190744,46147011778,46151832282,4820504 | |||||
| 115,46155601774,46176072948,20471174,46155622209,46167328804,20435,11706595,8744144,46155751837,46156071804,319967,46155769756,46156053192,283436,46156115786,46156187218,71432,46156130863,46156181575,50712,46156221788,46156286667,64879,46156237371,46156307194,69823,46160533369,46163595595,3062226,46161367327,46163848592,2481265,46164536427,46164718703,182276,46165491910,46165778760,286850,46167340468,46172301906,4961438 | |||||
| 116,46176072948,46196319896,20246948,46176093754,46187833491,20806,11739737,8486405,46176223900,46176423304,199404,46176241726,46176406182,164456,46176467386,46176533115,65729,46176482396,46176538929,56533,46176573539,46176639507,65968,46176588687,46176660019,71332,46180886322,46184101010,3214688,46181720188,46184341954,2621766,46185042373,46185178974,136601,46185996937,46186248890,251953,46187844706,46192549400,4704694 | |||||
| 117,46196319896,46217323109,21003213,46196340134,46208519552,20238,12179418,8803557,46196465134,46196893262,428128,46196485061,46196875887,390826,46196937045,46197003544,66499,46196951892,46197019462,67570,46197044039,46197111462,67423,46197059139,46197127840,68701,46201369209,46204787953,3418744,46202203331,46205040402,2837071,46205722380,46205942721,220341,46206676099,46207001093,324994,46208531347,46213549784,5018437 | |||||
| 118,46217323109,46237638584,20315475,46217343137,46228890092,20028,11546955,8748492,46217472725,46217619919,147194,46217489819,46217601194,111375,46217663241,46217731490,68249,46217678737,46217737575,58838,46217772101,46217832251,60150,46217787269,46217859325,72056,46222085992,46225153590,3067598,46222919945,46225394932,2474987,46226096556,46226251333,154777,46227047936,46227276490,228554,46228901174,46233866522,4965348 | |||||
| 119,46237638584,46258025060,20386476,46237658776,46249405799,20192,11747023,8619261,46237783911,46238038724,254813,46237804301,46238022434,218133,46238082329,46238150412,68083,46238097360,46238166353,68993,46238190606,46238258348,67742,46238205965,46238274669,68704,46242515690,46245673069,3157379,46243350138,46245822910,2472772,46246611927,46246666474,54547,46247563599,46247698138,134539,46249416678,46254252890,4836212 | |||||
| 120,46258025060,46278369124,20344064,46258045909,46269656639,20849,11610730,8712485,46258170900,46258311721,140821,46258191779,46258293631,101852,46258356156,46258423911,67755,46258372052,46258430033,57981,46258465207,46258524057,58850,46258480396,46258549791,69395,46262776182,46265929880,3153698,46263610819,46266343337,2732518,46266868215,46267240070,371855,46267819356,46268308683,489327,46269667555,46274593264,4925709 | |||||
| 121,46278369124,46299019107,20649983,46278389184,46290300689,20060,11911505,8718418,46278518801,46278986721,467920,46278536178,46278968058,431880,46279031425,46279100954,69529,46279047237,46279106933,59696,46279142238,46279210938,68700,46279157573,46279226747,69174,46283467969,46286567720,3099751,46284302814,46286890279,2587465,46287505056,46287770438,265382,46288457971,46288839898,381927,46290311900,46295246356,4934456 | |||||
| 122,46299019107,46319769707,20750600,46299040087,46310863127,20980,11823040,8906580,46299165434,46299571521,406087,46299186586,46299550687,364101,46299615631,46299680896,65265,46299631317,46299696942,65625,46299721081,46299787173,66092,46299737149,46299807449,70300,46304033174,46307134181,3101007,46304867165,46307593315,2726150,46308077476,46308492434,414958,46309031900,46309520840,488940,46310874428,46316000002,5125574 | |||||
| 123,46319769707,46340090388,20320681,46319789932,46331470550,20225,11680618,8619838,46319921458,46320136059,214601,46319937799,46320119548,181749,46320179773,46320249203,69430,46320194769,46320265144,70375,46320289974,46320362219,72245,46320304801,46320381301,76500,46324606913,46327738884,3131971,46325440958,46327911998,2471040,46328676705,46328760057,83352,46329632150,46329789558,157408,46331481693,46336316047,4834354 | |||||
| 124,46340090388,46360650693,20560305,46340111133,46351986476,20745,11875343,8664217,46340237189,46340582854,345665,46340257632,46340562162,304530,46340626787,46340695874,69087,46340642410,46340701901,59491,46340735980,46340799867,63887,46340750583,46340820680,70097,46345045060,46348248707,3203647,46345879968,46348532768,2652800,46349187000,46349414560,227560,46350137922,46350483156,345234,46351997990,46356875067,4877077 | |||||
| 125,46360650693,46380915340,20264647,46360671164,46372418457,20471,11747293,8496883,46360795852,46361069934,274082,46360816985,46361048621,231636,46361113479,46361180196,66717,46361128313,46361186165,57852,46361221392,46361287564,66172,46361236763,46361303392,66629,46365543503,46368691356,3147853,46366378116,46368898105,2519989,46369630521,46369754114,123593,46370583213,46370804402,221189,46372429827,46377145129,4715302 | |||||
| 126,46380915340,46401485139,20569799,46380935862,46392774384,20522,11838522,8710755,46381060072,46381425672,365600,46381080305,46381409194,328889,46381468894,46381536259,67365,46381483766,46381552133,68367,46381576684,46381645649,68965,46381591631,46381660690,69059,46385901369,46389037701,3136332,46386736572,46389310167,2573595,46389976718,46390174173,197455,46390927634,46391258011,330377,46392785660,46397715823,4930163 | |||||
| 127,46401485139,46421817993,20332854,46401505935,46413145691,20796,11639756,8672302,46401630702,46401811618,180916,46401652441,46401792320,139879,46401855205,46401934486,79281,46401870881,46401928398,57517,46401964858,46402030060,65202,46401980207,46402046602,66395,46406286906,46409414798,3127892,46407121512,46409689198,2567686,46410353523,46410548305,194782,46411308968,46411635853,326885,46413156912,46418044218,4887306 | |||||
| 128,46421817993,46442345075,20527082,46421840313,46433758893,22320,11918580,8586182,46421970846,46422253341,282495,46421986937,46422233422,246485,46422296651,46422362356,65705,46422311488,46422368241,56753,46422402857,46422468199,65342,46422418001,46422486960,68959,46426714037,46430028210,3314173,46427548066,46430174968,2626902,46430966639,46431027176,60537,46431921424,46432095960,174536,46433770211,46438569588,4799377 | |||||
| 129,46442345075,46463366827,21021752,46442365065,46454294479,19990,11929414,9072348,46442495111,46442892938,397827,46442512706,46442874772,362066,46442937194,46443001922,64728,46442951937,46443018063,66126,46443043156,46443108847,65691,46443058704,46443129686,70982,46447356237,46450558061,3201824,46448190742,46451120909,2930167,46451498933,46452047935,549002,46452453838,46453089184,635346,46454305677,46459595700,5290023 | |||||
| 130,46463366827,46483789631,20422804,46463386921,46475086900,20094,11699979,8702731,46463512553,46463653371,140818,46463533965,46463637773,103808,46463697994,46463764453,66459,46463713314,46463770294,56980,46463804627,46463881240,76613,46463819815,46463875675,55860,46468132225,46471358604,3226379,46468966662,46471576927,2610265,46472298556,46472441801,143245,46473253581,46473526090,272509,46475097944,46480016781,4918837 | |||||
| 131,46483789631,46504734961,20945330,46483809568,46496057397,19937,12247829,8677564,46483935033,46484727176,792143,46483958131,46484570324,612193,46484774479,46484854025,79546,46484790944,46484871980,81036,46484898542,46484980048,81506,46484915143,46484997694,82551,46489239818,46492328916,3089098,46490074357,46492771656,2697299,46493264872,46493698427,433555,46494219740,46494729737,509997,46496068953,46500966379,4897426 | |||||
| 132,46504734961,46525478918,20743957,46504755465,46516494246,20504,11738781,8984672,46504879968,46505195243,315275,46504900398,46505178282,277884,46505239177,46505303697,64520,46505254350,46505319491,65141,46505344359,46505412236,67877,46505359497,46505428414,68917,46509670990,46512759532,3088542,46510505427,46513327832,2822405,46513699592,46514237070,537478,46514654087,46515276182,622095,46516505739,46521709870,5204131 | |||||
| 133,46525478918,46546175234,20696316,46525498810,46537068777,19892,11569967,9106457,46525624265,46525780333,156068,46525645667,46525761445,115778,46525823874,46525891875,68001,46525841785,46525908866,67081,46525933647,46525998713,65066,46525948474,46526014969,66495,46530255103,46533335717,3080614,46531088968,46533719391,2630423,46534273728,46534580308,306580,46535228541,46535647353,418812,46537079982,46542396473,5316491 | |||||
| 134,46546175234,46566376553,20201319,46546195376,46557765719,20142,11570343,8610834,46546325756,46546463611,137855,46546343127,46546449958,106831,46546507232,46546571774,64542,46546522482,46546592142,69660,46546609237,46546674460,65223,46546623865,46546691074,67209,46550935659,46554024795,3089136,46551769845,46554277478,2507633,46554964867,46555122981,158114,46555919282,46556186370,267088,46557776965,46562604901,4827936 | |||||
| 135,46566376553,46587118352,20741799,46566396751,46578481647,20198,12084896,8636705,46566525977,46566817995,292018,46566541832,46566800433,258601,46566861474,46566928393,66919,46566876557,46566945140,68583,46566969557,46567035592,66035,46566984382,46567051993,67611,46571293494,46574749988,3456494,46572127700,46574963316,2835616,46575687536,46575838640,151104,46576642306,46576877285,234979,46578492532,46583340586,4848054 | |||||
| 136,46587118352,46607779555,20661203,46587139385,46599289785,21033,12150400,8489770,46587270540,46587656286,385746,46587286428,46587642589,356161,46587700174,46587765908,65734,46587714976,46587771821,56845,46587806068,46587874299,68231,46587820961,46587890636,69675,46592131423,46595553240,3421817,46592965113,46595671291,2706178,46596490976,46596526939,35963,46597446297,46597603644,157347,46599301153,46604003405,4702252 | |||||
| 137,46607779555,46628056528,20276973,46607799335,46619477596,19780,11678261,8578932,46607929824,46608127972,198148,46607947243,46608110522,163279,46608172697,46608250046,77349,46608187520,46608244385,56865,46608280409,46608346296,65887,46608295063,46608361998,66935,46612602618,46615739329,3136711,46613436910,46615886554,2449644,46616678871,46616716897,38026,46617633150,46617747206,114056,46619488462,46624283832,4795370 | |||||
| 138,46628056528,46648681169,20624641,46628076483,46640103676,19955,12027193,8577493,46628205236,46628439664,234428,46628223133,46628419174,196041,46628483830,46628555457,71627,46628498527,46628561502,62975,46628590912,46628658802,67890,46628605580,46628664872,59292,46632914464,46636374728,3460264,46633748553,46636468701,2720148,46637312432,46637347429,34997,46638264911,46638411374,146463,46640114984,46644909205,4794221 | |||||
| 139,46648681169,46669260625,20579456,46648701353,46660656246,20184,11954893,8604379,46648833910,46649119376,285466,46648852073,46649101304,249231,46649162713,46649228010,65297,46649177036,46649234282,57246,46649268007,46649334540,66533,46649283127,46649350218,67091,46653591816,46656930187,3338371,46654425497,46657205723,2780226,46657868795,46658099650,230855,46658819470,46659165200,345730,46660667037,46665489769,4822732 | |||||
| 140,46669260625,46689757372,20496747,46669280390,46680961727,19765,11681337,8795645,46669405557,46669623316,217759,46669426481,46669603772,177291,46669667579,46669732940,65361,46669682491,46669738876,56385,46669773629,46669842883,69254,46669788481,46669849191,60710,46674100840,46677222802,3121962,46674936133,46677586026,2649893,46678164340,46678469557,305217,46679115878,46679542240,426362,46680972838,46685986391,5013553 | |||||
| 141,46689757372,46710088742,20331370,46689777006,46701397175,19634,11620169,8691567,46689907141,46690125622,218481,46689924746,46690109623,184877,46690171225,46690243680,72455,46690187187,46690238094,50907,46690278377,46690343481,65104,46690293374,46690362851,69477,46694590479,46697660222,3069743,46695425041,46698071002,2645961,46698606657,46698947591,340934,46699558638,46700016808,458170,46701408237,46706314376,4906139 | |||||
| 142,46710088742,46730866841,20778099,46710109740,46721947670,20998,11837930,8919171,46710239259,46710531145,291886,46710256713,46710511531,254818,46710574547,46710647398,72851,46710589162,46710641754,52592,46710680992,46710746667,65675,46710695951,46710765891,69940,46714992301,46718213933,3221632,46715826390,46718788468,2962078,46719158631,46719713465,554834,46720110334,46720770363,660029,46721959132,46727089966,5130834 | |||||
| 143,46730866841,46751316623,20449782,46730886747,46742626940,19906,11740193,8689683,46731015322,46731346786,331464,46731031281,46731327847,296566,46731390468,46731469512,79044,46731405638,46731463956,58318,46731498967,46731564785,65818,46731514029,46731580871,66842,46735822481,46738897695,3075214,46736656692,46739169271,2512579,46739836996,46740035714,198718,46740789605,46741109046,319441,46742638474,46747543939,4905465 | |||||
| 144,46751316623,46772168057,20851434,46751337184,46763428106,20561,12090922,8739951,46751461471,46751880879,419408,46751482284,46751862901,380617,46751925869,46751995944,70075,46751943356,46752013783,70427,46752040241,46752098781,58540,46752055594,46752124172,68578,46756350493,46759696383,3345890,46757184487,46759815416,2630929,46760633860,46760669338,35478,46761588996,46761739830,150834,46763439558,46768390778,4951220 | |||||
| 145,46772168057,46792380861,20212804,46772188068,46783729783,20011,11541715,8651078,46772317216,46772455413,138197,46772337048,46772438695,101647,46772498912,46772564663,65751,46772513745,46772570591,56846,46772605458,46772677929,72471,46772620550,46772672462,51912,46776928491,46780005228,3076737,46777761930,46780201926,2439996,46780943395,46781070014,126619,46781896438,46782099774,203336,46783741069,46788608440,4867371 | |||||
| 146,46792380861,46812824032,20443171,46792400470,46804095858,19609,11695388,8728174,46792531168,46792790292,259124,46792548521,46792774570,226049,46792835863,46792907574,71711,46792851547,46792902116,50569,46792942462,46793009322,66860,46792957499,46793025889,68390,46797266167,46800364350,3098183,46798099857,46800785514,2685657,46801305334,46801682659,377325,46802260496,46802751456,490960,46804106959,46809052328,4945369 | |||||
| 147,46812824032,46833306258,20482226,46812845912,46824702557,21880,11856645,8603701,46812974115,46813323815,349700,46812989986,46813305038,315052,46813367595,46813439384,71789,46813382515,46813445584,63069,46813475209,46813541240,66031,46813490077,46813557265,67188,46817797743,46820972985,3175242,46818632278,46821207963,2575685,46821912162,46822052353,140191,46822865683,46823114308,248625,46824713844,46829531288,4817444 | |||||
| 148,46833306258,46853875337,20569079,46833326697,46845144882,20439,11818185,8730455,46833457773,46833783648,325875,46833473764,46833764950,291186,46833826773,46833896588,69815,46833844978,46833913276,68298,46833938328,46834003979,65651,46833953121,46834019601,66480,46838261189,46841408722,3147533,46839095537,46841775010,2679473,46842349168,46842665621,316453,46843304118,46843715774,411656,46845156230,46850101688,4945458 | |||||
| 149,46853875337,46874126127,20250790,46853895627,46865534453,20290,11638826,8591674,46854025800,46854302977,277177,46854044111,46854283901,239790,46854346864,46854413497,66633,46854361903,46854419365,57462,46854454322,46854518744,64422,46854469232,46854535308,66076,46858775882,46861794563,3018681,46859609873,46862063701,2453828,46862738052,46862887586,149534,46863692864,46863926500,233636,46865545525,46870353324,4807799 | |||||
| 150,46874126127,46894683602,20557475,46874146155,46885983841,20028,11837686,8699761,46874272397,46874570108,297711,46874287969,46874547282,259313,46874613909,46874678182,64273,46874628478,46874695197,66719,46874719628,46874785667,66039,46874734832,46874801933,67101,46879043808,46882258742,3214934,46879877614,46882473884,2596270,46883198269,46883336729,138460,46884150479,46884401973,251494,46885995016,46890913966,4918950 | |||||
| 151,46894683602,46915300765,20617163,46894704363,46906651488,20761,11947125,8649277,46894836716,46895140133,303417,46894854580,46895120197,265617,46895183256,46895249580,66324,46895198271,46895255510,57239,46895290642,46895357440,66798,46895305653,46895373544,67891,46899614831,46902919819,3304988,46900449460,46903108212,2658752,46903859126,46903969214,110088,46904811769,46905038974,227205,46906662403,46911530356,4867953 | |||||
| 152,46915300765,46936128649,20827884,46915321681,46927362480,20916,12040799,8766169,46915453364,46915897761,444397,46915469806,46915879038,409232,46915940711,46916012881,72170,46915956127,46916007213,51086,46916047566,46916113117,65551,46916062587,46916133211,70624,46920359793,46923636428,3276635,46921194076,46924128782,2934706,46924574851,46925072768,497917,46925528994,46926101902,572908,46927373479,46932357874,4984395 | |||||
| 153,46936128649,46957219927,21091278,46936148648,46948504912,19999,12356264,8715015,46936274128,46937191693,917565,46936297833,46937050992,753159,46937238408,46937343577,105169,46937255934,46937361800,105866,46937389842,46937467313,77471,46937407421,46937485288,77867,46941727058,46944772106,3045048,46942561038,46945136560,2575522,46945713387,46946000754,287367,46946668143,46947081427,413284,46948516020,46953441648,4925628 | |||||
| 154,46957219927,46977586767,20366840,46957241190,46968862579,21263,11621389,8724188,46957366720,46957579704,212984,46957387883,46957560681,172798,46957623442,46957695606,72164,46957638761,46957701654,62893,46957732051,46957797478,65427,46957747199,46957813861,66662,46962054014,46965123173,3069159,46962887948,46965405677,2517729,46966065423,46966246052,180629,46967019174,46967293485,274311,46968873954,46973814303,4940349 | |||||
| 155,46977586767,46997872392,20285625,46977607066,46989344531,20299,11737465,8527861,46977732056,46978043252,311196,46977752459,46978027091,274632,46978086760,46978160821,74061,46978102143,46978155229,53086,46978195356,46978260687,65331,46978210202,46978279857,69655,46982506763,46985614097,3107334,46983341883,46985758463,2416580,46986552228,46986601675,49447,46987504391,46987630588,126197,46989355517,46994099674,4744157 | |||||
| 156,46997872392,47018323454,20451062,46997891935,47009708942,19543,11817007,8614512,46998020914,46998267412,246498,46998038723,46998245094,206371,46998311386,46998377846,66460,46998326073,46998393832,67759,46998418981,46998483365,64384,46998434284,46998503355,69071,47002730625,47005971031,3240406,47003564702,47006179298,2614596,47006911487,47007028070,116583,47007864805,47008092461,227656,47009719974,47014549365,4829391 | |||||
| 157,47018323454,47038875504,20552050,47018343748,47030090354,20294,11746606,8785150,47018468296,47018778195,309899,47018488942,47018759191,270249,47018821410,47018890844,69434,47018839460,47018896870,57410,47018931592,47018997512,65920,47018946767,47019013393,66626,47023253611,47026355970,3102359,47024087652,47026659476,2571824,47027295786,47027535386,239600,47028249472,47028607492,358020,47030101636,47035104115,5002479 | |||||
| 158,47038875504,47059242882,20367378,47038896114,47050585447,20610,11689333,8657435,47039025789,47039315636,289847,47039042121,47039296961,254840,47039359224,47039424690,65466,47039374482,47039430653,56171,47039465074,47039529136,64062,47039480108,47039550329,70221,47043777073,47046855184,3078111,47044611882,47047210693,2598811,47047793544,47048168707,375163,47048744246,47049202169,457923,47050596777,47055468987,4872210 | |||||
| 159,47059242882,47079764065,20521183,47059262921,47071178451,20039,11915530,8585614,47059387283,47059840250,452967,47059408253,47059819808,411555,47059884732,47059956918,72186,47059899827,47059951551,51724,47059991805,47060059614,67809,47060007139,47060075189,68050,47064315473,47067448667,3133194,47065149543,47067719021,2569478,47068388113,47068562570,174457,47069340935,47069634488,293553,47071189302,47075993075,4803773 | |||||
| 160,47079764065,47100613340,20849275,47079784681,47091593083,20616,11808402,9020257,47079914951,47080268686,353735,47079933229,47080253059,319830,47080311670,47080391434,79764,47080326760,47080385720,58960,47080421064,47080486293,65229,47080436175,47080506362,70187,47084733323,47087869810,3136487,47085567366,47088307809,2740443,47088806426,47089210762,404336,47089758742,47090252348,493606,47091604306,47096840507,5236201 | |||||
| 161,47100613340,47120865523,20252183,47100633904,47112232408,20564,11598504,8633115,47100764334,47100911829,147495,47100782310,47100892160,109850,47100955012,47101023257,68245,47100969853,47101029513,59660,47101062895,47101128199,65304,47101077666,47101149230,71564,47105375031,47108500715,3125684,47106209035,47108762699,2553664,47109441272,47109621500,180228,47110395287,47110703126,307839,47112243512,47117095225,4851713 | |||||
| 162,47120865523,47141540179,20674656,47120885520,47133089454,19997,12203934,8450725,47121015874,47121270341,254467,47121032396,47121251447,219051,47121313830,47121379893,66063,47121328883,47121386022,57139,47121420677,47121487150,66473,47121436286,47121502975,66689,47125743329,47129362439,3619110,47126577429,47129444511,2867082,47130299304,47130334288,34984,47131252575,47131365412,112837,47133100556,47137768329,4667773 | |||||
| 163,47141540179,47162374776,20834597,47141560547,47153529109,20368,11968562,8845667,47141689854,47141855416,165562,47141707535,47141834992,127457,47141900458,47141971151,70693,47141914934,47141965604,50670,47142006611,47142073364,66753,47142021515,47142093582,72067,47146320006,47149789811,3469805,47147154049,47150068486,2914437,47150732631,47150971285,238654,47151684343,47152036136,351793,47153540515,47158603795,5063280 | |||||
| 164,47162374776,47182733996,20359220,47162394713,47174054079,19937,11659366,8679917,47162519009,47162752401,233392,47162540325,47162734111,193786,47162796660,47162865630,68970,47162811810,47162871742,59932,47162906070,47162978147,72077,47162921499,47162972497,50998,47167228352,47170324426,3096074,47168062617,47170569346,2506729,47171266676,47171402906,136230,47172221314,47172464214,242900,47174065452,47178961081,4895629 | |||||
| 165,47182733996,47203221135,20487139,47182753991,47194435546,19995,11681555,8785589,47182883297,47183113255,229958,47182900588,47183097116,196528,47183156412,47183228543,72131,47183171583,47183223103,51520,47183264038,47183329155,65117,47183278665,47183348964,70299,47187575170,47190706992,3131822,47188409481,47191024255,2614774,47191647291,47191877794,230503,47192598965,47192950544,351579,47194446671,47199448727,5002056 | |||||
| 166,47203221135,47223695774,20474639,47203242172,47214949823,21037,11707651,8745951,47203372247,47203553792,181545,47203389139,47203535644,146505,47203597147,47203664667,67520,47203612183,47203670632,58449,47203705140,47203771784,66644,47203719617,47203788176,68559,47208029261,47211218761,3189500,47208862933,47211373381,2510448,47212159127,47212228420,69293,47213114103,47213263849,149746,47214960984,47219920018,4959034 | |||||
| 167,47223695774,47243976724,20280950,47223715928,47235260429,20154,11544501,8716295,47223847834,47223985136,137302,47223865827,47223965449,99622,47224029227,47224097240,68013,47224045666,47224103080,57414,47224138025,47224204577,66552,47224152839,47224220636,67797,47228460561,47231522080,3061519,47229295187,47231804385,2509198,47232464180,47232663641,199461,47233419785,47233697432,277647,47235271575,47240206825,4935250 | |||||
| 168,47243976724,47264518419,20541695,47243997147,47255911613,20423,11914466,8606806,47244126850,47244337655,210805,47244144509,47244319639,175130,47244380673,47244453177,72504,47244395710,47244447550,51840,47244487261,47244553683,66422,47244502284,47244569563,67279,47248810214,47252170137,3359923,47249644322,47252276113,2631791,47253111538,47253150054,38516,47254065755,47254219013,153258,47255923682,47260744024,4820342 | |||||
| 169,47264518419,47284935311,20416892,47264539965,47276381089,21546,11841124,8554222,47264670507,47264924329,253822,47264688083,47264904841,216758,47264967982,47265034424,66442,47264982828,47265050683,67855,47265075730,47265141803,66073,47265090485,47265162316,71831,47269388338,47272653314,3264976,47270223075,47272847750,2624675,47273591817,47273678089,86272,47274544987,47274734432,189445,47276392472,47281164556,4772084 | |||||
| 170,47284935311,47305417326,20482015,47284955405,47296546515,20094,11591110,8870811,47285080056,47285293578,213522,47285101809,47285273940,172131,47285338998,47285414579,75581,47285354268,47285408644,54376,47285451251,47285518934,67683,47285467738,47285536786,69048,47289778805,47292833023,3054218,47290612729,47293222980,2610251,47293772168,47294110567,338399,47294724674,47295161293,436619,47296557867,47301641853,5083986 | |||||
| 171,47305417326,47325864313,20446987,47305437933,47317072422,20607,11634489,8791891,47305568773,47305810692,241919,47305584720,47305797377,212657,47305854093,47305925475,71382,47305869538,47305919977,50439,47305961462,47306028726,67264,47305976885,47306045316,68431,47310284960,47313344066,3059106,47311119240,47313623684,2504444,47314283303,47314466286,182983,47315236625,47315502817,266192,47317083595,47322088990,5005395 | |||||
| 172,47325864313,47346585436,20721123,47325884206,47337950597,19893,12066391,8634839,47326014096,47326351128,337032,47326032603,47326333881,301278,47326395540,47326461398,65858,47326410411,47326477936,67525,47326502479,47326575956,73477,47326517142,47326590983,73841,47330832939,47334219278,3386339,47331665345,47334325691,2660346,47335155548,47335189380,33832,47336107849,47336269840,161991,47337961931,47342814533,4852602 | |||||
| 173,47346585436,47366959553,20374117,47346605526,47358361757,20090,11756231,8597796,47346735903,47346970710,234807,47346754359,47346955343,200984,47347014433,47347081522,67089,47347029863,47347087303,57440,47347122246,47347189705,67459,47347138365,47347205785,67420,47351448462,47354620377,3171915,47352282385,47354891244,2608859,47355564136,47355765282,201146,47356516362,47356836800,320438,47358372887,47363186755,4813868 | |||||
| 174,47366959553,47387260228,20300675,47366979926,47378724451,20373,11744525,8535777,47367109412,47367401370,291958,47367127597,47367384856,257259,47367444911,47367517260,72349,47367459738,47367511807,52069,47367552837,47367618719,65882,47367568161,47367635609,67448,47371877467,47374989790,3112323,47372711537,47375237132,2525595,47375930030,47376078923,148893,47376882964,47377111765,228801,47378735549,47383491663,4756114 | |||||
| 175,47387260228,47407879178,20618950,47387280353,47399463438,20125,12183085,8415740,47387409919,47388073824,663905,47387431516,47387928499,496983,47388123057,47388222745,99688,47388140445,47388240077,99632,47388266491,47388343312,76821,47388284938,47388360961,76023,47392603850,47395723554,3119704,47393438068,47395937657,2499589,47396664584,47396782966,118382,47397620635,47397806917,186282,47399474344,47404107957,4633613 | |||||
| 176,47407879178,47428572565,20693387,47407898306,47419759403,19128,11861097,8813162,47408023576,47408446704,423128,47408044889,47408424084,379195,47408490225,47408555705,65480,47408505160,47408562001,56841,47408595867,47408663710,67843,47408611047,47408669364,58317,47412919691,47416020087,3100396,47413753455,47416468699,2715244,47416961235,47417363729,402494,47417915737,47418417983,502246,47419771098,47424799485,5028387 | |||||
| 177,47428572565,47449034746,20462181,47428592557,47440381059,19992,11788502,8653687,47428717709,47428998488,280779,47428739003,47428978908,239905,47429042288,47429110570,68282,47429057401,47429116662,59261,47429150778,47429217696,66918,47429166137,47429234603,68466,47433475398,47436640334,3164936,47434309518,47436777854,2468336,47437583157,47437618342,35185,47438536851,47438679775,142924,47440392458,47445260763,4868305 | |||||
| 178,47449034746,47469700152,20665406,47449055594,47460790185,20848,11734591,8909967,47449181374,47449355384,174010,47449202370,47449334870,132500,47449400483,47449473949,73466,47449416328,47449468410,52082,47449509840,47449576715,66875,47449525474,47449592951,67477,47453835621,47457064920,3229299,47454669049,47457606044,2936995,47458003822,47458524175,520353,47458956222,47459563930,607708,47460801443,47465928203,5126760 | |||||
| 179,47469700152,47490168154,20468002,47469720627,47481469245,20475,11748618,8698909,47469846006,47470107661,261655,47469867400,47470088828,221428,47470151847,47470222972,71125,47470167224,47470217417,50193,47470258499,47470317028,58529,47470273701,47470344514,70813,47474571124,47477739240,3168116,47475405519,47477875072,2469553,47478677217,47478730713,53496,47479631346,47479778868,147522,47481480634,47486398204,4917570 | |||||
| 180,47490168154,47510586586,20418432,47490188616,47501828559,20462,11639943,8758027,47490318242,47490457162,138920,47490336134,47490441083,104949,47490501163,47490567956,66793,47490516118,47490573883,57765,47490608730,47490673844,65114,47490624087,47490694317,70230,47494920685,47498096493,3175808,47495754354,47498372793,2618439,47499035979,47499241888,205909,47499989380,47500298144,308764,47501840832,47506814997,4974165 | |||||
| 181,47510586586,47530995864,20409278,47510606477,47522256286,19891,11649809,8739578,47510736411,47510878267,141856,47510753701,47510860924,107223,47510923090,47510990280,67190,47510939260,47510996008,56748,47511031155,47511096059,64904,47511046204,47511112213,66009,47515354352,47518521467,3167115,47516188154,47518890996,2702842,47519458453,47519764186,305733,47520413980,47520824338,410358,47522267462,47527217908,4950446 | |||||
| 182,47530995864,47551428290,20432426,47531016392,47542708200,20528,11691808,8720090,47531141221,47531376597,235376,47531162337,47531355585,193248,47531420093,47531485916,65823,47531435452,47531491743,56291,47531526601,47531600337,73736,47531542292,47531594884,52592,47535850741,47538982091,3131350,47536684600,47539382305,2697705,47539919131,47540308313,389182,47540873382,47541339642,466260,47542719047,47547654164,4935117 | |||||
| 183,47551428290,47571940212,20511922,47551448918,47563142244,20628,11693326,8797968,47551574242,47551820072,245830,47551595439,47551802594,207155,47551867444,47551939140,71696,47551882834,47551933542,50708,47551974788,47552039621,64833,47551989967,47552055734,65767,47556297048,47559409749,3112701,47557131207,47559910258,2779051,47560350391,47560806649,456258,47561305491,47561855168,549677,47563153224,47568166027,5012803 | |||||
| 184,47571940212,47592346464,20406252,47571960557,47583761251,20345,11800694,8585213,47572090753,47572447535,356782,47572108074,47572430421,322347,47572490628,47572558777,68149,47572505308,47572564793,59485,47572598658,47572665817,67159,47572613729,47572681512,67783,47576921665,47580035195,3113530,47577755871,47580241595,2485724,47580973688,47581081772,108084,47581928747,47582113365,184618,47583772273,47588573545,4801272 | |||||
| 185,47592346464,47612985396,20638932,47592366533,47604179569,20069,11813036,8805827,47592496015,47592809887,313872,47592513583,47592789232,275649,47592853391,47592921134,67743,47592868928,47592926898,57970,47592962729,47593034228,71499,47592977714,47593028513,50799,47597286289,47600448475,3162186,47598120805,47600791729,2670924,47601388946,47601685855,296909,47602344169,47602747175,403006,47604190784,47609213821,5023037 | |||||
| 186,47612985396,47633246077,20260681,47613005825,47624665240,20429,11659415,8580837,47613131197,47613269923,138726,47613151994,47613251435,99441,47613313648,47613380598,66950,47613328593,47613386530,57937,47613420717,47613486822,66105,47613436018,47613503371,67353,47617743852,47620936940,3193088,47618577670,47621075599,2497929,47621875874,47621910083,34209,47622827948,47622936913,108965,47624676511,47629471667,4795156 | |||||
| 187,47633246077,47653699787,20453710,47633265859,47644929839,19782,11663980,8769948,47633390544,47633649571,259027,47633411405,47633628598,217193,47633694168,47633760105,65937,47633709340,47633766142,56802,47633800980,47633868817,67837,47633816024,47633889621,73597,47638115567,47641201306,3085739,47638949826,47641457418,2507592,47642141590,47642285237,143647,47643094467,47643313434,218967,47644941058,47649923987,4982929 | |||||
| 188,47653699787,47674006278,20306491,47653720602,47665266885,20815,11546283,8739393,47653846744,47653989466,142722,47653867420,47653969711,102291,47654033726,47654105876,72150,47654049189,47654100320,51131,47654141107,47654199058,57951,47654155978,47654224065,68087,47658451259,47661525503,3074244,47659286119,47661843891,2557772,47662469546,47662676110,206564,47663425167,47663733465,308298,47665278452,47670232516,4954064 | |||||
| 189,47674006278,47694609156,20602878,47674026341,47685641392,20063,11615051,8967764,47674156728,47674325137,168409,47674174654,47674306445,131791,47674370846,47674428510,57664,47674386188,47674451129,64941,47674475785,47674550429,74644,47674490734,47674544927,54193,47678799810,47681904009,3104199,47679634557,47682287135,2652578,47682843989,47683155848,311859,47683799311,47684208062,408751,47685652570,47690837490,5184920 | |||||
| 190,47694609156,47714992238,20383082,47694629574,47706131520,20418,11501946,8860718,47694759541,47694898587,139046,47694777562,47694882029,104467,47694943302,47695012399,69097,47694958738,47695018554,59816,47695055176,47695116485,61309,47695071244,47695142493,71249,47699370252,47702393277,3023025,47700204868,47702669788,2464920,47703335716,47703524369,188653,47704293084,47704558109,265025,47706142816,47711219621,5076805 | |||||
| 191,47714992238,47735398001,20405763,47715012937,47726681577,20699,11668640,8716424,47715144077,47715381708,237631,47715161490,47715365633,204143,47715425387,47715491813,66426,47715441333,47715497950,56617,47715532885,47715604603,71718,47715548085,47715599347,51262,47719857087,47722945325,3088238,47720690467,47723202710,2512243,47723886784,47724039915,153131,47724840605,47725076696,236091,47726692513,47731623135,4930622 | |||||
| 192,47735398001,47755911435,20513434,47735419133,47747185432,21132,11766299,8726003,47735549444,47735920184,370740,47735566414,47735900959,334545,47735965133,47736031618,66485,47735980038,47736037815,57777,47736072543,47736138878,66335,47736087609,47736159311,71702,47740385506,47743443918,3058412,47741219375,47743802468,2583093,47744389085,47744660375,271290,47745343509,47745735400,391891,47747196877,47752134691,4937814 | |||||
| 193,47755911435,47776512435,20601000,47755931696,47767975113,20261,12043417,8537322,47756056489,47756342001,285512,47756078006,47756323949,245943,47756387410,47756456850,69440,47756403079,47756463063,59984,47756498943,47756568818,69875,47756514346,47756574792,60446,47760825081,47764246691,3421610,47761658706,47764342506,2683800,47765184452,47765220673,36221,47766137041,47766270742,133701,47767986401,47772739720,4753319 | |||||
| 194,47776512435,47797226193,20713758,47776532679,47788252556,20244,11719877,8973637,47776656964,47776858577,201613,47776678446,47776840128,161682,47776902901,47776970030,67129,47776917803,47776989502,71699,47777005967,47777072527,66560,47777020832,47777093763,72931,47781317506,47784514730,3197224,47782151848,47785015179,2863331,47785455949,47785919545,463596,47786409745,47786952977,543232,47788263598,47793453664,5190066 | |||||
| 195,47797226193,47817593671,20367478,47797246560,47808982551,20367,11735991,8611120,47797371647,47797513567,141920,47797392580,47797492016,99436,47797558068,47797631675,73607,47797574663,47797625453,50790,47797666816,47797738192,71376,47797682022,47797732831,50809,47801990458,47805244881,3254423,47802824327,47805443927,2619600,47806184164,47806302845,118681,47807138727,47807347583,208856,47808993499,47813816893,4823394 | |||||
| 196,47817593671,47837899278,20305607,47817614703,47829171165,21032,11556462,8728113,47817744267,47817962097,217830,47817761620,47817946179,184559,47818005852,47818073200,67348,47818020808,47818089490,68682,47818114464,47818179656,65192,47818129234,47818203036,73802,47822425386,47825437637,3012251,47823259767,47825788807,2529040,47826376806,47826647495,270689,47827333095,47827727835,394740,47829182172,47834128729,4946557 | |||||
| 197,47837899278,47858965492,21066214,47837919000,47850150367,19722,12231367,8815125,47838046040,47838705150,659110,47838064984,47838619743,554759,47838752952,47838850441,97489,47838769604,47838868944,99340,47838896325,47838971373,75048,47838913243,47838989667,76424,47843231652,47846411435,3179783,47844065594,47846912121,2846527,47847352899,47847825348,472449,47848308287,47848854258,545971,47850161907,47855191397,5029490 | |||||
| 198,47858965492,47879816549,20851057,47858985323,47871144516,19831,12159193,8672033,47859111223,47859586531,475308,47859133210,47859570275,437065,47859629785,47859707534,77749,47859645056,47859702247,57191,47859737524,47859803721,66197,47859752500,47859819968,67468,47864060097,47867413398,3353301,47864894975,47867759977,2865002,47868352538,47868679095,326557,47869307516,47869716230,408714,47871155515,47876040848,4885333 | |||||
| 199,47879816549,47900146971,20330422,47879837553,47891621750,21004,11784197,8525221,47879963086,47880294333,331247,47879983593,47880277817,294224,47880337706,47880402786,65080,47880353266,47880408762,55496,47880443219,47880517336,74117,47880457952,47880511803,53851,47884767288,47887889403,3122115,47885600738,47888150390,2549652,47888828666,47888992538,163872,47889779933,47890059662,279729,47891633026,47896374248,4741222 | |||||
| 200,47900146971,47920813118,20666147,47900166770,47911987765,19799,11820995,8825353,47900296906,47900646666,349760,47900314984,47900625210,310226,47900689844,47900755960,66116,47900705137,47900762008,56871,47900797051,47900865111,68060,47900812091,47900881563,69472,47905122048,47908253995,3131947,47905956451,47908608919,2652468,47909192654,47909475542,282888,47910146822,47910549887,403065,47911999126,47917041061,5041935 | |||||
| 201,47920813118,47941598188,20785070,47920835457,47932848746,22339,12013289,8749442,47920965088,47921131132,166044,47920983173,47921110708,127535,47921175139,47921242114,66975,47921191018,47921248191,57173,47921282638,47921343461,60823,47921297471,47921360437,62966,47925601046,47929128622,3527576,47926435681,47929493542,3057861,47930063601,47930423787,360186,47931018638,47931467270,448632,47932859880,47937823155,4963275 | |||||
| 202,47941598188,47961945827,20347639,47941617813,47953293133,19625,11675320,8652694,47941748544,47942067688,319144,47941766289,47942049056,282767,47942111419,47942178753,67334,47942126737,47942184759,58022,47942219554,47942287114,67560,47942235005,47942303508,68503,47946544666,47949561594,3016928,47947378518,47949969044,2590526,47950506099,47950857082,350983,47951459964,47951913532,453568,47953304468,47958175301,4870833 | |||||
| 203,47961945827,47982240906,20295079,47961965791,47973762735,19964,11796944,8478171,47962090291,47962434051,343760,47962110851,47962414284,303433,47962477875,47962551465,73590,47962492674,47962545893,53219,47962586128,47962652736,66608,47962600953,47962668816,67863,47966911762,47970032184,3120422,47967745309,47970231678,2486369,47970972630,47971052972,80342,47971926257,47972096332,170075,47973773737,47978468165,4694428 | |||||
| 204,47982240906,48003381121,21140215,47982261084,47994150568,20178,11889484,9230553,47982385747,47982896900,511153,47982406490,47982876972,470482,47982940581,47983007941,67360,47982955773,47983023847,68074,47983048935,47983115721,66786,47983063547,47983132151,68604,47987372786,47990422432,3049646,47988207440,47991008699,2801259,47991366144,47991940453,574309,47992322114,47992969627,647513,47994161717,47999605680,5443963 | |||||
| 205,48003381121,48023966807,20585686,48003402750,48015171599,21629,11768849,8795208,48003532737,48003670992,138255,48003549878,48003650010,100132,48003714443,48003780300,65857,48003729274,48003786231,56957,48003820950,48003889828,68878,48003839277,48003906846,67569,48008147122,48011440064,3292942,48008981217,48011859787,2878570,48012378001,48012755240,377239,48013332945,48013786332,453387,48015182629,48020195619,5012990 | |||||
| 206,48023966807,48044609567,20642760,48023986981,48036017665,20174,12030684,8591902,48024115061,48024486551,371490,48024130931,48024465049,334118,48024530367,48024596295,65928,48024545504,48024601983,56479,48024637300,48024704627,67327,48024652533,48024720388,67855,48028960055,48032278779,3318724,48029794243,48032391010,2596767,48033216717,48033252616,35899,48034171228,48034325182,153954,48036028986,48040839972,4810986 | |||||
| 207,48044609567,48065704759,21095192,48044630447,48056705051,20880,12074604,8999708,48044760757,48045081760,321003,48044777735,48045064613,286878,48045125216,48045198411,73195,48045141073,48045204240,63167,48045234748,48045301232,66484,48045249867,48045316961,67094,48049557604,48052976231,3418627,48050392472,48053465930,3073458,48053915643,48054390343,474700,48054868387,48055430027,561640,48056716427,48061930504,5214077 | |||||
| 208,48065704759,48086019276,20314517,48065725369,48077538069,20610,11812700,8481207,48065850682,48066090178,239496,48065871526,48066069771,198245,48066134392,48066199579,65187,48066149379,48066205329,55950,48066240527,48066307318,66791,48066255622,48066323509,67887,48070564285,48073803324,3239039,48071398959,48073936936,2537977,48074742173,48074776081,33908,48075696162,48075833571,137409,48077549220,48082246187,4696967 | |||||
| 209,48086019276,48106582772,20563496,48086040212,48097690723,20936,11650511,8892049,48086169640,48086469559,299919,48086187034,48086450146,263112,48086513123,48086578589,65466,48086528060,48086584684,56624,48086619505,48086693240,73735,48086635104,48086687488,52384,48090943325,48093952273,3008948,48091777371,48094307759,2530388,48094897866,48095182417,284551,48095849858,48096245018,395160,48097701684,48102810476,5108792 | |||||
| 210,48106582772,48127235901,20653129,48106602857,48118499738,20085,11896881,8736163,48106731959,48107127730,395771,48106747871,48107113253,365382,48107171999,48107250685,78686,48107187030,48107244923,57893,48107280103,48107345745,65642,48107295098,48107362388,67290,48111603018,48114774113,3171095,48112437524,48115026754,2589230,48115713021,48115880782,167761,48116666967,48116923756,256789,48118511033,48123462026,4950993 | |||||
| 211,48127235901,48147410406,20174505,48127255809,48138935892,19908,11680083,8474514,48127384712,48127598631,213919,48127401646,48127579866,178220,48127642142,48127708047,65905,48127657355,48127713673,56318,48127748253,48127815192,66939,48127763449,48127833939,70490,48132074058,48135200635,3126577,48132907850,48135356059,2448209,48136139864,48136212918,73054,48137091186,48137245405,154219,48138947011,48143635259,4688248 | |||||
| 212,48147410406,48168181858,20771452,48147430930,48159637204,20524,12206274,8544654,48147559793,48147809186,249393,48147577602,48147791541,213939,48147853430,48147924894,71464,48147868666,48147919488,50822,48147960680,48148021829,61149,48147975764,48148045328,69564,48152272902,48155896483,3623581,48153107254,48155967922,2860668,48156833910,48156868537,34627,48157787966,48157901551,113585,48159648323,48164407515,4759192 | |||||
| 213,48168181858,48188641319,20459461,48168201932,48180007948,20074,11806016,8633371,48168332616,48168709548,376932,48168350282,48168690567,340285,48168753382,48168824641,71259,48168768445,48168818935,50490,48168862438,48168935130,72692,48168877727,48168928997,51270,48173185806,48176264268,3078462,48174020316,48176604369,2584053,48177206055,48177476846,270791,48178160736,48178552548,391812,48180019263,48184869326,4850063 | |||||
| 214,48188641319,48209187302,20545983,48188661184,48200361663,19865,11700479,8825639,48188790696,48189106038,315342,48188808379,48189087552,279173,48189150149,48189221688,71539,48189165019,48189216122,51103,48189257571,48189321715,64144,48189272833,48189338037,65204,48193578930,48196624760,3045830,48194413599,48196979263,2565664,48197567153,48197831055,263902,48198518586,48198908280,389694,48200372944,48205416024,5043080 | |||||
| 215,48209187302,48229431172,20243870,48209207591,48220766818,20289,11559227,8664354,48209340256,48209473933,133677,48209356964,48209455719,98755,48209517399,48209589829,72430,48209533520,48209584385,50865,48209625080,48209697583,72503,48209641212,48209692030,50818,48213948666,48217024020,3075354,48214782682,48217301936,2519254,48217963841,48218170318,206477,48218917840,48219237956,320116,48220778135,48225661304,4883169 | |||||
| 216,48229431172,48249833842,20402670,48229451550,48241333644,20378,11882094,8500198,48229581228,48229890241,309013,48229598735,48229871353,272618,48229934081,48229999439,65358,48229949081,48230005469,56388,48230040783,48230106207,65424,48230055575,48230126346,70771,48234353576,48237601566,3247990,48235187989,48237758395,2570406,48238541930,48238576148,34218,48239493998,48239644796,150798,48241344778,48246062782,4718004 | |||||
| 217,48249833842,48270665717,20831875,48249853852,48261959606,20010,12105754,8706111,48249983394,48250254984,271590,48250001379,48250234556,233177,48250299672,48250370417,70745,48250314436,48250365010,50574,48250405323,48250472469,67146,48250420235,48250488837,68602,48254730715,48258235224,3504509,48255564679,48258586060,3021381,48259174553,48259506123,331570,48260128394,48260554343,425949,48261970672,48266892557,4921885 | |||||
| 218,48270665717,48291207556,20541839,48270685467,48282596311,19750,11910844,8611245,48270814945,48271287626,472681,48270834500,48271269222,434722,48271332058,48271397612,65554,48271347127,48271403539,56412,48271438862,48271502987,64125,48271454301,48271523119,68818,48275749588,48278866730,3117142,48276583108,48279056743,2473635,48279806681,48279890696,84015,48280757607,48280929025,171418,48282607461,48287436843,4829382 | |||||
| 219,48291207556,48312118631,20911075,48291227458,48303283975,19902,12056517,8834656,48291352617,48291936367,583750,48291374617,48291781049,406432,48291983298,48292085499,102201,48292000504,48292102082,101578,48292130130,48292207244,77114,48292147446,48292224398,76952,48296467013,48299542822,3075809,48297300611,48299839615,2539004,48300483642,48300722872,239230,48301438744,48301791728,352984,48303294910,48308345451,5050541 | |||||
| 220,48312118631,48332316768,20198137,48312138816,48323684554,20185,11545738,8632214,48312265442,48312452168,186726,48312287046,48312432126,145080,48312496720,48312564796,68076,48312511975,48312570498,58523,48312604807,48312663545,58738,48312619774,48312688401,68627,48316915301,48319946470,3031169,48317749414,48320290400,2540986,48320888613,48321150079,261466,48321842210,48322230431,388221,48323695799,48328546058,4850259 | |||||
| 221,48332316768,48352869758,20552990,48332337079,48344407259,20311,12070180,8462499,48332466234,48332856352,390118,48332483688,48332836917,353229,48332900226,48332967132,66906,48332915566,48332983452,67886,48333008221,48333075433,67212,48333022875,48333094906,72031,48337319777,48340677094,3357317,48338154356,48340774546,2620190,48341612802,48341661103,48301,48342566119,48342728823,162704,48344418690,48349100109,4681419 | |||||
| 222,48352869758,48373329685,20459927,48352889998,48364538770,20240,11648772,8790915,48353020079,48353304142,284063,48353036070,48353283295,247225,48353348430,48353414030,65600,48353363330,48353419713,56383,48353454750,48353519709,64959,48353469665,48353539794,70129,48357766314,48360810074,3043760,48358600089,48361062389,2462300,48361752291,48361904294,152003,48362705506,48362930626,225120,48364549814,48369556766,5006952 | |||||
| 223,48373329685,48393513981,20184296,48373349769,48385004538,20084,11654769,8509443,48373479009,48373614866,135857,48373495724,48373596854,101130,48373657681,48373727901,70220,48373672629,48373722658,50029,48373763068,48373833169,70101,48373778209,48373839262,61053,48378089407,48381268905,3179498,48378923298,48381436407,2513109,48382207771,48382274544,66773,48383163101,48383322881,159780,48385015790,48389740116,4724326 | |||||
| 224,48393513981,48413877404,20363423,48393533703,48405294045,19722,11760342,8583359,48393662560,48394011480,348920,48393679890,48393992863,312973,48394054853,48394121585,66732,48394069633,48394138313,68680,48394163081,48394227126,64045,48394177757,48394247045,69288,48398471899,48401552866,3080967,48399306613,48401860927,2554314,48402491988,48402711903,219915,48403447390,48403800297,352907,48405305091,48410104335,4799244 | |||||
| 225,48413877404,48434794690,20917286,48413897001,48425869164,19597,11972163,8925526,48414026781,48414370259,343478,48414044707,48414355235,310528,48414413071,48414479676,66605,48414427718,48414495271,67553,48414519902,48414585177,65275,48414535224,48414608125,72901,48418833089,48422134422,3301333,48419665600,48422675172,3009572,48423069951,48423582238,512287,48424027449,48424631776,604327,48425880234,48431022345,5142111 | |||||
| 226,48434794690,48455353005,20558315,48434814184,48446730408,19494,11916224,8622597,48434944058,48435352793,408735,48434961640,48435335035,373395,48435396890,48435462812,65922,48435411512,48435468943,57431,48435503726,48435576880,73154,48435518847,48435571072,52225,48439826707,48443001435,3174728,48440660542,48443213329,2552787,48443941148,48444068254,127106,48444895472,48445121417,225945,48446741541,48451579398,4837857 | |||||
| 227,48455353005,48475902767,20549762,48455373043,48467067507,20038,11694464,8835260,48455502668,48455704904,202236,48455520659,48455691113,170454,48455748865,48455825705,76840,48455764655,48455819895,55240,48455865548,48455940308,74760,48455882003,48455934646,52643,48460194324,48463334729,3140405,48461028104,48463704211,2676107,48464278828,48464591764,312936,48465231741,48465674042,442301,48467078913,48472129177,5050264 | |||||
| 228,48475902767,48496239729,20336962,48475923319,48487626635,20552,11703316,8613094,48476053922,48476337231,283309,48476071219,48476318005,246786,48476380584,48476452082,71498,48476395867,48476446674,50807,48476486632,48476553161,66529,48476501698,48476568998,67300,48480810423,48483889579,3079156,48481644471,48484180756,2536285,48484828726,48485043431,214705,48485783868,48486124057,340189,48487637761,48492469688,4831927 | |||||
| 229,48496239729,48516904688,20664959,48496260099,48508257664,20370,11997565,8647024,48496390098,48496671068,280970,48496407113,48496652564,245451,48496714798,48496786144,71346,48496730613,48496780693,50080,48496820888,48496887426,66538,48496838695,48496903883,65188,48501145428,48504534358,3388930,48501978800,48504671868,2693068,48505472951,48505507053,34102,48506425623,48506576492,150869,48508269187,48513132221,4863034 | |||||
| 230,48516904688,48537619347,20714659,48516924450,48528788851,19762,11864401,8830496,48517054295,48517407111,352816,48517072141,48517388394,316253,48517450008,48517515357,65349,48517464508,48517531591,67083,48517556367,48517622586,66219,48517571490,48517641190,69700,48521869172,48525053563,3184391,48522703004,48525295627,2592623,48525992275,48526146046,153771,48526945476,48527224066,278590,48528799616,48533846203,5046587 | |||||
| 231,48537619347,48557931778,20312431,48537639274,48549207235,19927,11567961,8724543,48537768757,48537906110,137353,48537786209,48537887264,101055,48537950786,48538016660,65874,48537965875,48538022280,56405,48538057074,48538122477,65403,48538072015,48538139575,67560,48542381845,48545482387,3100542,48543215695,48545739562,2523867,48546422145,48546580651,158506,48547376925,48547634893,257968,48549218547,48554162281,4943734 | |||||
| 232,48557931778,48578308725,20376947,48557951615,48569761524,19837,11809909,8547201,48558076153,48558318462,242309,48558097193,48558298937,201744,48558363396,48558434921,71525,48558378681,48558428846,50165,48558469739,48558535467,65728,48558484531,48558551718,67187,48562792662,48566029664,3237002,48563626223,48566153422,2527199,48566969491,48567004047,34556,48567921799,48568080230,158431,48569772490,48574536880,4764390 | |||||
| 233,48578308725,48599111275,20802550,48578328983,48589928517,20258,11599534,9182758,48578454553,48578644517,189964,48578474927,48578622881,147954,48578687752,48578759225,71473,48578702568,48578753642,51074,48578794060,48578862327,68267,48578809119,48578879151,70032,48583120883,48586197378,3076495,48583955119,48586751449,2796330,48587137857,48587674947,537090,48588092343,48588704719,612376,48589940034,48595340563,5400529 | |||||
| 234,48599111275,48619609831,20498556,48599131812,48610775624,20537,11643812,8834207,48599256158,48599395748,139590,48599276900,48599376554,99654,48599439467,48599510669,71202,48599454301,48599516945,62644,48599547201,48599613723,66522,48599562542,48599633397,70855,48603859126,48607050634,3191508,48604692950,48607390821,2697871,48607987818,48608294117,306299,48608940372,48609344355,403983,48610786768,48615831392,5044624 | |||||
| 235,48619609831,48640199520,20589689,48619630097,48631418743,20266,11788646,8780777,48619759560,48620100316,340756,48619777271,48620081297,304026,48620143426,48620214603,71177,48620158422,48620209182,50760,48620249910,48620314130,64220,48620265042,48620334098,69056,48624561259,48627684094,3122835,48625395680,48628009552,2613872,48628625921,48628866323,240402,48629578591,48629931658,353067,48631430171,48636425433,4995262 | |||||
| 236,48640199520,48660561651,20362131,48640220587,48651825068,21067,11604481,8736583,48640350786,48640491933,141147,48640368616,48640472750,104134,48640535442,48640603459,68017,48640550212,48640609371,59159,48640643671,48640709771,66100,48640658650,48640725721,67071,48644967266,48648086318,3119052,48645801256,48648303866,2502610,48649025258,48649171734,146476,48649980743,48650230607,249864,48651840474,48656786479,4946005 | |||||
| 237,48660561651,48681433645,20871994,48660581706,48672397485,20055,11815779,9036160,48660706403,48661081119,374716,48660727809,48661063358,335549,48661124586,48661198918,74332,48661140291,48661193425,53134,48661234283,48661293287,59004,48661249798,48661318685,68887,48665545006,48668666683,3121677,48666379506,48669178169,2798663,48669605343,48670081210,475867,48670561144,48671115055,553911,48672409059,48677661383,5252324 | |||||
| 238,48681433645,48702214592,20780947,48681455084,48693410312,21439,11955228,8804280,48681586238,48681724520,138282,48681605348,48681706445,101097,48681768436,48681842672,74236,48681783481,48681836855,53374,48681877560,48681944118,66558,48681892506,48681960299,67793,48686200617,48689681337,3480720,48687035152,48689922202,2887050,48690619418,48690810803,191385,48691574107,48691860987,286880,48693421588,48698442416,5020828 | |||||
| 239,48702214592,48722825256,20610664,48702235217,48714026828,20625,11791611,8798428,48702360902,48702697482,336580,48702382524,48702678581,296057,48702740647,48702807636,66989,48702755845,48702823747,67902,48702850599,48702923251,72652,48702865974,48702939834,73860,48707180151,48710300980,3120829,48708014167,48710801524,2787357,48711237906,48711719451,481545,48712191164,48712750887,559723,48714038331,48719052464,5014133 | |||||
| 240,48722825256,48743358616,20533360,48722847933,48734596435,22677,11748502,8762181,48722973152,48723338655,365503,48722993175,48723320706,327531,48723381788,48723448525,66737,48723396665,48723454283,57618,48723488774,48723555700,66926,48723503398,48723571479,68081,48727814213,48730855037,3040824,48728648363,48731192835,2544472,48731794015,48732061618,267603,48732748821,48733140671,391850,48734607652,48739581812,4974160 | |||||
| 241,48743358616,48764421045,21062429,48743378761,48755400905,20145,12022144,9020140,48743504154,48743858818,354664,48743521716,48743810356,288640,48743902932,48743973875,70943,48743918874,48743988948,70074,48744014392,48744084549,70157,48744030899,48744104516,73617,48748331288,48751677728,3346440,48749165271,48752095905,2930634,48752617455,48753000524,383069,48753571049,48754052657,481608,48755412011,48760647228,5235217 | |||||
| 242,48764421045,48784707929,20286884,48764442088,48776079562,21043,11637474,8628367,48764571630,48764789250,217620,48764589125,48764770580,181455,48764836013,48764908113,72100,48764851524,48764902551,51027,48764943387,48765010150,66763,48764959015,48765030332,71317,48769255947,48772351357,3095410,48770090523,48772634385,2543862,48773288187,48773505892,217705,48774241498,48774579299,337801,48776090739,48780931513,4840774 | |||||
| 243,48784707929,48805202327,20494398,48784728367,48796601708,20438,11873341,8600619,48784859048,48785154239,295191,48784876809,48785137067,260258,48785197655,48785264784,67129,48785213131,48785281680,68549,48785306086,48785373421,67335,48785321008,48785389497,68489,48789630279,48792875066,3244787,48790464544,48793136768,2672224,48793813024,48794015411,202387,48794765581,48795085298,319717,48796613179,48801429205,4816026 | |||||
| 244,48805202327,48825843003,20640676,48805222402,48817126702,20075,11904300,8716301,48805347218,48805749338,402120,48805367443,48805732726,365283,48805793670,48805868281,74611,48805808844,48805862668,53824,48805903465,48805963116,59651,48805919141,48805989122,69981,48810216372,48813389270,3172898,48811050463,48813684050,2633587,48814333931,48814531872,197941,48815288443,48815590924,302481,48817138584,48822069028,4930444 | |||||
| 245,48825843003,48846162890,20319887,48825863875,48837624407,20872,11760532,8538483,48825988865,48826154792,165927,48826009818,48826135116,125298,48826198429,48826269591,71162,48826213209,48826264071,50862,48826304588,48826371521,66933,48826319611,48826388292,68681,48830628671,48833887789,3259118,48831463083,48834124692,2661609,48834828662,48834993277,164615,48835785389,48836063358,277969,48837636072,48842392771,4756699 | |||||
| 246,48846162890,48867040415,20877525,48846183228,48857958493,20338,11775265,9081922,48846312572,48846590053,277481,48846331189,48846571361,240172,48846633768,48846701019,67251,48846649309,48846716670,67361,48846741559,48846806693,65134,48846756606,48846827579,70973,48851053559,48854229165,3175606,48851887688,48854689314,2801626,48855170176,48855600145,429969,48856124903,48856628158,503255,48857969498,48863267648,5298150 | |||||
| 247,48867040415,48887528716,20488301,48867060244,48878612144,19829,11551900,8916572,48867185322,48867432318,246996,48867206470,48867414549,208079,48867476190,48867544150,67960,48867491201,48867559758,68557,48867584142,48867654180,70038,48867599245,48867670070,70825,48871910154,48874884105,2973951,48872744286,48875405139,2660853,48875827885,48876298467,470582,48876781859,48877359571,577712,48878623141,48883757069,5133928 | |||||
| 248,48887528716,48908103088,20574372,48887549675,48899353415,20959,11803740,8749673,48887679972,48887922365,242393,48887697675,48887905108,207433,48887966079,48888030330,64251,48887981017,48888049525,68508,48888066169,48888138687,72518,48888080729,48888155013,74284,48892396316,48895614175,3217859,48893230827,48895904022,2673195,48896552637,48896816483,263846,48897505621,48897882900,377279,48899364617,48904331011,4966394 | |||||
| 249,48908103088,48928572739,20469651,48908123171,48919999246,20083,11876075,8573493,48908253702,48908660206,406504,48908271312,48908639607,368295,48908703862,48908770100,66238,48908719023,48908775944,56921,48908810566,48908880898,70332,48908826241,48908896994,70753,48913137654,48916272249,3134595,48913972251,48916491917,2519666,48917209284,48917333270,123986,48918162288,48918407182,244894,48920010360,48924798970,4788610 | |||||
| 250,48928572739,48949312548,20739809,48928592475,48940520274,19736,11927799,8792274,48928721990,48928998770,276780,48928740489,48928982178,241689,48929042500,48929110943,68443,48929057515,48929126779,69264,48929151538,48929217012,65474,48929166269,48929236686,70417,48933463544,48936796042,3332498,48934298003,48937242585,2944582,48937731495,48938165347,433852,48938685288,48939223112,537824,48940531620,48945537932,5006312 | |||||
| 251,48949312548,48970268255,20955707,48949333002,48961745887,20454,12412885,8522368,48949463174,48949880122,416948,48949480253,48949858298,378045,48949923891,48949998374,74483,48949939800,48950004589,64789,48950034451,48950104331,69880,48950049509,48950120704,71195,48954363513,48958017738,3654225,48955197919,48958091993,2894074,48958953514,48958988278,34764,48959906232,48960041957,135725,48961756846,48966497442,4740596 | |||||
| 252,48970268255,48990638069,20369814,48970288028,48982012980,19773,11724952,8625089,48970413666,48970651028,237362,48970435918,48970631383,195465,48970694333,48970759665,65332,48970709830,48970765749,55919,48970800329,48970876778,76449,48970815326,48970871045,55719,48975127438,48978286183,3158745,48975962457,48978532331,2569874,48979225932,48979394441,168509,48980179301,48980463871,284570,48982024267,48986869496,4845229 | |||||
| 253,48990638069,49011071667,20433598,48990658096,49002289143,20027,11631047,8782524,48990788313,48991031999,243686,48990805847,48991014332,208485,48991076434,48991147795,71361,48991091527,48991142200,50673,48991182927,48991247936,65009,48991197994,48991267452,69458,48995500578,48998547781,3047203,48996334967,48998863674,2528707,48999487419,48999726543,239124,49000441958,49000798108,356150,49002300348,49007298528,4998180 | |||||
| 254,49011071667,49031567448,20495781,49011092348,49022967016,20681,11874668,8600432,49011216766,49011570708,353942,49011238120,49011550202,312082,49011614561,49011686608,72047,49011629765,49011680983,51218,49011721482,49011787484,66002,49011736238,49011803161,66923,49016043651,49019238809,3195158,49016878168,49019431641,2553473,49020178547,49020297651,119104,49021130965,49021358400,227435,49022977957,49027796454,4818497 | |||||
| 255,49031567448,49052069705,20502257,49031588474,49043276417,21026,11687943,8793288,49031717992,49031973132,255140,49031735857,49031954780,218923,49032016259,49032089532,73273,49032031473,49032084162,52689,49032124044,49032189543,65499,49032139468,49032209645,70177,49036436199,49039542256,3106057,49037269955,49039750975,2481020,49040483371,49040610894,127523,49041436123,49041652069,215946,49043287309,49048295962,5008653 | |||||
| 256,49052069705,49072404118,20334413,49052091166,49063716812,21461,11625646,8687306,49052217482,49052402235,184753,49052234416,49052380749,146333,49052446115,49052514678,68563,49052461338,49052530897,69559,49052556397,49052621581,65184,49052571239,49052642904,71665,49056868381,49059986382,3118001,49057702168,49060239085,2536917,49060927095,49061077462,150367,49061880200,49062123349,243149,49063727934,49068632851,4904917 | |||||
| 257,49072404118,49092844802,20440684,49072424086,49084117171,19968,11693085,8727631,49072549434,49072840431,290997,49072565634,49072820068,254434,49072884050,49072950447,66397,49072899183,49072956222,57039,49072990612,49073055067,64455,49073005552,49073076387,70835,49077300505,49080384117,3083612,49078134975,49080661110,2526135,49081326568,49081499225,172657,49082279929,49082543033,263104,49084128189,49089070670,4942481 | |||||
| 258,49092844802,49113148212,20303410,49092865264,49104572053,20462,11706789,8576159,49092994528,49093251201,256673,49093012472,49093232361,219889,49093294967,49093366741,71774,49093309660,49093361130,51470,49093401942,49093469003,67061,49093417202,49093484484,67282,49097724283,49100837341,3113058,49098557928,49101107123,2549195,49101777168,49101952407,175239,49102729002,49103020219,291217,49104583281,49109377147,4793866 | |||||
| 259,49113148212,49133633873,20485661,49113168206,49125073788,19994,11905582,8560085,49113293744,49113653954,360210,49113315235,49113635735,320500,49113697670,49113771195,73525,49113712325,49113765938,53613,49113805605,49113875527,69922,49113820977,49113892237,71260,49118133391,49121339620,3206229,49118967565,49121519591,2552026,49122278636,49122358927,80291,49123234338,49123400642,166304,49125084692,49129859412,4774720 | |||||
| 260,49133633873,49154004056,20370183,49133653711,49145459314,19838,11805603,8544742,49133783348,49134069932,286584,49133800637,49134050817,250180,49134113424,49134179374,65950,49134128044,49134185109,57065,49134219977,49134295899,75922,49134235542,49134290689,55147,49138542542,49141732575,3190033,49139376829,49141863481,2486652,49142671257,49142731769,60512,49143625209,49143771457,146248,49145470714,49150228552,4757838 | |||||
| 261,49154004056,49174508259,20504203,49154024645,49165791871,20589,11767226,8716388,49154154922,49154507893,352971,49154172480,49154492497,320017,49154551708,49154618614,66906,49154566731,49154635507,68776,49154660553,49154727327,66774,49154675608,49154746440,70832,49158973044,49162058361,3085317,49159807132,49162365265,2558133,49162997270,49163257256,259986,49163949119,49164332913,383794,49165803504,49170734691,4931187 | |||||
| 262,49174508259,49195162081,20653822,49174527984,49186277047,19725,11749063,8885034,49174656827,49174904934,248107,49174674431,49174884021,209590,49174948587,49175015459,66872,49174963579,49175021311,57732,49175056214,49175122961,66747,49175071494,49175139205,67711,49179382059,49182539484,3157425,49180216602,49182827891,2611289,49183480712,49183702900,222188,49184435247,49184780094,344847,49186288297,49191385297,5097000 | |||||
| 263,49195162081,49215409646,20247565,49195183149,49206767883,21068,11584734,8641763,49195308077,49195444805,136728,49195323774,49195428636,104862,49195488115,49195563551,75436,49195502976,49195557850,54874,49195598886,49195665536,66650,49195614151,49195685554,71403,49199912588,49203031747,3119159,49200745883,49203265569,2519686,49203975122,49204109114,133992,49204929662,49205152163,222501,49206779152,49211641012,4861860 | |||||
| 264,49215409646,49235698889,20289243,49215429717,49227170926,20071,11741209,8527963,49215555085,49215719325,164240,49215571581,49215700012,128431,49215763224,49215840076,76852,49215779008,49215834258,55250,49215875638,49215936603,60965,49215890652,49215957038,66386,49220197756,49223443818,3246062,49221032409,49223674793,2642384,49224382521,49224548160,165639,49225335422,49225601335,265913,49227181883,49231927416,4745533 | |||||
| 265,49235698889,49256305486,20606597,49235718508,49247436999,19619,11718491,8868487,49235849839,49236131447,281608,49235867720,49236110585,242865,49236174296,49236245863,71567,49236189278,49236240311,51033,49236280877,49236347867,66990,49236296080,49236367408,71328,49240593766,49243702607,3108841,49241427789,49244244129,2816340,49244642831,49245138106,495275,49245598506,49246184204,585698,49247448072,49252534987,5086915 | |||||
| 266,49256305486,49276700205,20394719,49256326325,49268189695,20839,11863370,8510510,49256452693,49256789039,336346,49256469204,49256766950,297746,49256835586,49256907698,72112,49256851546,49256902174,50628,49256942540,49257009629,67089,49256957538,49257025702,68164,49261268394,49264460944,3192550,49262102845,49264625260,2522415,49265399935,49265484537,84602,49266351727,49266549613,197886,49268200677,49272925044,4724367 | |||||
| 267,49276700205,49297193770,20493565,49276720504,49288469036,20299,11748532,8724734,49276851064,49277243544,392480,49276868647,49277226419,357772,49277286617,49277360013,73396,49277301228,49277354448,53220,49277394715,49277459805,65090,49277409814,49277480635,70821,49281705492,49284734412,3028920,49282539906,49285063986,2524080,49285677841,49285917124,239283,49286630664,49286996846,366182,49288480047,49293420063,4940016 | |||||
| 268,49297193770,49317759373,20565603,49297213614,49309073879,19844,11860265,8685494,49297339163,49297721761,382598,49297359605,49297703417,343812,49297765688,49297834096,68408,49297781079,49297840088,59009,49297875041,49297943033,67992,49297890458,49297949056,58598,49302200023,49305343011,3142988,49303034731,49305583638,2548907,49306283831,49306419496,135665,49307236416,49307465121,228705,49309084913,49313990898,4905985 | |||||
| 269,49317759373,49338212921,20453548,49317779532,49329477752,20159,11698220,8735169,49317910202,49318113770,203568,49317928006,49318096806,168800,49318159553,49318226050,66497,49318175289,49318232290,57001,49318266874,49318333187,66313,49318281986,49318338924,56938,49322589848,49325741472,3151624,49323424053,49326077490,2653437,49326681578,49326955368,273790,49327633166,49328020760,387594,49329488835,49334439454,4950619 | |||||
| 270,49338212921,49358629201,20416280,49338233110,49350033523,20189,11800413,8595678,49338363122,49338722939,359817,49338380668,49338705148,324480,49338766780,49338840360,73580,49338781831,49338857192,75361,49338882155,49338953479,71324,49338897302,49338969782,72480,49343211342,49346289826,3078484,49344045377,49346569903,2524526,49347232899,49347430832,197933,49348188828,49348502551,313723,49350045144,49354856267,4811123 | |||||
| 271,49358629201,49379088021,20458820,49358649265,49370519206,20064,11869941,8568815,49358773798,49359160176,386378,49358795067,49359139849,344782,49359203659,49359277545,73886,49359218693,49359283498,64805,49359313158,49359369325,56167,49359328069,49359399291,71222,49363625365,49366790087,3164722,49364459692,49367195776,2736084,49367729114,49368100263,371149,49368683678,49369135581,451903,49370530814,49375315185,4784371 | |||||
| 272,49379088021,49399899857,20811836,49379107918,49391053396,19897,11945478,8846461,49379233121,49379670868,437747,49379253383,49379651571,398188,49379714066,49379782059,67993,49379729585,49379787810,58225,49379822310,49379892943,70633,49379840263,49379899047,58784,49384150397,49387318020,3167623,49384985201,49387667692,2682491,49388258246,49388528188,269942,49389214191,49389599310,385119,49391064718,49396125901,5061183 | |||||
| 273,49399899857,49420152276,20252419,49399920619,49411605363,20762,11684744,8546913,49400046124,49400221859,175735,49400066721,49400203102,136381,49400266483,49400332455,65972,49400281151,49400338660,57509,49400373133,49400440022,66889,49400388397,49400458553,70156,49404689276,49407880032,3190756,49405523247,49408039343,2516096,49408820684,49408899109,78425,49409775768,49409957318,181550,49411616542,49416382270,4765728 | |||||
| 274,49420152276,49440546203,20393927,49420172070,49431956910,19794,11784840,8589293,49420301785,49420620219,318434,49420319210,49420599861,280651,49420664406,49420736540,72134,49420679750,49420731071,51321,49420771102,49420841277,70175,49420786479,49420847614,61135,49425098033,49428232710,3134677,49425932208,49428452773,2520565,49429172876,49429298619,125743,49430124825,49430334775,209950,49431967921,49436774395,4806474 | |||||
| 275,49440546203,49461038732,20492529,49440566884,49452281888,20681,11715004,8756844,49440691461,49440844172,152711,49440713260,49440822100,108840,49440888425,49440959962,71537,49440903303,49440954363,51060,49440995058,49441059301,64243,49441009949,49441076067,66118,49445315998,49448548923,3232925,49446150721,49448800029,2649308,49449488208,49449649904,161696,49450442320,49450718720,276400,49452293955,49457267183,4973228 | |||||
| 276,49461038732,49481328789,20290057,49461060550,49472725365,21818,11664815,8603424,49461185742,49461350361,164619,49461201437,49461330393,128956,49461394265,49461466795,72530,49461409479,49461461012,51533,49461501719,49461567448,65729,49461517065,49461587595,70530,49465819012,49468998757,3179745,49466652765,49469274958,2622193,49469941122,49470130373,189251,49470893065,49471185821,292756,49472736950,49477557351,4820401 | |||||
| 277,49481328789,49501864729,20535940,49481349261,49493124580,20472,11775319,8740149,49481477801,49481847511,369710,49481495115,49481832726,337611,49481891778,49481958162,66384,49481906988,49481963815,56827,49481998542,49482065977,67435,49482013508,49482082009,68501,49486322754,49489386309,3063555,49487157055,49489673536,2516481,49490328110,49490536344,208234,49491281500,49491595637,314137,49493136516,49498090676,4954160 | |||||
| 278,49501864729,49522696721,20831992,49501885139,49514165217,20410,12280078,8531504,49502010387,49502339033,328646,49502032362,49502315724,283362,49502382692,49502449723,67031,49502397941,49502455640,57699,49502489780,49502562059,72279,49502505081,49502578026,72945,49506817941,49510436104,3618163,49507651526,49510542115,2890589,49511376031,49511411671,35640,49512330188,49512477514,147326,49514176550,49518929804,4753254 | |||||
| 279,49522696721,49543050380,20353659,49522717402,49534365953,20681,11648551,8684427,49522844341,49523092222,247881,49522865794,49523073777,207983,49523135911,49523207331,71420,49523151181,49523201764,50583,49523241814,49523307472,65658,49523256962,49523327842,70880,49527552845,49530646155,3093310,49528386727,49530866386,2479659,49531582674,49531708916,126242,49532536362,49532757382,221020,49534377508,49539276857,4899349 | |||||
| 280,49543050380,49563711930,20661550,49543070834,49554718906,20454,11648072,8993024,49543195864,49543336727,140863,49543216395,49543319057,102662,49543381475,49543447850,66375,49543396962,49543453751,56789,49543488081,49543561013,72932,49543503527,49543555197,51670,49547811568,49550992537,3180969,49548646219,49551574541,2928322,49551932778,49552488997,556219,49552887153,49553519644,632491,49554730506,49559936139,5205633 | |||||
| 281,49563711930,49584340644,20628714,49563732693,49575756255,20763,12023562,8584389,49563856970,49564078912,221942,49563877854,49564064963,187109,49564122472,49564200953,78481,49564137452,49564195437,57985,49564231209,49564297715,66506,49564246273,49564313307,67034,49568553835,49572027786,3473951,49569388170,49572163082,2774912,49572968175,49573045008,76833,49573920945,49574095248,174303,49575767514,49580567538,4800024 | |||||
| 282,49584340644,49604674694,20334050,49584361472,49595956087,20828,11594615,8718607,49584490576,49584656967,166391,49584507785,49584638131,130346,49584700862,49584767919,67057,49584715851,49584773656,57805,49584808504,49584878280,69776,49584823858,49584884406,60548,49589134759,49592223757,3088998,49589968743,49592383959,2415216,49593163189,49593248862,85673,49594117730,49594288787,171057,49595967636,49600899183,4931547 | |||||
| 283,49604674694,49625499864,20825170,49604694601,49616804882,19907,12110281,8694982,49604819167,49604978781,159614,49604842926,49604958380,115454,49605022920,49605094815,71895,49605038659,49605089191,50532,49605130164,49605196511,66347,49605145294,49605212393,67099,49609452269,49613078402,3626133,49610286931,49613132902,2845971,49614011604,49614046350,34746,49614967167,49615086093,118926,49616816004,49621727653,4911649 | |||||
| 284,49625499864,49645897540,20397676,49625519920,49637195280,20056,11675360,8702260,49625644951,49625869690,224739,49625665187,49625851071,185884,49625913655,49625985487,71832,49625928713,49625979721,51008,49626020936,49626087765,66829,49626036103,49626093540,57437,49630343325,49633462305,3118980,49631177861,49633905789,2727928,49634399585,49634801037,401452,49635354171,49635845142,490971,49637206459,49642119456,4912997 | |||||
| 285,49645897540,49666375471,20477931,49645917606,49657820675,20066,11903069,8554796,49646042921,49646438494,395573,49646058739,49646422549,363810,49646482828,49646554522,71694,49646498067,49646560860,62793,49646598002,49646668162,70160,49646614169,49646688171,74002,49650921547,49654091544,3169997,49651756632,49654299150,2542518,49655033527,49655134475,100948,49655987978,49656162320,174342,49657833928,49662597653,4763725 | |||||
| 286,49666375471,49686659799,20284328,49666396072,49678004552,20601,11608480,8655247,49666522286,49666770497,248211,49666544460,49666752357,207897,49666814356,49666884049,69693,49666829262,49666889973,60711,49666925838,49666991136,65298,49666941685,49667011409,69724,49671238401,49674272332,3033931,49672072602,49674473423,2400821,49675212289,49675315072,102783,49676164612,49676343976,179364,49678015828,49682886967,4871139 | |||||
| 287,49686659799,49707282442,20622643,49686679801,49698483378,20002,11803577,8799064,49686805331,49687096167,290836,49686826361,49687078566,252205,49687139923,49687207448,67525,49687155066,49687213433,58367,49687247781,49687312735,64954,49687262782,49687333741,70959,49691558244,49694750799,3192555,49692392570,49694964436,2571866,49695687855,49695823311,135456,49696641402,49696897034,255632,49698494626,49703508955,5014329 | |||||
| 288,49707282442,49727668159,20385717,49707302143,49719035753,19701,11733610,8632406,49707426840,49707659708,232868,49707447862,49707640443,192581,49707703519,49707774870,71351,49707718400,49707769380,50980,49707809867,49707880560,70693,49707824758,49707886689,61931,49712137821,49715315421,3177600,49712972170,49715463456,2491286,49716252907,49716295138,42231,49717204581,49717352446,147865,49719046904,49723893142,4846238 | |||||
| 289,49727668159,49748094457,20426298,49727688911,49739319339,20752,11630428,8775118,49727813129,49728062450,249321,49727836147,49728042291,206144,49728105603,49728177319,71716,49728120885,49728171661,50776,49728212099,49728277748,65649,49728227122,49728297837,70715,49732523717,49735584538,3060821,49733357957,49735847542,2489585,49736525851,49736696004,170153,49737479884,49737729897,250013,49739331184,49744325309,4994125 | |||||
| 290,49748094457,49768459485,20365028,49748114238,49759772610,19781,11658372,8686875,49748244244,49748447645,203401,49748261996,49748430677,168681,49748491842,49748563403,71561,49748506964,49748557805,50841,49748598773,49748657943,59170,49748613665,49748683586,69921,49752911078,49756025357,3114279,49753746130,49756388959,2642829,49756969542,49757280458,310916,49757925524,49758346064,420540,49759783761,49764687513,4903752 | |||||
| 291,49768459485,49788999577,20540092,49768479678,49780376108,20193,11896430,8623469,49768609335,49768990111,380776,49768627660,49768970267,342607,49769033976,49769101144,67168,49769049114,49769117038,67924,49769142015,49769207671,65656,49769157341,49769227818,70477,49773455303,49776652139,3196836,49774289537,49776812528,2522991,49777588381,49777678994,90613,49778542069,49778720950,178881,49780387376,49785226337,4838961 | |||||
| 292,49788999577,49809464670,20465093,49789019217,49800662088,19640,11642871,8802582,49789150198,49789360937,210739,49789168094,49789344002,175908,49789404508,49789472204,67696,49789419693,49789478118,58425,49789512397,49789578769,66372,49789527324,49789599098,71774,49793826214,49796923476,3097262,49794660263,49797223885,2563622,49797868526,49798093283,224757,49798821605,49799160201,338596,49800673264,49805692391,5019127 | |||||
| 293,49809464670,49830211401,20746731,49809485106,49821134119,20436,11649013,9077282,49809610176,49809901107,290931,49809630800,49809882784,251984,49809944520,49810016918,72398,49809959387,49810011181,51794,49810052567,49810118116,65549,49810067484,49810138507,71023,49814363880,49817399829,3035949,49815198881,49817769637,2570756,49818341129,49818665386,324257,49819294869,49819739935,445066,49821145186,49826439802,5294616 | |||||
| 294,49830211401,49850760262,20548861,49830232155,49841912255,20754,11680100,8848007,49830363839,49830500138,136299,49830379916,49830478929,99013,49830543762,49830615301,71539,49830559144,49830609730,50586,49830650381,49830715935,65554,49830665390,49830736425,71035,49834962472,49838181153,3218681,49835796367,49838608591,2812224,49839122516,49839524435,401919,49840075507,49840562261,486754,49841923527,49846986753,5063226 | |||||
| 295,49850760262,49871428868,20668606,49850781060,49862562117,20798,11781057,8866751,49850912089,49851212796,300707,49850930214,49851194946,264732,49851256295,49851328599,72304,49851271409,49851334786,63377,49851364135,49851431094,66959,49851379093,49851450299,71206,49855678900,49858838448,3159548,49856513384,49859339588,2826204,49859774418,49860240888,466470,49860728824,49861276676,547852,49862573244,49867654271,5081027 | |||||
| 296,49871428868,49891827109,20398241,49871448826,49883244242,19958,11795416,8582867,49871578319,49871991742,413423,49871596086,49871971272,375186,49872034857,49872102533,67676,49872049902,49872118062,68160,49872143027,49872210615,67588,49872158597,49872226683,68086,49876467124,49879510136,3043012,49877301294,49879727049,2425755,49880451421,49880581291,129870,49881405981,49881610147,204166,49883255621,49888053739,4798118 | |||||
| 297,49891827109,49912441913,20614804,49891848276,49903539574,21167,11691298,8902339,49891973587,49892290304,316717,49891994420,49892268116,273696,49892334232,49892399545,65313,49892349030,49892405825,56795,49892441160,49892506553,65393,49892456167,49892527008,70841,49896754449,49899805170,3050721,49897588823,49900162395,2573572,49900746724,49901059916,313192,49901701688,49902131259,429571,49903550615,49908671198,5120583 | |||||
| 298,49912441913,49933353234,20911321,49912462370,49924810093,20457,12347723,8543141,49912592046,49912865951,273905,49912609027,49912846923,237896,49912910109,49912975266,65157,49912925254,49912992075,66821,49913016875,49913073119,56244,49913032599,49913094310,61711,49917334623,49921085738,3751115,49918169244,49921159128,2989884,49922019995,49922056132,36137,49922974892,49923109177,134285,49924821275,49929575619,4754344 | |||||
| 299,49933353234,49953554715,20201481,49933373613,49944955458,20379,11581845,8599257,49933504235,49933644297,140062,49933522464,49933625639,103175,49933688088,49933760067,71979,49933703116,49933754379,51263,49933794915,49933869645,74730,49933809923,49933864135,54212,49938119224,49941226923,3107699,49938953401,49941473897,2520496,49942169378,49942330765,161387,49943119670,49943374765,255095,49944966455,49949783696,4817241 | |||||
| 300,49953554715,49974562332,21007617,49953574678,49965491352,19963,11916674,9070980,49953699045,49954017754,318709,49953720038,49953994652,274614,49954063627,49954137051,73424,49954079561,49954131559,51998,49954171988,49954237979,65991,49954186963,49954257776,70813,49958484115,49961758095,3273980,49959318478,49962224076,2905598,49962697385,49963140369,442984,49963651945,49964172369,520424,49965502454,49970787867,5285413 | |||||
| 301,49974562332,49995021886,20459554,49974582777,49986430466,20445,11847689,8591420,49974708388,49974934958,226570,49974729926,49974915011,185085,49974979004,49975056266,77262,49974994162,49975050650,56488,49975085727,49975151789,66062,49975100768,49975168403,67635,49979409663,49982696966,3287303,49980244181,49982934772,2690591,49983634088,49983798475,164387,49984590125,49984867680,277555,49986441810,49991250093,4808283 | |||||
| 302,49995021886,50015305474,20283588,49995043174,50006683773,21288,11640599,8621701,49995173324,49995422105,248781,49995191332,49995400714,209382,49995466242,49995533930,67688,49995481525,49995540035,58510,49995576699,49995642587,65888,49995592400,49995662842,70442,49999890639,50002960532,3069893,50000724242,50003148501,2424259,50003901492,50003999095,97603,50004855802,50005030768,174966,50006694776,50011526176,4831400 | |||||
| 303,50015305474,50036150096,20844622,50015325942,50027246839,20468,11920897,8903257,50015450970,50015798355,347385,50015472108,50015775754,303646,50015843724,50015909277,65553,50015859113,50015915123,56010,50015950382,50016014667,64285,50015965312,50016031489,66177,50020272086,50023515291,3243205,50021106190,50023966863,2860673,50024456846,50024881011,424165,50025409915,50025911128,501213,50027258240,50032379278,5121038 | |||||
| 304,50036150096,50057152572,21002476,50036170183,50048578838,20087,12408655,8573734,50036300226,50036671789,371563,50036317558,50036655821,338263,50036715019,50036787211,72192,50036730389,50036781484,51095,50036822125,50036891523,69398,50036840199,50036897672,57473,50041147344,50044850800,3703456,50041981807,50044934883,2953076,50045788118,50045823618,35500,50046742376,50046865722,123346,50048590085,50053377636,4787551 | |||||
| 305,50057152572,50077531303,20378731,50057173354,50068958175,20782,11784821,8573128,50057299394,50057435752,136358,50057315233,50057420995,105762,50057481172,50057552564,71392,50057496397,50057546963,50566,50057587263,50057652070,64807,50057602316,50057669405,67089,50061911529,50065230945,3319416,50062745136,50065335568,2590432,50066167497,50066203516,36019,50067121149,50067280670,159521,50068969395,50073758639,4789244 | |||||
| 306,50077531303,50098345631,20814328,50077552041,50089679451,20738,12127410,8666180,50077681745,50077877342,195597,50077699588,50077860017,160429,50077920939,50077993227,72288,50077936903,50077987716,50813,50078028121,50078092100,63979,50078043229,50078112170,68941,50082338795,50085946207,3607412,50083173052,50086095428,2922376,50086883060,50086982009,98949,50087839220,50088016622,177402,50089690632,50094571919,4881287 | |||||
| 307,50098345631,50118641764,20296133,50098365355,50110027657,19724,11662302,8614107,50098494914,50098751789,256875,50098512489,50098732740,220251,50098795729,50098869880,74151,50098810861,50098864227,53366,50098904717,50098971030,66313,50098919990,50098993110,73120,50103215934,50106294036,3078102,50104050149,50106623768,2573619,50107233785,50107486090,252305,50108185949,50108569922,383973,50110039391,50114870579,4831188 | |||||
| 308,50118641764,50139484474,20842710,50118661196,50130500877,19432,11839681,8983597,50118790105,50119145426,355321,50118807833,50119122916,315083,50119188713,50119255507,66794,50119203276,50119271370,68094,50119296000,50119361365,65365,50119311017,50119381993,70976,50123607189,50126777018,3169829,50124441817,50127137289,2695472,50127716824,50128031659,314835,50128667194,50129099532,432338,50130512133,50135710655,5198522 | |||||
| 309,50139484474,50159760578,20276104,50139504582,50151090794,20108,11586212,8669784,50139629698,50139770510,140812,50139650852,50139752226,101374,50139814188,50139882399,68211,50139829040,50139888400,59360,50139923469,50139995182,71713,50139938609,50139989374,50765,50144246269,50147363011,3116742,50145080287,50147721350,2641063,50148301134,50148594104,292970,50149255819,50149663971,408152,50151102800,50155987547,4884747 | |||||
| 310,50159760578,50180312169,20551591,50159780500,50171682886,19922,11902386,8629283,50159909671,50160325692,416021,50159926977,50160309275,382298,50160369607,50160442812,73205,50160384700,50160437160,52460,50160477634,50160541063,63429,50160492529,50160561194,68665,50164789642,50167935486,3145844,50165623535,50168225389,2601854,50168876017,50169101628,225611,50169832101,50170186046,353945,50171693913,50176537921,4844008 | |||||
| 311,50180312169,50201322202,21010033,50180332808,50192113801,20639,11780993,9208401,50180457453,50180725283,267830,50180477752,50180706652,228900,50180770254,50180837629,67375,50180785322,50180843797,58475,50180878898,50180942937,64039,50180893810,50180959944,66134,50185200412,50188385062,3184650,50186035027,50189107083,3072056,50189326528,50189986470,659942,50190280164,50191024004,743840,50192124815,50197547089,5422274 | |||||
| 312,50201322202,50221608230,20286028,50201342429,50213062284,20227,11719855,8545946,50201466235,50201787946,321711,50201486977,50201767730,280753,50201833167,50201906962,73795,50201849104,50201901573,52469,50201941620,50202005515,63895,50201956611,50202026407,69796,50206251553,50209327016,3075463,50207085404,50209608336,2522932,50210268116,50210445757,177641,50211221226,50211488709,267483,50213073025,50217833847,4760822 | |||||
| 313,50221608230,50242535509,20927279,50221628290,50233854246,20060,12225956,8681263,50221758816,50222085234,326418,50221776692,50222064938,288246,50222128469,50222200709,72240,50222143608,50222195138,51530,50222235903,50222301505,65602,50222250599,50222317764,67165,50226560262,50230124550,3564288,50227394113,50230403745,3009632,50231061023,50231319867,258844,50232013269,50232384466,371197,50233865283,50238762861,4897578 | |||||
| 314,50242535509,50262913798,20378289,50242555997,50254296895,20488,11740898,8616903,50242681043,50242984766,303723,50242701686,50242967341,265655,50243027891,50243102362,74471,50243043445,50243096855,53410,50243137492,50243204263,66771,50243152769,50243220014,67245,50247460147,50250565484,3105337,50248293761,50250843767,2550006,50251505470,50251701061,195591,50252457935,50252781101,323166,50254307765,50259141767,4834002 | |||||
| 315,50262913798,50283433600,20519802,50262934605,50274840835,20807,11906230,8592765,50263059478,50263271525,212047,50263080463,50263249750,169287,50263315658,50263387681,72023,50263330838,50263382156,51318,50263422626,50263488873,66247,50263438276,50263494756,56480,50267744418,50271112214,3367796,50268578196,50271178666,2600470,50272048940,50272083646,34706,50273003762,50273133499,129737,50274852016,50279654426,4802410 | |||||
| 316,50283433600,50303824760,20391160,50283453448,50295083391,19848,11629943,8741369,50283578698,50283822793,244095,50283599532,50283800590,201058,50283869266,50283941507,72241,50283884679,50283936021,51342,50283976222,50284042757,66535,50283991147,50284048846,57699,50288298720,50291351643,3052923,50289133094,50291734020,2600926,50292293132,50292602285,309153,50293246354,50293673258,426904,50295094364,50300052764,4958400 | |||||
| 317,50303824760,50324409451,20584691,50303846003,50315766081,21243,11920078,8643370,50303970869,50304332216,361347,50303992465,50304314723,322258,50304376855,50304444329,67474,50304391976,50304450674,58698,50304485883,50304558341,72458,50304500673,50304552783,52110,50308808544,50312034288,3225744,50309642867,50312346712,2703845,50312972815,50313243251,270436,50313925785,50314299966,374181,50315777140,50320638232,4861092 | |||||
| 318,50324409451,50344904896,20495445,50324429059,50336128932,19608,11699873,8775964,50324559783,50324767116,207333,50324576716,50324746179,169463,50324810398,50324880400,70002,50324825864,50324886356,60492,50324921014,50324986683,65669,50324936966,50325002979,66013,50329243559,50332402393,3158834,50330078230,50332683048,2604818,50333343006,50333537465,194459,50334295332,50334589272,293940,50336140512,50341131615,4991103 | |||||
| 319,50344904896,50365486281,20581385,50344925537,50356588344,20641,11662807,8897937,50345055411,50345291323,235912,50345072834,50345272207,199373,50345336493,50345408647,72154,50345352273,50345403447,51174,50345443322,50345508419,65097,50345458531,50345534983,76452,50349755693,50352858883,3103190,50350589885,50353407497,2817612,50353796842,50354331871,535029,50354750601,50355374726,624125,50356599603,50361716387,5116784 | |||||
| 320,50365486281,50386232301,20746020,50365506772,50377190182,20491,11683410,9042119,50365632615,50365836220,203605,50365649026,50365813665,164639,50365879739,50365946913,67174,50365895004,50365952757,57753,50365988326,50366055470,67144,50366003490,50366072397,68907,50370313502,50373459035,3145533,50371147776,50374165614,3017838,50374398226,50375069819,671593,50375350769,50376123358,772589,50377201487,50382459601,5258114 | |||||
| 321,50386232301,50407224451,20992150,50386252289,50398345842,19988,12093553,8878609,50386377177,50386793639,416462,50386398561,50386776671,378110,50386840464,50386912721,72257,50386856262,50386907057,50795,50386947700,50387019326,71626,50386963172,50387013879,50707,50391271555,50394618440,3346885,50392105776,50395083261,2977485,50395555753,50395989726,433973,50396508238,50397027320,519082,50398357003,50403452851,5095848 | |||||
| 322,50407224451,50428005561,20781110,50407244654,50419092810,20203,11848156,8912751,50407368058,50407655985,287927,50407383167,50407640689,257522,50407699242,50407763775,64533,50407714312,50407780808,66496,50407805178,50407875639,70461,50407820236,50407891410,71174,50412132015,50415370104,3238089,50412965737,50415767476,2801739,50416307797,50416684515,376718,50417260417,50417742884,482467,50419104360,50424230359,5125999 | |||||
| -,47120523118,47141061211,20538093,47120543502,47132348897,20384,11805395,8712314,47120671287,47120956255,284968,47120690175,47120934166,243991,47121000294,47121070534,70240,47121015591,47121075190,59599,47121109052,47121176139,67087,47121124465,47121191343,66878,47125429057,47128617114,3188057,47126263257,47128907798,2644541,47129556892,47129780487,223595,47130510575,47130835361,324786,47132360167,47137288269,4928102 | |||||
| @@ -0,0 +1 @@ | |||||
| {"total_time": 1771382.849999995, "num_of_streams": 11, "num_of_ops": 199, "op_exe_times": 2817} | |||||