Browse Source

!1214 Upgrade notebook from mindspore docs repo

From: @liuchongming74
Reviewed-by: @ouwenchang,@yelihua,@ouwenchang
Signed-off-by: @ouwenchang
tags/v1.2.0-rc1
mindspore-ci-bot Gitee 4 years ago
parent
commit
a54374ca6d
1 changed files with 143 additions and 77 deletions
  1. +143
    -77
      mindinsight/mindconverter/tutorial/pytorch_bert_migration_tutorial.ipynb

+ 143
- 77
mindinsight/mindconverter/tutorial/pytorch_bert_migration_tutorial.ipynb View File

@@ -2,37 +2,69 @@
"cells": [
{
"cell_type": "markdown",
"id": "headed-output",
"id": "military-possible",
"metadata": {},
"source": [
"# PyTorch BERT迁移案例\n",
"PyTorch模型转换为MindSpore脚本+权重,首先需要将PyTorch模型导出为ONNX模型,然后使用MindConverter CLI工具进行脚本+权重迁移。\n",
"`Linux` `Ascend` `GPU` `CPU` `模型迁移` `初级` `中级` `高级`\n",
"\n",
"[![](https://gitee.com/mindspore/docs/raw/master/tutorials/training/source_zh_cn/_static/logo_source.png)](https://gitee.com/mindspore/docs/blob/master/docs/migration_guide/source_zh_cn/torch_bert_migration_case_of_mindconverter.ipynb)"
]
},
{
"cell_type": "markdown",
"id": "modular-arbitration",
"metadata": {},
"source": [
"## 概述"
]
},
{
"cell_type": "markdown",
"id": "stupid-british",
"metadata": {},
"source": [
"PyTorch模型转换为MindSpore脚本和权重,首先需要将PyTorch模型导出为ONNX模型,然后使用MindConverter CLI工具进行脚本和权重迁移。\n",
"HuggingFace Transformers是PyTorch框架下主流的自然语言处理三方库,我们以Transformer中的BertForMaskedLM为例,演示迁移过程。"
]
},
{
"cell_type": "markdown",
"id": "sustained-touch",
"id": "impossible-nebraska",
"metadata": {},
"source": [
"## 环境准备\n",
"\n",
"本案例需安装以下Python三方库:\n",
"```bash\n",
"pip install torch==1.5.1\n",
"pip install transformer==4.2.2\n",
"pip install mindspore==1.2.0\n",
"pip install mindinsight==1.2.0\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "revolutionary-bench",
"metadata": {},
"source": [
"## 1. ONNX模型导出\n",
"## ONNX模型导出\n",
"\n",
"首先实例化HuggingFace中的BertForMaskedLM,以及相应的分词器(首次使用需要下降模型权重、词表、模型配置等数据)。\n",
"首先实例化HuggingFace中的BertForMaskedLM,以及相应的分词器(首次使用时需要下载模型权重、词表、模型配置等数据)。\n",
"\n",
"关于HuggingFace的使用,本文不做过多介绍,详细使用请参考[HuggingFace使用文档](https://huggingface.co/transformers/model_doc)。\n",
"关于HuggingFace的使用,本文不做过多介绍,详细使用请参考[HuggingFace使用文档](https://huggingface.co/transformers/model_doc/bert.html)。\n",
"\n",
"该模型可对句子中被掩蔽(mask)的词进行预测。"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "interpreted-trunk",
"execution_count": 1,
"id": "heated-millennium",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import torch\n",
"from transformers.models.bert import BertForMaskedLM, BertTokenizer\n",
"\n",
"tokenizer = BertTokenizer.from_pretrained(\"bert-base-uncased\")\n",
@@ -41,7 +73,7 @@
},
{
"cell_type": "markdown",
"id": "bronze-authentication",
"id": "bacterial-picking",
"metadata": {},
"source": [
"我们使用该模型进行推理,生成若干组测试用例,以验证模型迁移的正确性。\n",
@@ -53,8 +85,8 @@
},
{
"cell_type": "code",
"execution_count": 37,
"id": "legendary-seven",
"execution_count": 2,
"id": "hawaiian-borough",
"metadata": {},
"outputs": [
{
@@ -72,6 +104,9 @@
}
],
"source": [
"import numpy as np\n",
"import torch\n",
"\n",
"text = \"china is a poworful country, its capital is [MASK].\"\n",
"tokenized_sentence = tokenizer(text)\n",
"\n",
@@ -100,7 +135,7 @@
},
{
"cell_type": "markdown",
"id": "opponent-validity",
"id": "atomic-rebel",
"metadata": {},
"source": [
"HuggingFace提供了导出ONNX模型的工具,可使用如下方法将HuggingFace的预训练模型导出为ONNX模型:"
@@ -108,41 +143,57 @@
},
{
"cell_type": "code",
"execution_count": null,
"id": "ethical-radiation",
"execution_count": 3,
"id": "corresponding-vampire",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Creating folder exported_bert_base_uncased\n",
"Using framework PyTorch: 1.5.1+cu101\n",
"Found input input_ids with shape: {0: 'batch', 1: 'sequence'}\n",
"Found input token_type_ids with shape: {0: 'batch', 1: 'sequence'}\n",
"Found input attention_mask with shape: {0: 'batch', 1: 'sequence'}\n",
"Found output output_0 with shape: {0: 'batch', 1: 'sequence'}\n",
"Ensuring inputs are in correct order\n",
"position_ids is not present in the generated input list.\n",
"Generated inputs order: ['input_ids', 'attention_mask', 'token_type_ids']\n"
]
}
],
"source": [
"from pathlib import Path\n",
"from transformers.convert_graph_to_onnx import convert\n",
"\n",
"\n",
"# Exported onnx model path.\n",
"saved_onnx_path = \"./exported_bert_base_uncased/bert_base_uncased.onnx\"\n",
"convert(\"pt\", model, Path(saved_onnx_path), 11, tokenizer)"
]
},
{
"cell_type": "markdown",
"id": "southeast-response",
"id": "adverse-outline",
"metadata": {},
"source": [
"根据打印的信息,我们可以看到导出的ONNX模型输入节点有3个:`input_ids`,`token_type_ids`,`attention_mask`,以及相应的输入轴,\n",
"输出节点有一个`output_0`。\n",
"\n",
"至此ONNX模型导出成功,接下来对导出的ONNX模型精度进行验证。"
"至此ONNX模型导出成功,接下来对导出的ONNX模型精度进行验证(ONNX模型导出过程在ARM机器上执行,可能需要用户自行编译安装PyTorch以及Transformers三方库)。"
]
},
{
"cell_type": "markdown",
"id": "historic-business",
"id": "paperback-playback",
"metadata": {},
"source": [
"## 2. ONNX模型验证\n"
"## ONNX模型验证\n"
]
},
{
"cell_type": "markdown",
"id": "naval-virgin",
"id": "mysterious-courage",
"metadata": {},
"source": [
"我们仍然使用PyTorch模型推理时的句子`china is a poworful country, its capital is [MASK].`作为输入,观测ONNX模型表现是否符合预期。"
@@ -150,8 +201,8 @@
},
{
"cell_type": "code",
"execution_count": 39,
"id": "satisfactory-embassy",
"execution_count": 4,
"id": "suitable-channels",
"metadata": {},
"outputs": [
{
@@ -185,23 +236,23 @@
},
{
"cell_type": "markdown",
"id": "legal-consensus",
"id": "essential-pharmacology",
"metadata": {},
"source": [
"可以看到,导出的ONNX模型功能与原PyTorch模型完全一致,接下来可以使用MindConverter进行脚本+权重迁移了!"
"可以看到,导出的ONNX模型功能与原PyTorch模型完全一致,接下来可以使用MindConverter进行脚本权重迁移了!"
]
},
{
"cell_type": "markdown",
"id": "adverse-coverage",
"id": "realistic-singapore",
"metadata": {},
"source": [
"## 3. MindConverter进行模型脚本+权重迁移"
"## MindConverter进行模型脚本和权重迁移"
]
},
{
"cell_type": "markdown",
"id": "vanilla-nature",
"id": "invisible-tracker",
"metadata": {},
"source": [
"MindConverter进行模型转换时,需要给定模型路径(`--model_file`)、输入节点(`--input_nodes`)、输入节点尺寸(`--shape`)、输出节点(`--output_nodes`)。\n",
@@ -211,31 +262,39 @@
},
{
"cell_type": "code",
"execution_count": null,
"id": "metallic-wright",
"execution_count": 5,
"id": "processed-spanish",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"MindConverter: conversion is completed.\n",
"\n"
]
}
],
"source": [
"!mindconverter --help"
"!mindconverter --model_file ./exported_bert_base_uncased/bert_base_uncased.onnx --shape 1,128 1,128 1,128 \\\n",
" --input_nodes input_ids token_type_ids attention_mask \\\n",
" --output_nodes output_0 \\\n",
" --output ./converted_bert_base_uncased \\\n",
" --report ./converted_bert_base_uncased"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "horizontal-heater",
"cell_type": "markdown",
"id": "working-funeral",
"metadata": {},
"outputs": [],
"source": [
"!mindconverter --model_file ./exported_bert_base_uncased/bert_base_uncased.onnx --shape 1,128 1,128 1,128 \\\n",
" --input_nodes input_ids,token_type_ids,attention_mask\n",
" --output_nodes output_0\n",
" --output ./converted_bert_base_uncased\n",
" --report ./converted_bert_base_uncased"
"**看到“MindConverter: conversion is completed.”即代表模型已成功转换!**"
]
},
{
"cell_type": "markdown",
"id": "blind-forty",
"id": "classical-seminar",
"metadata": {},
"source": [
"转换完成后,该目录下生成如下文件:\n",
@@ -249,17 +308,26 @@
},
{
"cell_type": "code",
"execution_count": null,
"id": "blocked-teens",
"execution_count": 6,
"id": "equipped-bottom",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"bert_base_uncased.ckpt\treport_of_bert_base_uncased.txt\r\n",
"bert_base_uncased.py\tweight_map_of_bert_base_uncased.json\r\n"
]
}
],
"source": [
"!ls ./converted_bert_base_uncased"
]
},
{
"cell_type": "markdown",
"id": "improving-difference",
"id": "fuzzy-thinking",
"metadata": {},
"source": [
"可以看到所有文件已生成。\n",
@@ -269,16 +337,16 @@
},
{
"cell_type": "markdown",
"id": "dimensional-driver",
"id": "leading-punch",
"metadata": {},
"source": [
"## 4. MindSpore模型验证\n",
"## MindSpore模型验证\n",
"我们仍然使用`china is a poworful country, its capital is [MASK].`作为输入,观测迁移后模型表现是否符合预期。"
]
},
{
"cell_type": "markdown",
"id": "unexpected-permit",
"id": "competent-dispute",
"metadata": {},
"source": [
"由于工具在转换时,需要将模型尺寸冻结,因此在使用MindSpore进行推理验证时,需要将句子补齐(Pad)到固定长度,可通过如下函数实现句子补齐。\n",
@@ -288,8 +356,8 @@
},
{
"cell_type": "code",
"execution_count": null,
"id": "going-fields",
"execution_count": 7,
"id": "essential-football",
"metadata": {},
"outputs": [],
"source": [
@@ -304,10 +372,18 @@
},
{
"cell_type": "code",
"execution_count": null,
"id": "intense-carrier",
"execution_count": 8,
"id": "greatest-louis",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ONNX Pred id: 7211\n"
]
}
],
"source": [
"from converted_bert_base_uncased.bert_base_uncased import Model as MsBert\n",
"from mindspore import load_checkpoint, load_param_into_net, context, Tensor\n",
@@ -336,50 +412,40 @@
},
{
"cell_type": "markdown",
"id": "national-norfolk",
"id": "hybrid-intranet",
"metadata": {},
"source": [
"至此,使用MindConverter进行脚本+权重迁移完成。\n",
"至此,使用MindConverter进行脚本权重迁移完成。\n",
"\n",
"用户可根据使用场景编写训练、推理、部署脚本,实现个人业务逻辑。"
]
},
{
"cell_type": "markdown",
"id": "capital-joint",
"id": "minute-sector",
"metadata": {},
"source": [
"## 5. 其他问题"
"## 常见问题"
]
},
{
"cell_type": "markdown",
"id": "magnetic-collective",
"id": "favorite-worse",
"metadata": {},
"source": [
"1. 如何修改迁移后脚本的批次大小(Batch size)、句子长度(Sequence length),实现模型可支持任意尺寸的数据推理、训练?\n",
"**Q:如何修改迁移后脚本的批次大小(Batch size)、句子长度(Sequence length)等尺寸(shape)规格实现模型可支持任意尺寸的数据推理、训练?**\n",
"\n",
"> 答:迁移后脚本存在shape限制,通常是由于Reshape算子导致,或其他涉及张量排布变化的算子导致。以上述Bert迁移为例,首先创建两个全局变量,作为预期的批次大小、句子长度的表示,而后将Reshape操作的目标尺寸进行修改,相应的替换成批次大小、句子长度的全局变量即可。\n",
"> ./converted_bert_base_uncased/modified_bert_base_uncased.py为修改后的可支持任意尺寸数据训练、推理的脚本,该脚本脚本展示了相应的修改。"
"A:迁移后脚本存在shape限制,通常是由于Reshape算子导致,或其他涉及张量排布变化的算子导致。以上述Bert迁移为例,首先创建两个全局变量,表示预期的批次大小、句子长度,而后修改Reshape操作的目标尺寸,替换成相应的批次大小、句子长度的全局变量即可。"
]
},
{
"cell_type": "markdown",
"id": "proprietary-yugoslavia",
"id": "failing-smoke",
"metadata": {},
"source": [
"2. 生成后的脚本中类名的定义不符合开发者的习惯,如`class Module0(nn.Cell)`,人工修改是否会影响转换后的权重加载?\n",
"**Q:生成后的脚本中类名的定义不符合开发者的习惯,如`class Module0(nn.Cell)`,人工修改是否会影响转换后的权重加载?**\n",
"\n",
"> 答:权重的加载仅与变量名、类结构有关,因此类名可以修改,不影响权重加载。若需要调整类的结构,则相应的权重命名需要同步修改以适应迁移后模型的结构。"
]
},
{
"cell_type": "markdown",
"id": "selective-flight",
"metadata": {},
"source": [
"## 6. 其他参考教程\n",
"1. [MindConverter高阶使用教程-自定义生成代码结构]()"
"A:权重的加载仅与变量名、类结构有关,因此类名可以修改,不影响权重加载。若需要调整类的结构,则相应的权重命名需要同步修改以适应迁移后模型的结构。"
]
}
],
@@ -404,4 +470,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

Loading…
Cancel
Save