Browse Source

!63 add comments, optimize histogram log generator to record max and min

Merge pull request !63 from wenkai/wk0422_2
tags/v0.2.0-alpha
mindspore-ci-bot Gitee 5 years ago
parent
commit
7936eaf21d
3 changed files with 130 additions and 114 deletions
  1. +7
    -0
      mindinsight/datavisual/data_transform/histogram_container.py
  2. +4
    -0
      mindinsight/datavisual/data_transform/reservoir.py
  3. +119
    -114
      tests/utils/log_generators/histogram_log_generator.py

+ 7
- 0
mindinsight/datavisual/data_transform/histogram_container.py View File

@@ -120,6 +120,13 @@ class HistogramContainer:

It's caller's duty to ensure input is valid.

Why we need visual range for histograms? Miss aligned buckets between steps might miss-lead users about the
trend of a tensor. Because for given tensor, if you have thinner buckets, count of every bucket might get
low, however, if you have thicker buckets, count of every bucket might get high. If there are the above two
kinds of histogram in one graph, user might think the histogram with thicker buckets has more values. This is
miss-leading. So we need to unify buckets across steps. Visual range for histogram is a technology for unifying
buckets.

Args:
max_val (float): Max value for visual histogram.
min_val (float): Min value for visual histogram.


+ 4
- 0
mindinsight/datavisual/data_transform/reservoir.py View File

@@ -172,6 +172,10 @@ class HistogramReservoir(Reservoir):
max_count = max(histogram.count, max_count)
visual_range.update(histogram.max, histogram.min)

if visual_range.max == visual_range.min and not max_count:
logger.warning("Max equals to min, however, count is zero. Please check mindspore "
"does write max and min values to histogram summary file.")

bins = calc_histogram_bins(max_count)

# update visual range


+ 119
- 114
tests/utils/log_generators/histogram_log_generator.py View File

@@ -1,114 +1,119 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Log generator for histogram data."""
import time
import numpy as np
from mindinsight.datavisual.proto_files import mindinsight_summary_pb2 as summary_pb2
from .log_generator import LogGenerator
class HistogramLogGenerator(LogGenerator):
"""
Log generator for histogram data.
This is a log generator writing histogram data. User can use it to generate fake
summary logs about histogram.
"""
def generate_event(self, values):
"""
Method for generating histogram event.
Args:
values (dict): A dict contains:
{
wall_time (float): Timestamp.
step (int): Train step.
value (float): Histogram value.
tag (str): Tag name.
}
Returns:
summary_pb2.Event.
"""
histogram_event = summary_pb2.Event()
histogram_event.wall_time = values.get('wall_time')
histogram_event.step = values.get('step')
value = histogram_event.summary.value.add()
value.tag = values.get('tag')
buckets = values.get('buckets')
for bucket in buckets:
left, width, count = bucket
bucket = value.histogram.buckets.add()
bucket.left = left
bucket.width = width
bucket.count = count
return histogram_event
def generate_log(self, file_path, steps_list, tag_name):
"""
Generate log for external calls.
Args:
file_path (str): Path to write logs.
steps_list (list): A list consists of step.
tag_name (str): Tag name.
Returns:
list[dict], generated histogram metadata.
None, to be consistent with return value of HistogramGenerator.
"""
histogram_metadata = []
for step in steps_list:
histogram = dict()
wall_time = time.time()
histogram.update({'wall_time': wall_time})
histogram.update({'step': step})
histogram.update({'tag': tag_name})
# Construct buckets
buckets = []
leftmost = list(np.random.randn(11))
leftmost.sort()
for i in range(10):
left = leftmost[i]
width = leftmost[i+1] - left
count = np.random.randint(20)
bucket = [left, width, count]
buckets.append(bucket)
histogram.update({'buckets': buckets})
histogram_metadata.append(histogram)
self._write_log_one_step(file_path, histogram)
return histogram_metadata, None
if __name__ == "__main__":
histogram_log_generator = HistogramLogGenerator()
test_file_name = '%s.%s.%s' % ('histogram', 'summary', str(time.time()))
test_steps = [1, 3, 5]
test_tag = "test_histogram_tag_name"
histogram_log_generator.generate_log(test_file_name, test_steps, test_tag)
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Log generator for histogram data."""
import time

import numpy as np

from mindinsight.datavisual.proto_files import mindinsight_summary_pb2 as summary_pb2

from .log_generator import LogGenerator


class HistogramLogGenerator(LogGenerator):
"""
Log generator for histogram data.

This is a log generator writing histogram data. User can use it to generate fake
summary logs about histogram.
"""

def generate_event(self, values):
"""
Method for generating histogram event.

Args:
values (dict): A dict contains:
{
wall_time (float): Timestamp.
step (int): Train step.
value (float): Histogram value.
tag (str): Tag name.
}

Returns:
summary_pb2.Event.

"""
histogram_event = summary_pb2.Event()
histogram_event.wall_time = values.get('wall_time')
histogram_event.step = values.get('step')

value = histogram_event.summary.value.add()
value.tag = values.get('tag')

buckets = values.get('buckets')
for bucket in buckets:
left, width, count = bucket
bucket = value.histogram.buckets.add()
bucket.left = left
bucket.width = width
bucket.count = count

value.histogram.min = values.get("min", -1)
value.histogram.max = values.get("max", -1)

return histogram_event

def generate_log(self, file_path, steps_list, tag_name):
"""
Generate log for external calls.

Args:
file_path (str): Path to write logs.
steps_list (list): A list consists of step.
tag_name (str): Tag name.

Returns:
list[dict], generated histogram metadata.
None, to be consistent with return value of HistogramGenerator.

"""
histogram_metadata = []
for step in steps_list:
histogram = dict()

wall_time = time.time()
histogram.update({'wall_time': wall_time})
histogram.update({'step': step})
histogram.update({'tag': tag_name})

# Construct buckets
buckets = []
leftmost = list(np.random.randn(11))
leftmost.sort()
min_val = leftmost[0]
max_val = leftmost[-1]
for i in range(10):
left = leftmost[i]
width = leftmost[i+1] - left
count = np.random.randint(20)
bucket = [left, width, count]
buckets.append(bucket)

histogram.update({'buckets': buckets, "min": min_val, "max": max_val})
histogram_metadata.append(histogram)

self._write_log_one_step(file_path, histogram)

return histogram_metadata, None


if __name__ == "__main__":
histogram_log_generator = HistogramLogGenerator()
test_file_name = '%s.%s.%s' % ('histogram', 'summary', str(time.time()))
test_steps = [1, 3, 5]
test_tag = "test_histogram_tag_name"
histogram_log_generator.generate_log(test_file_name, test_steps, test_tag)

Loading…
Cancel
Save