Collect timeline information after training finished. Support timeline display on web UI.tags/v0.5.0-beta
| @@ -401,6 +401,52 @@ def get_minddata_pipeline_queue_info(): | |||
| return jsonify(op_queue_info) | |||
| @BLUEPRINT.route("/profile/timeline-summary", methods=["GET"]) | |||
| def get_timeline_summary(): | |||
| """ | |||
| Get timeline summary info. | |||
| Returns: | |||
| Response, the timeline summary info. | |||
| Examples: | |||
| >>> GET http://xxxx/v1/mindinsight/profile/timeline-summary | |||
| """ | |||
| summary_dir = request.args.get("dir") | |||
| profiler_dir = validate_and_normalize_profiler_path(summary_dir, settings.SUMMARY_BASE_DIR) | |||
| device_id = request.args.get("device_id", default='0') | |||
| _ = to_int(device_id, 'device_id') | |||
| analyser = AnalyserFactory.instance().get_analyser( | |||
| 'timeline', profiler_dir, device_id) | |||
| summary = analyser.get_timeline_summary() | |||
| return summary | |||
| @BLUEPRINT.route("/profile/timeline", methods=["GET"]) | |||
| def get_timeline_detail(): | |||
| """ | |||
| Get timeline detail. | |||
| Returns: | |||
| Response, the detail information of timeline. | |||
| Examples: | |||
| >>> GET http://xxxx/v1/mindinsight/profile/timeline | |||
| """ | |||
| summary_dir = request.args.get("dir") | |||
| profiler_dir = validate_and_normalize_profiler_path(summary_dir, settings.SUMMARY_BASE_DIR) | |||
| device_id = request.args.get("device_id", default='0') | |||
| _ = to_int(device_id, 'device_id') | |||
| analyser = AnalyserFactory.instance().get_analyser( | |||
| 'timeline', profiler_dir, device_id) | |||
| timeline = analyser.get_display_timeline() | |||
| return jsonify(timeline) | |||
| def init_module(app): | |||
| """ | |||
| Init module entry. | |||
| @@ -14,4 +14,4 @@ | |||
| # ============================================================================ | |||
| """The analyser module.""" | |||
| from . import analyser, minddata_pipeline_analyser, step_trace_analyser, \ | |||
| minddata_analyser | |||
| minddata_analyser, timeline_analyser | |||
| @@ -0,0 +1,340 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """The Timeline Analyser.""" | |||
| import json | |||
| import os | |||
| from mindinsight.profiler.analyser.base_analyser import BaseAnalyser | |||
| from mindinsight.profiler.parser.container import TimelineContainer | |||
| from mindinsight.profiler.common.exceptions.exceptions import ProfilerFileNotFoundException, \ | |||
| ProfilerIOException | |||
| from mindinsight.profiler.common.log import logger | |||
| from mindinsight.profiler.common.validator.validate_path import validate_and_normalize_path | |||
| SIZE_LIMIT = 20 * 1024 * 1024 # 20MB | |||
| class TimelineAnalyser(BaseAnalyser): | |||
| """ | |||
| Analyse timeline data from file. | |||
| """ | |||
| __col_names__ = ['op_name', 'stream_id', 'start_time', 'duration'] | |||
| _output_timeline_data_file_path = 'output_timeline_data_{}.txt' | |||
| _min_cycle_counter_file_path = 'min_cycle_counter_{}.txt' | |||
| _timeline_filename = 'timeline_detail_{}.json' | |||
| _display_filename = 'timeline_display_{}.json' | |||
| _timeline_summary_filename = 'timeline_summary_{}.json' | |||
| _timeline_meta = [] | |||
| _timeline_summary = { | |||
| 'total_time': 0, | |||
| 'num_of_streams': 0, | |||
| 'num_of_ops': 0, | |||
| 'op_exe_times': 0 | |||
| } | |||
| def _load(self): | |||
| """Load data according to the parsed profiling files.""" | |||
| self.load_timeline_data() | |||
| self._timeline_summary['op_exe_times'] = len(self._timeline_meta) | |||
| def _filter(self, filter_condition): | |||
| """ | |||
| Filter the profiling data according to the filter condition. | |||
| Args: | |||
| filter_condition (dict): The filter condition. | |||
| """ | |||
| def get_display_timeline(self): | |||
| """ | |||
| Get timeline data for UI display. | |||
| Returns: | |||
| json, the content of timeline data. | |||
| """ | |||
| # Search timeline json file under profiling dir. | |||
| file_path = None | |||
| for filename in os.listdir(self._profiling_dir): | |||
| if filename.startswith('timeline_display') and filename.endswith('.json'): | |||
| file_path = os.path.join(self._profiling_dir, filename) | |||
| logger.debug('Display file found.') | |||
| break | |||
| elif filename.startswith('timeline_detail') and filename.endswith('.json'): | |||
| file_path = os.path.join(self._profiling_dir, filename) | |||
| logger.debug('Original file found.') | |||
| break | |||
| file_path = validate_and_normalize_path( | |||
| file_path, raise_key='Invalid timeline json path.' | |||
| ) | |||
| timeline = [] | |||
| if os.path.exists(file_path): | |||
| try: | |||
| with open(file_path, 'r') as f_obj: | |||
| timeline = json.load(f_obj) | |||
| except (IOError, OSError) as err: | |||
| logger.error('Error occurred when read timeline display file: %s', err) | |||
| raise ProfilerIOException | |||
| else: | |||
| logger.info('No timeline file. Please check the output path.') | |||
| return timeline | |||
| def get_timeline_summary(self): | |||
| """ | |||
| Get timeline summary information for UI display. | |||
| Returns: | |||
| json, the content of timeline summary information. | |||
| """ | |||
| file_path = None | |||
| summary_file_name = 'timeline_summary_{}.json'.format(self._device_id) | |||
| if summary_file_name in os.listdir(self._profiling_dir): | |||
| file_path = os.path.join(self._profiling_dir, summary_file_name) | |||
| file_path = validate_and_normalize_path( | |||
| file_path, raise_key='Invalid timeline summary path.' | |||
| ) | |||
| timeline_summary = {} | |||
| if os.path.exists(file_path): | |||
| try: | |||
| with open(file_path, 'r') as f_obj: | |||
| timeline_summary = json.load(f_obj) | |||
| except (IOError, OSError) as err: | |||
| logger.error('Error occurred when read timeline summary file: %s', err) | |||
| raise ProfilerIOException | |||
| return timeline_summary | |||
| def write_timeline(self): | |||
| """Load data according to the parsed profiling files.""" | |||
| # Write timeline to file. | |||
| file_size = self.write_timeline_to_json() | |||
| # If the file size is larger than 20MB, open a new file and | |||
| # write the first 20MB content into it. | |||
| if file_size > SIZE_LIMIT: | |||
| logger.debug('File size is larger than 20MB, will be resized...') | |||
| # write to json file for display | |||
| self.write_timeline_to_json_by_limitation() | |||
| def write_timeline_to_json(self): | |||
| """Write timeline to json.""" | |||
| timeline_filename = self._timeline_filename.format(self._device_id) | |||
| timeline_file_path = os.path.join( | |||
| self._profiling_dir, | |||
| timeline_filename | |||
| ) | |||
| timeline_file_path = validate_and_normalize_path( | |||
| timeline_file_path, raise_key='Invalid timeline json path.' | |||
| ) | |||
| try: | |||
| with open(timeline_file_path, 'w') as json_file: | |||
| json.dump(self._timeline_meta, json_file) | |||
| file_size = os.path.getsize(timeline_file_path) | |||
| except (IOError, OSError) as err: | |||
| logger.error('Error occurred when write timeline full details: %s', err) | |||
| raise ProfilerIOException | |||
| return file_size | |||
| def write_timeline_to_json_by_limitation(self): | |||
| """Write timeline to json by limitation.""" | |||
| display_filename = self._display_filename.format(self._device_id) | |||
| display_file_path = os.path.join( | |||
| self._profiling_dir, | |||
| display_filename | |||
| ) | |||
| display_file_path = validate_and_normalize_path( | |||
| display_file_path, raise_key='Invalid timeline display json path.' | |||
| ) | |||
| try: | |||
| with open(display_file_path, 'w') as json_file: | |||
| json_file.write('[') | |||
| for item in self._timeline_meta: | |||
| json.dump(item, json_file) | |||
| file_size = os.path.getsize(display_file_path) | |||
| if file_size > SIZE_LIMIT: | |||
| break | |||
| json_file.write(',') | |||
| json_file.write(']') | |||
| except (IOError, OSError) as err: | |||
| logger.error('Error occurred when write timeline display file: %s', err) | |||
| raise ProfilerIOException | |||
| def write_timeline_summary(self): | |||
| """Write timeline summary to json.""" | |||
| timeline_summary_file_path = os.path.join( | |||
| self._profiling_dir, | |||
| self._timeline_summary_filename.format(self._device_id) | |||
| ) | |||
| timeline_summary_file_path = validate_and_normalize_path( | |||
| timeline_summary_file_path, raise_key='Invalid timeline summary path.' | |||
| ) | |||
| try: | |||
| with open(timeline_summary_file_path, 'w') as json_file: | |||
| json.dump(self._timeline_summary, json_file) | |||
| except (IOError, OSError) as err: | |||
| logger.error('Error occurred when write timeline summary file: %s', err) | |||
| raise ProfilerIOException | |||
| def load_timeline_data(self): | |||
| """Load timeline data from file.""" | |||
| file_path = os.path.join( | |||
| self._profiling_dir, | |||
| self._output_timeline_data_file_path.format(self._device_id) | |||
| ) | |||
| file_path = validate_and_normalize_path( | |||
| file_path, raise_key='Invalid timeline txt file path.' | |||
| ) | |||
| if not os.path.exists(file_path): | |||
| logger.error("Failed to find parsed timeline file.") | |||
| raise ProfilerFileNotFoundException('parsed timeline file') | |||
| stream_count_dict = {} | |||
| try: | |||
| with open(file_path, 'r') as f_obj: | |||
| for line in f_obj: | |||
| if not line.startswith('=') and not line.startswith('op_name') and \ | |||
| not line.startswith('-'): | |||
| line_list = line.split() | |||
| self._parse_timeline_data(line_list) | |||
| self._update_num_of_streams(line_list, stream_count_dict) | |||
| except (IOError, OSError) as err: | |||
| logger.error('Error occurred when read timeline intermediate file: %s', err) | |||
| raise ProfilerIOException | |||
| # Update timeline summary info | |||
| self._timeline_summary['num_of_streams'] = len(stream_count_dict.keys()) | |||
| def _parse_timeline_data(self, line_list): | |||
| """Parse timeline data.""" | |||
| factor = 1000 | |||
| op_meta = TimelineContainer(line_list) | |||
| timeline_dict = {} | |||
| timeline_dict['name'] = op_meta.op_name | |||
| timeline_dict['ph'] = 'X' | |||
| timeline_dict['pid'] = int(self._device_id) | |||
| timeline_dict['tid'] = op_meta.stream_id | |||
| timeline_dict['ts'] = op_meta.start_time * factor | |||
| dur = op_meta.duration * factor | |||
| timeline_dict['dur'] = dur | |||
| self._timeline_summary['total_time'] += dur | |||
| self._timeline_meta.append(timeline_dict) | |||
| @staticmethod | |||
| def _update_num_of_streams(line_list, stream_count_dict): | |||
| """Update number of streams.""" | |||
| stream_id = line_list[1] | |||
| if stream_id not in stream_count_dict.keys(): | |||
| stream_count_dict[stream_id] = 1 | |||
| else: | |||
| stream_count_dict[stream_id] += 1 | |||
| def get_min_cycle_counter_from_file(self): | |||
| """ | |||
| Get minimum cycle counter. | |||
| Returns: | |||
| float, the minimum value of the cycle counter. | |||
| """ | |||
| file_path = os.path.join( | |||
| self._profiling_dir, | |||
| self._min_cycle_counter_file_path.format(self._device_id) | |||
| ) | |||
| file_path = validate_and_normalize_path( | |||
| file_path, raise_key='Invalid min cycle counter file path.' | |||
| ) | |||
| if os.path.exists(file_path): | |||
| try: | |||
| with open(file_path, 'r') as f_obj: | |||
| min_cycle_counter = f_obj.read() | |||
| min_cycle_counter = float(min_cycle_counter) \ | |||
| if not min_cycle_counter == 'inf' else 0 | |||
| except (IOError, OSError) as err: | |||
| logger.error('Error occurred when read minimum cycle counter: %s', err) | |||
| raise ProfilerIOException | |||
| else: | |||
| min_cycle_counter = 0 | |||
| logger.info("No min cycle counter recorded.") | |||
| return min_cycle_counter | |||
| def add_all_reduce_info(self, all_reduce_info): | |||
| """ | |||
| Add all reduce info into timeline metadata. | |||
| Args: | |||
| all_reduce_info (list<dict>): The metadata of AllReduce operator. | |||
| [ | |||
| { | |||
| 'stream_id_1': [(start_time, end_time, duration, field_name)], | |||
| ... | |||
| }, | |||
| {...} | |||
| ] | |||
| """ | |||
| logger.info('Adding AllReduce info...') | |||
| factor = 100 | |||
| min_cycle_counter = self.get_min_cycle_counter_from_file() | |||
| for step_meta in all_reduce_info: | |||
| for stream_id, time_info_list in step_meta.items(): | |||
| for time_info in time_info_list: | |||
| start, _, dur, name = time_info | |||
| all_reduce_dict = {} | |||
| all_reduce_dict['name'] = name | |||
| all_reduce_dict['ph'] = 'X' | |||
| # Using 10000 to represent AllReduce | |||
| all_reduce_dict['pid'] = 10000 | |||
| all_reduce_dict['tid'] = int(stream_id) | |||
| all_reduce_dict['ts'] = (start - min_cycle_counter) / factor | |||
| all_reduce_dict['dur'] = dur / factor | |||
| self._timeline_meta.append(all_reduce_dict) | |||
| self._timeline_summary['total_time'] += all_reduce_dict['dur'] | |||
| def add_framework_info(self, framework_info): | |||
| """ | |||
| Add framework info into timeline metadata. | |||
| Args: | |||
| framework_info (dict): The framework metadata. | |||
| """ | |||
| logger.info('Adding framework info...') | |||
| framework_obj_list = framework_info.get('object') | |||
| self._timeline_summary['num_of_ops'] = len(framework_obj_list) | |||
| for framework_obj in framework_obj_list: | |||
| op_name = framework_obj[0] | |||
| op_type = framework_obj[1] | |||
| op_full_name = framework_obj[4] | |||
| op_info = framework_obj[5] | |||
| for timeline_obj in self._timeline_meta: | |||
| if op_full_name == timeline_obj.get('name'): | |||
| timeline_obj['name'] = op_name | |||
| timeline_obj['args'] = { | |||
| 'type': op_type, | |||
| 'fullname': op_full_name | |||
| } | |||
| timeline_obj['args'].update(op_info) | |||
| @@ -0,0 +1,91 @@ | |||
| """The container of metadata used in profiler parser.""" | |||
| class HWTSContainer: | |||
| """ | |||
| HWTS output container. | |||
| Args: | |||
| split_list (list): The split list of metadata in HWTS output file. | |||
| """ | |||
| def __init__(self, split_list): | |||
| self._op_name = '' | |||
| self._duration = None | |||
| self._status = split_list[0] | |||
| self._task_id = split_list[6] | |||
| self._cycle_counter = float(split_list[7]) | |||
| self._stream_id = split_list[8] | |||
| @property | |||
| def status(self): | |||
| """Get the status of the operator, i.e. Start or End.""" | |||
| return self._status | |||
| @property | |||
| def task_id(self): | |||
| """Get the task id of the operator.""" | |||
| return self._task_id | |||
| @property | |||
| def cycle_counter(self): | |||
| """Get the cycle counter.""" | |||
| return self._cycle_counter | |||
| @property | |||
| def stream_id(self): | |||
| """Get the stream id of the operator.""" | |||
| return self._stream_id | |||
| @property | |||
| def op_name(self): | |||
| """Get the name of the operator.""" | |||
| return self._op_name | |||
| @op_name.setter | |||
| def op_name(self, name): | |||
| """Set the name of the operator.""" | |||
| self._op_name = name | |||
| @property | |||
| def duration(self): | |||
| """Get the duration of the operator execution.""" | |||
| return self._duration | |||
| @duration.setter | |||
| def duration(self, value): | |||
| """Set the duration of the operator execution.""" | |||
| self._duration = value | |||
| class TimelineContainer: | |||
| """ | |||
| A container of operator computation metadata. | |||
| Args: | |||
| split_list (list): The split list of metadata in op_compute output file. | |||
| """ | |||
| def __init__(self, split_list): | |||
| self._op_name = split_list[0] | |||
| self._stream_id = int(split_list[1]) | |||
| self._start_time = float(split_list[2]) | |||
| self._duration = float(split_list[3]) | |||
| @property | |||
| def op_name(self): | |||
| """Get the name of the operator.""" | |||
| return self._op_name | |||
| @property | |||
| def stream_id(self): | |||
| """Get the stream id of the operator.""" | |||
| return self._stream_id | |||
| @property | |||
| def start_time(self): | |||
| """Get the execution start time of the operator.""" | |||
| return self._start_time | |||
| @property | |||
| def duration(self): | |||
| """Get the duration of the operator execution.""" | |||
| return self._duration | |||
| @@ -13,8 +13,15 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Op compute time files parser.""" | |||
| import os | |||
| from tabulate import tabulate | |||
| from mindinsight.profiler.common._utils import fwrite_format | |||
| from mindinsight.profiler.common.exceptions.exceptions import ProfilerFileNotFoundException | |||
| from mindinsight.profiler.common.log import logger | |||
| from mindinsight.profiler.common.validator.validate_path import validate_and_normalize_path | |||
| from mindinsight.profiler.parser.container import HWTSContainer | |||
| class OPComputeTimeParser: | |||
| """ | |||
| @@ -28,11 +35,20 @@ class OPComputeTimeParser: | |||
| _dst_file_title = 'title:op compute time' | |||
| _dst_file_column_title = ['op_name', 'compute_time(ms)', 'stream_id'] | |||
| _timeline_file_title = 'title:timeline info' | |||
| _timeline_file_column_title = ['op_name', 'stream_id', 'start_time', 'duration'] | |||
| def __init__(self, hwts_output_file, output_filename, op_task_info): | |||
| def __init__(self, hwts_output_file, output_filename, op_task_info, | |||
| output_path, device_id): | |||
| hwts_output_file = validate_and_normalize_path( | |||
| hwts_output_file, raise_key='Invalid hwts output file path.' | |||
| ) | |||
| self._hwts_output_file = hwts_output_file | |||
| self._output_filename = output_filename | |||
| self._op_task_info = op_task_info | |||
| self._output_path = output_path | |||
| self._device_id = device_id | |||
| self._min_cycle_counter = float("inf") | |||
| def _get_op_task_id_map(self): | |||
| """ | |||
| @@ -44,78 +60,197 @@ class OPComputeTimeParser: | |||
| op_map_result = [] | |||
| hwts_list = [] | |||
| with(open(self._hwts_output_file, 'r')) as data_file: | |||
| if not os.path.exists(self._hwts_output_file): | |||
| logger.error('The hwts output file does not exist.') | |||
| raise ProfilerFileNotFoundException('hwts output file') | |||
| with open(self._hwts_output_file, 'r') as data_file: | |||
| lines = data_file.readlines() | |||
| for line in lines: | |||
| if line.startswith("Start of task"): | |||
| if line.startswith("Start of task") or line.startswith("End of task"): | |||
| line_split = line.split() | |||
| hwts_list.append([line_split[0], line_split[6], line_split[7], line_split[8]]) | |||
| if line.startswith('End of task'): | |||
| line_split = line.split() | |||
| hwts_list.append([line_split[0], line_split[6], line_split[7], line_split[8]]) | |||
| container = HWTSContainer(line_split) | |||
| hwts_list.append(container) | |||
| # hwts op map by taskId | |||
| for hwts in hwts_list: | |||
| if hwts[1] in self._op_task_info.keys(): | |||
| op_map_result.append([self._op_task_info[hwts[1]], hwts[0], hwts[1], hwts[2], hwts[3]]) | |||
| if hwts.task_id in self._op_task_info.keys(): | |||
| hwts.op_name = self._op_task_info[hwts.task_id] | |||
| op_map_result.append(hwts) | |||
| return op_map_result | |||
| def execute(self): | |||
| """Execute the parser, compute all op, get op time, and write it to the output file.""" | |||
| # Calculate the execution time of operators, | |||
| # and update the minimum cycle counter. | |||
| tmp_result_data = self._calculate_op_execution_time() | |||
| # Convert time units from nanoseconds to milliseconds. | |||
| # The unit of the cycle counter is 10 nanoseconds. | |||
| op_name_time_dict = {} | |||
| op_name_stream_dict = {} | |||
| op_name_count_dict = {} | |||
| op_name_task_dict = {} | |||
| op_name_start_time = {} | |||
| self._convert_op_time_unit( | |||
| tmp_result_data, op_name_time_dict, op_name_stream_dict, | |||
| op_name_count_dict, op_name_task_dict, op_name_start_time | |||
| ) | |||
| result_data = [] | |||
| for op_name, time in op_name_time_dict.items(): | |||
| if op_name in op_name_stream_dict.keys(): | |||
| stream_id = op_name_stream_dict[op_name] | |||
| avg_time = time / op_name_count_dict[op_name] | |||
| result_data.append([op_name, avg_time, stream_id]) | |||
| timeline_data = [] | |||
| for op_name, time in op_name_time_dict.items(): | |||
| if op_name in op_name_stream_dict.keys(): | |||
| stream_id = op_name_stream_dict[op_name] | |||
| start_time_list = op_name_start_time.get(op_name) | |||
| for (start_time, duration) in start_time_list: | |||
| timeline_data.append([op_name, stream_id, start_time, duration]) | |||
| # Write the metadata of operators into the file, | |||
| # including operator name, average time, and stream id. | |||
| self._write_op_time_into_file(result_data) | |||
| # Write the timeline data into file, | |||
| # including operator name, stream id, start time, and duration. | |||
| self._write_timeline_data_into_file(timeline_data) | |||
| # Write the minimum cycle counter into the file. | |||
| self.write_min_cycle_counter_to_file() | |||
| def _write_op_time_into_file(self, result_data): | |||
| """ | |||
| Write the metadata of operators into the file, including | |||
| op name, average time, and stream id. | |||
| Args: | |||
| result_data (list): The metadata to be written into the file. | |||
| [ | |||
| ['op_name_1', 'avg_time_1', 'stream_id_1'], | |||
| ['op_name_2', 'avg_time_2', 'stream_id_2'], | |||
| [...] | |||
| ] | |||
| """ | |||
| result_data.sort(key=lambda x: x[0]) | |||
| total_time = 0 | |||
| for item in result_data: | |||
| total_time += item[1] | |||
| result_data.append(["total op", total_time, 0]) | |||
| fwrite_format(self._output_filename, data_source=self._dst_file_title, is_start=True) | |||
| fwrite_format(self._output_filename, data_source=tabulate(result_data, | |||
| self._dst_file_column_title, | |||
| tablefmt='simple')) | |||
| def _write_timeline_data_into_file(self, timeline_data): | |||
| """ | |||
| Write the timeline information into the file, including | |||
| operator name, stream id, start time and duration. | |||
| Args: | |||
| timeline_data (list): The metadata to be written into the file. | |||
| [ | |||
| ['op_name_1', 'stream_id_1', 'start_time_1', 'durarion_1'], | |||
| ['op_name_2', 'stream_id_2', 'start_time_2', 'durarion_2'], | |||
| [...] | |||
| ] | |||
| """ | |||
| # sorted by start times | |||
| timeline_data.sort(key=lambda x: float(x[2])) | |||
| filename = 'output_timeline_data_{}.txt'.format(self._device_id) | |||
| file_path = os.path.join(self._output_path, filename) | |||
| file_path = validate_and_normalize_path(file_path, raise_key='Invalid file path of timeline data.') | |||
| # write to file | |||
| fwrite_format(file_path, data_source=self._timeline_file_title, is_start=True) | |||
| fwrite_format(file_path, data_source=tabulate( | |||
| timeline_data, self._timeline_file_column_title, tablefmt='simple' | |||
| )) | |||
| def _calculate_op_execution_time(self): | |||
| """ | |||
| Calculate the execution time of each operator. | |||
| Returns: | |||
| list, including the intermediate data of op execution time. | |||
| """ | |||
| tmp_result_data = [] | |||
| op_map_list = self._get_op_task_id_map() | |||
| cur_index = 0 | |||
| length = len(op_map_list) | |||
| min_cycle_counter = float("inf") | |||
| while cur_index < length: | |||
| if cur_index + 1 == length: | |||
| break | |||
| op_start = op_map_list[cur_index] | |||
| op_end = op_map_list[cur_index+1] | |||
| if op_start[1] == "Start" and op_end[1] == "End"\ | |||
| and op_start[0] == op_end[0]: | |||
| # op_name, task_id, cycle counter, stream_id | |||
| tmp_result_data.append([op_start[0], op_start[2], int(op_end[3]) - int(op_start[3]), op_start[4]]) | |||
| op_start = op_map_list[cur_index] | |||
| op_end = op_map_list[cur_index + 1] | |||
| if op_start.status == "Start" and op_end.status == "End" \ | |||
| and op_start.op_name == op_end.op_name: | |||
| op_start.duration = op_end.cycle_counter - op_start.cycle_counter | |||
| tmp_result_data.append(op_start) | |||
| cur_index += 2 | |||
| if not op_start.op_name.startswith("assign"): | |||
| min_cycle_counter = min(min_cycle_counter, op_start.cycle_counter) | |||
| else: | |||
| cur_index += 1 | |||
| op_name_time_dict = {} | |||
| op_name_steamid_dict = {} | |||
| op_name_count_dict = {} | |||
| op_name_task_dict = {} | |||
| # Update the value of minimum cycle counter. | |||
| self._min_cycle_counter = min_cycle_counter | |||
| # compute all op | |||
| for item in tmp_result_data: | |||
| if item[0] in op_name_time_dict.keys(): | |||
| op_name_time_dict[item[0]] += float(item[2])/1e5 # cycle counter/1*10^5 ms | |||
| if item[1] == op_name_task_dict[item[0]]: | |||
| op_name_count_dict[item[0]] += 1 | |||
| return tmp_result_data | |||
| else: | |||
| op_name_time_dict[item[0]] = float(item[2])/1e5 | |||
| op_name_steamid_dict[item[0]] = item[-1] | |||
| op_name_task_dict[item[0]] = item[1] | |||
| op_name_count_dict[item[0]] = 1 | |||
| def _convert_op_time_unit(self, op_data_list, op_name_time_dict, op_name_stream_dict, | |||
| op_name_count_dict, op_name_task_dict, op_name_start_time): | |||
| """ | |||
| Calculate the execution time of operator and convert it into millisecond. | |||
| for op_name, time in op_name_time_dict.items(): | |||
| if op_name in op_name_steamid_dict.keys(): | |||
| stream_id = op_name_steamid_dict[op_name] | |||
| avg_time = time / op_name_count_dict[op_name] | |||
| result_data.append([op_name, avg_time, stream_id]) | |||
| Args: | |||
| op_data_list (list): The list of operator metadata. | |||
| op_name_time_dict (dict): The mapping relation of operator name and its execution time. | |||
| op_name_stream_dict (dict): The mapping relation of operator name and its stream id. | |||
| op_name_count_dict (dict): The mapping relation of operator name and its count. | |||
| op_name_task_dict (dict): The mapping relation of operator name and its task id. | |||
| op_name_start_time (dict): The mapping relation of operator name and its start time. | |||
| """ | |||
| factor = 1e5 | |||
| for item in op_data_list: | |||
| op_name = item.op_name | |||
| # Unit conversion: converting the cycle counter into ms. | |||
| op_start_time_str = str((item.cycle_counter - self._min_cycle_counter) / factor) | |||
| op_duration = item.duration / factor | |||
| op_duration_str = str(item.duration / factor) | |||
| if op_name in op_name_time_dict.keys(): | |||
| op_name_time_dict[op_name] += op_duration | |||
| if item.task_id == op_name_task_dict[op_name]: | |||
| op_name_count_dict[op_name] += 1 | |||
| op_name_start_time[op_name].append( | |||
| (op_start_time_str, op_duration_str) | |||
| ) | |||
| result_data.sort(key=lambda x: x[0]) | |||
| total_time = 0 | |||
| for item in result_data: | |||
| total_time += item[1] | |||
| result_data.append(["total op", total_time, 0]) | |||
| else: | |||
| op_name_time_dict[op_name] = op_duration | |||
| op_name_stream_dict[op_name] = item.stream_id | |||
| op_name_task_dict[op_name] = item.task_id | |||
| op_name_count_dict[op_name] = 1 | |||
| op_name_start_time[op_name] = [] | |||
| op_name_start_time[op_name].append( | |||
| (op_start_time_str, op_duration_str) | |||
| ) | |||
| fwrite_format(self._output_filename, data_source=self._dst_file_title, is_start=True) | |||
| fwrite_format(self._output_filename, data_source=tabulate(result_data, | |||
| self._dst_file_column_title, | |||
| tablefmt='simple')) | |||
| def write_min_cycle_counter_to_file(self): | |||
| """Write minimum cycle counter into a txt file.""" | |||
| min_cycle_counter = self._min_cycle_counter | |||
| file_name = 'min_cycle_counter_' + self._device_id + '.txt' | |||
| file_path = os.path.join(self._output_path, file_name) | |||
| file_path = validate_and_normalize_path( | |||
| file_path, raise_key='Invalid min cycle counter file path.' | |||
| ) | |||
| with open(file_path, 'w') as file: | |||
| file.write(str(min_cycle_counter)) | |||
| @@ -16,11 +16,14 @@ | |||
| import os | |||
| import time | |||
| from marshmallow import ValidationError | |||
| from tabulate import tabulate | |||
| from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory | |||
| from mindinsight.profiler.analyser.integrator import Integrator | |||
| from mindinsight.profiler.common._utils import get_file_names, fwrite_format | |||
| from mindinsight.profiler.common.exceptions.exceptions import ProfilerFileNotFoundException, \ | |||
| ProfilerIOException | |||
| from mindinsight.profiler.common.log import logger | |||
| from mindinsight.profiler.common.validator.checkparam import \ | |||
| check_bool, check_subgraph | |||
| @@ -76,6 +79,7 @@ class Profiler: | |||
| optypes_to_deal='', optypes_not_deal='Variable', job_id=""): | |||
| # get device_id and device_target | |||
| device_target = "" | |||
| dev_id = "" | |||
| try: | |||
| import mindspore.context as context | |||
| dev_id = str(context.get_context("device_id")) | |||
| @@ -83,7 +87,7 @@ class Profiler: | |||
| except ImportError: | |||
| logger.error("Profiling: fail to import context from mindspore.") | |||
| except ValueError as err: | |||
| logger.error("Profiling: fail to get context, %s", err.message) | |||
| logger.error("Profiling: fail to get context, %s", err) | |||
| if not dev_id: | |||
| dev_id = os.getenv('DEVICE_ID') | |||
| @@ -185,7 +189,10 @@ class Profiler: | |||
| # get op compute time from hwts data and framework data, write output_op_compute_time.txt | |||
| opcompute_output_filename = self._opcompute_output_filename_target + self._dev_id + ".txt" | |||
| opcompute_output_filename = os.path.join(self._output_path, opcompute_output_filename) | |||
| optime_parser = OPComputeTimeParser(hwts_output_filename, opcompute_output_filename, op_task_dict) | |||
| optime_parser = OPComputeTimeParser( | |||
| hwts_output_filename, opcompute_output_filename, | |||
| op_task_dict, self._output_path, self._dev_id | |||
| ) | |||
| optime_parser.execute() | |||
| # parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt | |||
| @@ -216,6 +223,9 @@ class Profiler: | |||
| # analyse step trace info | |||
| self._analyse_step_trace(source_path, framework_parser) | |||
| # analyse timeline info | |||
| self._analyse_timeline() | |||
| def _analyse_step_trace(self, source_path, framework_parser): | |||
| """ | |||
| Analyse step trace data and save the result. | |||
| @@ -240,7 +250,34 @@ class Profiler: | |||
| parser.parse_and_save() | |||
| # print parser result | |||
| parser.show() | |||
| logger.info("Finish save the intermediate result %s", step_trace_intermediate_file_path) | |||
| def _analyse_timeline(self): | |||
| """ | |||
| Analyse and parse timeline info. | |||
| """ | |||
| # Get framework info | |||
| aicoredetail_analyser = AnalyserFactory.instance().get_analyser( | |||
| 'aicore_detail', self._output_path, self._dev_id | |||
| ) | |||
| framework_info = aicoredetail_analyser.query() | |||
| # Get all reduce info | |||
| step_trace_analyser = AnalyserFactory.instance().get_analyser( | |||
| 'step_trace', self._output_path, self._dev_id | |||
| ) | |||
| all_reduce_info = step_trace_analyser.query_for_all_reduce() | |||
| # Get timeline info | |||
| timeline_analyser = AnalyserFactory.instance().get_analyser( | |||
| 'timeline', self._output_path, self._dev_id | |||
| ) | |||
| timeline_analyser.add_framework_info(framework_info) | |||
| timeline_analyser.add_all_reduce_info(all_reduce_info) | |||
| try: | |||
| timeline_analyser.write_timeline() | |||
| timeline_analyser.write_timeline_summary() | |||
| except (ProfilerIOException, ProfilerFileNotFoundException, ValidationError) as err: | |||
| logger.warning('Fail to write timeline data: %s', err) | |||
| def __del__(self): | |||
| """Disable the profiling collection service, called after training.""" | |||
| @@ -72,7 +72,6 @@ class TestProfilerAnalyse(TestCase): | |||
| def test_step_trace_file_exist(self): | |||
| """Test the step trace file has been generated""" | |||
| output_files = os.listdir(self.profiler) | |||
| assert len(output_files) == 9 | |||
| assert self.step_trace_file in output_files | |||
| @pytest.mark.level0 | |||