Browse Source

!210 Add set context rule for Profiler example

Merge pull request !210 from wangyue/r0.3_profiler_set_context
pull/210/MERGE
mindspore-ci-bot Gitee 5 years ago
parent
commit
359a80bb80
2 changed files with 14 additions and 8 deletions
  1. +10
    -8
      mindinsight/profiler/README.md
  2. +4
    -0
      mindinsight/profiler/profiling.py

+ 10
- 8
mindinsight/profiler/README.md View File

@@ -12,16 +12,18 @@ The Profiler enables users to:
To enable profiling on MindSpore, the MindInsight Profiler apis should be added to the script:

1. Import MindInsight Profiler
```
from mindinsight.profiler import Profiler
2. Initialize the Profiler before training
```
2. Initialize the Profiler after set context, and before the network initialization.

Example:
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=int(os.environ["DEVICE_ID"]))
profiler = Profiler(output_path="./data", is_detail=True, is_show_op_path=False, subgraph='All')
Parameters including:
net = Net()
Parameters of Profiler including:
subgraph (str): Defines which subgraph to monitor and analyse, can be 'all', 'Default', 'Gradients'.
is_detail (bool): Whether to show profiling data for op_instance level, only show optype level if False.
@@ -31,9 +33,9 @@ To enable profiling on MindSpore, the MindInsight Profiler apis should be added
will deal with all op if null.
optypes_not_deal (list): Op type names, the data of which optype will not be collected and analysed.

3. Call Profiler.analyse() at the end of the program
3. Call ```Profiler.analyse()``` at the end of the program

Profiler.analyse() will collect profiling data and generate the analysis results.
```Profiler.analyse()``` will collect profiling data and generate the analysis results.

After training, we can open MindInsight UI to analyse the performance.



+ 4
- 0
mindinsight/profiler/profiling.py View File

@@ -50,6 +50,8 @@ class Profiler:

Examples:
>>> from mindinsight.profiler import Profiler
>>> context.set_context(mode=context.GRAPH_MODE, device_target=“Ascend”,
>>> device_id=int(os.environ["DEVICE_ID"]))
>>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data')
>>> model = Model(train_network)
>>> dataset = get_dataset()
@@ -127,6 +129,8 @@ class Profiler:

Examples:
>>> from mindinsight.profiler import Profiler
>>> context.set_context(mode=context.GRAPH_MODE, device_target=“Ascend”,
>>> device_id=int(os.environ["DEVICE_ID"]))
>>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data')
>>> model = Model(train_network)
>>> dataset = get_dataset()


Loading…
Cancel
Save