|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """This file is used to define the model lineage python api."""
- import numpy as np
- import pandas as pd
-
- from mindinsight.lineagemgr.common.exceptions.exceptions import LineageQuerySummaryDataError, \
- LineageQuerierParamException, LineageSearchConditionParamError, LineageParamTypeError, LineageSummaryParseException
- from mindinsight.lineagemgr.common.log import logger as log
- from mindinsight.lineagemgr.common.validator.model_parameter import SearchModelConditionParameter
- from mindinsight.lineagemgr.common.validator.validate import validate_search_model_condition, validate_condition
- from mindinsight.lineagemgr.lineage_parser import LineageOrganizer
- from mindinsight.lineagemgr.querier.querier import Querier
- from mindinsight.optimizer.common.enums import ReasonCode
- from mindinsight.optimizer.utils.utils import is_simple_numpy_number
- from mindinsight.utils.exceptions import MindInsightException
-
- METRIC_PREFIX = "[M]"
- USER_DEFINED_PREFIX = "[U]"
-
- USER_DEFINED_INFO_LIMIT = 100
-
-
- def filter_summary_lineage(data_manager, search_condition=None):
- """
- Filter summary lineage from data_manager or parsing from summaries.
-
- One of data_manager or summary_base_dir needs to be specified. Support getting
- super_lineage_obj from data_manager or parsing summaries by summary_base_dir.
-
- Args:
- data_manager (DataManager): Data manager defined as
- mindinsight.datavisual.data_transform.data_manager.DataManager
- search_condition (dict): The search condition.
- """
- search_condition = {} if search_condition is None else search_condition
-
- try:
- validate_condition(search_condition)
- validate_search_model_condition(SearchModelConditionParameter, search_condition)
- except MindInsightException as error:
- log.error(str(error))
- log.exception(error)
- raise LineageSearchConditionParamError(str(error.message))
-
- try:
- lineage_objects = LineageOrganizer(data_manager).super_lineage_objs
- result = Querier(lineage_objects).filter_summary_lineage(condition=search_condition)
- except LineageSummaryParseException:
- result = {'object': [], 'count': 0}
- except (LineageQuerierParamException, LineageParamTypeError) as error:
- log.error(str(error))
- log.exception(error)
- raise LineageQuerySummaryDataError("Filter summary lineage failed.")
-
- return result
-
-
- def get_flattened_lineage(data_manager, search_condition=None):
- """
- Get lineage data in a table from data manager.
-
- Args:
- data_manager (mindinsight.datavisual.data_manager.DataManager): An object to manage loading.
- search_condition (dict): The search condition.
-
- Returns:
- Dict[str, list]: A dict contains keys and values from lineages.
-
- """
- flatten_dict, user_count = {'train_id': []}, 0
- lineages = filter_summary_lineage(data_manager=data_manager, search_condition=search_condition).get("object", [])
- for index, lineage in enumerate(lineages):
- flatten_dict['train_id'].append(lineage.get("summary_dir"))
- for key, val in _flatten_lineage(lineage.get('model_lineage', {})):
- if key.startswith(USER_DEFINED_PREFIX) and key not in flatten_dict:
- if user_count > USER_DEFINED_INFO_LIMIT:
- log.warning("The user_defined_info has reached the limit %s. %r is ignored",
- USER_DEFINED_INFO_LIMIT, key)
- continue
- user_count += 1
- if key not in flatten_dict:
- flatten_dict[key] = [None] * index
- flatten_dict[key].append(_parse_value(val))
- for vals in flatten_dict.values():
- if len(vals) == index:
- vals.append(None)
- return flatten_dict
-
-
- def _flatten_lineage(lineage):
- """Flatten the lineage."""
- for key, val in lineage.items():
- if key == 'metric':
- for k, v in val.items():
- yield f'{METRIC_PREFIX}{k}', v
- elif key == 'user_defined':
- for k, v in val.items():
- yield f'{USER_DEFINED_PREFIX}{k}', v
- else:
- yield key, val
-
-
- def _parse_value(val):
- """Parse value."""
- if isinstance(val, str) and val.lower() in ['nan', 'inf']:
- return np.nan
- return val
-
-
- class LineageTable:
- """Wrap lineage data in a table."""
- _LOSS_NAME = "loss"
- _NOT_TUNABLE_NAMES = [_LOSS_NAME, "train_id", "device_num", "model_size",
- "test_dataset_count", "train_dataset_count"]
-
- def __init__(self, df: pd.DataFrame):
- self._df = df
- self.train_ids = self._df["train_id"].tolist()
- self._drop_columns_info = []
- self._remove_unsupported_columns()
-
- def _remove_unsupported_columns(self):
- """Remove unsupported columns."""
- columns_to_drop = []
- for name, data in self._df.iteritems():
- if not is_simple_numpy_number(data.dtype):
- columns_to_drop.append(name)
-
- if columns_to_drop:
- log.debug("Unsupported columns: %s", columns_to_drop)
- self._df = self._df.drop(columns=columns_to_drop)
-
- for name in columns_to_drop:
- if not name.startswith(USER_DEFINED_PREFIX):
- continue
- self._drop_columns_info.append({
- "name": name,
- "unselected": True,
- "reason_code": ReasonCode.NOT_ALL_NUMBERS.value
- })
-
- @property
- def target_names(self):
- """Get names for optimize targets (eg loss, accuracy)."""
- target_names = [name for name in self._df.columns if name.startswith(METRIC_PREFIX)]
- if self._LOSS_NAME in self._df.columns:
- target_names.append(self._LOSS_NAME)
- return target_names
-
- @property
- def hyper_param_names(self, tunable=True):
- """Get hyper param names."""
- blocked_names = self._get_blocked_names(tunable)
-
- hyper_param_names = [
- name for name in self._df.columns
- if not name.startswith(METRIC_PREFIX) and name not in blocked_names]
-
- if self._LOSS_NAME in hyper_param_names:
- hyper_param_names.remove(self._LOSS_NAME)
-
- return hyper_param_names
-
- def _get_blocked_names(self, tunable):
- if tunable:
- block_names = self._NOT_TUNABLE_NAMES
- else:
- block_names = []
- return block_names
-
- @property
- def user_defined_hyper_param_names(self):
- """Get user defined hyper param names."""
- names = [name for name in self._df.columns if name.startswith(USER_DEFINED_PREFIX)]
- return names
-
- def get_column(self, name):
- """
- Get data for specified column.
- Args:
- name (str): column name.
-
- Returns:
- np.ndarray, specified column.
-
- """
- return self._df[name]
-
- def get_column_values(self, name):
- """
- Get data for specified column.
- Args:
- name (str): column name.
-
- Returns:
- list, specified column data. If value is np.nan, transform to None.
-
- """
- return [None if np.isnan(num) else num for num in self._df[name].tolist()]
-
- @property
- def dataframe_data(self):
- """Get the DataFrame."""
- return self._df
-
- @property
- def drop_column_info(self):
- """Get dropped columns info."""
- return self._drop_columns_info
-
-
- def get_lineage_table(data_manager, search_condition=None):
- """Get lineage table from data_manager."""
- lineage_table = get_flattened_lineage(data_manager, search_condition)
- lineage_table = LineageTable(pd.DataFrame(lineage_table))
-
- return lineage_table
|