|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """
- Function:
- Test the various combinations based on LeNet.
- """
- import os
- import pytest
- from mindinsight.wizard.base.utility import load_network_maker
-
- NETWORK_NAME = 'lenet'
-
-
- class TestLeNet:
- """Test LeNet Module."""
-
- @pytest.mark.level0
- @pytest.mark.env_single
- @pytest.mark.platform_x86_cpu
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.parametrize('params', [{
- 'config': {'loss': 'SoftmaxCrossEntropyWithLogits',
- 'optimizer': 'Momentum',
- 'dataset': 'MNIST'},
- 'dataset_loader_name': 'MnistDataset'
- }, {
- 'config': {'loss': 'SoftmaxCrossEntropyWithLogits',
- 'optimizer': 'Adam',
- 'dataset': 'MNIST'},
- 'dataset_loader_name': 'MnistDataset'
- }, {
- 'config': {'loss': 'SoftmaxCrossEntropyWithLogits',
- 'optimizer': 'SGD',
- 'dataset': 'MNIST'},
- 'dataset_loader_name': 'MnistDataset'
- }])
- def test_combinations(self, params):
- """Do testing."""
-
- network_maker_name = NETWORK_NAME
- config = params['config']
- dataset_loader_name = params['dataset_loader_name']
-
- network_maker = load_network_maker(network_maker_name)
- network_maker.configure(config)
-
- self.source_files = network_maker.generate(**config)
-
- self.check_scripts()
- self.check_src(dataset_loader_name, config)
- self.check_train_eval_readme(config['loss'], config['optimizer'])
-
- def check_src(self, dataset_name, config):
- """Check src file."""
- dataset_is_right = False
- config_optimizer_is_right = False
- network_is_right = False
- for source_file in self.source_files:
- if source_file.file_relative_path == 'src/dataset.py':
- if dataset_name in source_file.content:
- dataset_is_right = True
- if source_file.file_relative_path == os.path.join('src', NETWORK_NAME.lower() + '.py'):
- network_is_right = True
- if source_file.file_relative_path == 'src/config.py':
- content = source_file.content
-
- if config['optimizer'] == 'Momentum':
- if "'lr': 0.01" in content and \
- "'momentum': 0.9" in content:
- config_optimizer_is_right = True
- elif config['optimizer'] == 'SGD':
- if "'lr': 0.01" in content:
- config_optimizer_is_right = True
- else:
- if "'lr': 0.001" in content:
- config_optimizer_is_right = True
- assert dataset_is_right
- assert config_optimizer_is_right
- assert network_is_right
-
- def check_train_eval_readme(self, loss_name, optimizer_name):
- """Check train and eval."""
-
- train_is_right = False
- eval_is_right = False
- readme_is_right = False
- for source_file in self.source_files:
- if source_file.file_relative_path == 'train.py':
- content = source_file.content
- if 'LeNet5' in content and loss_name in content and optimizer_name in content:
- train_is_right = True
-
- if source_file.file_relative_path == 'eval.py':
- content = source_file.content
- if 'LeNet5' in content and loss_name in content:
- eval_is_right = True
-
- if source_file.file_relative_path == 'README.md':
- content = source_file.content
- if 'LeNet' in content:
- readme_is_right = True
- assert train_is_right
- assert eval_is_right
- assert readme_is_right
-
- def check_scripts(self):
- """Check scripts."""
-
- exist_run_distribute_train = False
- exist_run_distribute_train_gpu = False
- exist_run_eval = False
- exist_run_eval_gpu = False
- exist_run_standalone_train = False
- exist_run_standalone_train_gpu = False
-
- for source_file in self.source_files:
- if source_file.file_relative_path == 'scripts/run_distribute_train.sh':
- exist_run_distribute_train = True
- if source_file.file_relative_path == 'scripts/run_distribute_train_gpu.sh':
- exist_run_distribute_train_gpu = True
- if source_file.file_relative_path == 'scripts/run_eval.sh':
- exist_run_eval = True
- if source_file.file_relative_path == 'scripts/run_eval_gpu.sh':
- exist_run_eval_gpu = True
- if source_file.file_relative_path == 'scripts/run_standalone_train.sh':
- exist_run_standalone_train = True
- if source_file.file_relative_path == 'scripts/run_standalone_train_gpu.sh':
- exist_run_standalone_train_gpu = True
-
- assert exist_run_distribute_train
- assert exist_run_distribute_train_gpu
- assert exist_run_eval
- assert exist_run_eval_gpu
- assert exist_run_standalone_train
- assert exist_run_standalone_train_gpu
|