You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

scalars_processor.py 1.7 kB

5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Scalar Processor APIs."""
  16. from mindinsight.datavisual.common.validation import Validation
  17. from mindinsight.datavisual.processors.base_processor import BaseProcessor
  18. class ScalarsProcessor(BaseProcessor):
  19. """Scalar Processor."""
  20. def get_metadata_list(self, train_id, tag):
  21. """
  22. Builds a JSON-serializable object with information about scalars.
  23. Args:
  24. train_id (str): The ID of the events data.
  25. tag (str): The name of the tag the scalars all belonging to.
  26. Returns:
  27. list[dict], a list of dictionaries containing the `wall_time`, `step`, `value` for each scalar.
  28. """
  29. Validation.check_param_empty(train_id=train_id, tag=tag)
  30. job_response = []
  31. tensors = self._data_manager.list_tensors(train_id, tag)
  32. for tensor in tensors:
  33. job_response.append({
  34. 'wall_time': tensor.wall_time,
  35. 'step': tensor.step,
  36. 'value': tensor.value})
  37. return dict(metadatas=job_response)

MindInsight为MindSpore提供了简单易用的调优调试能力。在训练过程中,可以将标量、张量、图像、计算图、模型超参、训练耗时等数据记录到文件中,通过MindInsight可视化页面进行查看及分析。

Contributors (1)