You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

explain_parser.py 9.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. File parser for MindExplain data.
  17. This module is used to parse the MindExplain log file.
  18. """
  19. from collections import namedtuple
  20. from google.protobuf.message import DecodeError
  21. from mindinsight.datavisual.common import exceptions
  22. from mindinsight.explainer.common.enums import ExplainFieldsEnum
  23. from mindinsight.explainer.common.log import logger
  24. from mindinsight.datavisual.data_access.file_handler import FileHandler
  25. from mindinsight.datavisual.data_transform.ms_data_loader import _SummaryParser
  26. from mindinsight.datavisual.proto_files import mindinsight_summary_pb2 as summary_pb2
  27. from mindinsight.utils.exceptions import UnknownError
  28. HEADER_SIZE = 8
  29. CRC_STR_SIZE = 4
  30. MAX_EVENT_STRING = 500000000
  31. BenchmarkContainer = namedtuple('BenchmarkContainer', ['benchmark', 'status'])
  32. MetadataContainer = namedtuple('MetadataContainer', ['metadata', 'status'])
  33. InferfenceContainer = namedtuple('InferenceContainer', ['ground_truth_prob',
  34. 'ground_truth_prob_sd',
  35. 'ground_truth_prob_itl95_low',
  36. 'ground_truth_prob_itl95_hi',
  37. 'predicted_label',
  38. 'predicted_prob',
  39. 'predicted_prob_sd',
  40. 'predicted_prob_itl95_low',
  41. 'predicted_prob_itl95_hi'])
  42. SampleContainer = namedtuple('SampleContainer', ['sample_id', 'image_path', 'ground_truth_label', 'inference',
  43. 'explanation', 'status'])
  44. class ExplainParser(_SummaryParser):
  45. """The summary file parser."""
  46. def __init__(self, summary_dir):
  47. super(ExplainParser, self).__init__(summary_dir)
  48. self._latest_filename = ''
  49. def parse_explain(self, filenames):
  50. """
  51. Load summary file and parse file content.
  52. Args:
  53. filenames (list[str]): File name list.
  54. Returns:
  55. bool, True if all the summary files are finished loading.
  56. """
  57. summary_files = self.sort_files(filenames)
  58. is_end = False
  59. is_clean = False
  60. event_data = {}
  61. filename = summary_files[-1]
  62. file_path = FileHandler.join(self._summary_dir, filename)
  63. if filename != self._latest_filename:
  64. self._summary_file_handler = FileHandler(file_path, 'rb')
  65. self._latest_filename = filename
  66. self._latest_file_size = 0
  67. is_clean = True
  68. new_size = FileHandler.file_stat(file_path).size
  69. if new_size == self._latest_file_size:
  70. is_end = True
  71. return is_clean, is_end, event_data
  72. while True:
  73. start_offset = self._summary_file_handler.offset
  74. try:
  75. event_str = self.event_load(self._summary_file_handler)
  76. if event_str is None:
  77. self._summary_file_handler.reset_offset(start_offset)
  78. is_end = True
  79. return is_clean, is_end, event_data
  80. if len(event_str) > MAX_EVENT_STRING:
  81. logger.warning("file_path: %s, event string: %d exceeds %d and drop it.",
  82. self._summary_file_handler.file_path, len(event_str), MAX_EVENT_STRING)
  83. continue
  84. field_list, tensor_value_list = self._event_decode(event_str)
  85. for field, tensor_value in zip(field_list, tensor_value_list):
  86. event_data[field] = tensor_value
  87. logger.info("Parse summary file offset %d, file path: %s.", self._latest_file_size, file_path)
  88. return is_clean, is_end, event_data
  89. except exceptions.CRCFailedError:
  90. self._summary_file_handler.reset_offset(start_offset)
  91. is_end = True
  92. logger.warning("Check crc failed and ignore this file, file_path=%s, "
  93. "offset=%s.", self._summary_file_handler.file_path, self._summary_file_handler.offset)
  94. return is_clean, is_end, event_data
  95. except (OSError, DecodeError, exceptions.MindInsightException) as ex:
  96. is_end = True
  97. logger.warning("Parse log file fail, and ignore this file, detail: %r,"
  98. "file path: %s.", str(ex), self._summary_file_handler.file_path)
  99. return is_clean, is_end, event_data
  100. except Exception as ex:
  101. logger.exception(ex)
  102. raise UnknownError(str(ex))
  103. @staticmethod
  104. def _event_decode(event_str):
  105. """
  106. Transform `Event` data to tensor_event and update it to EventsData.
  107. Args:
  108. event_str (str): Message event string in summary proto, data read from file handler.
  109. """
  110. logger.debug("Start to parse event string. Event string len: %s.", len(event_str))
  111. event = summary_pb2.Event.FromString(event_str)
  112. logger.debug("Deserialize event string completed.")
  113. fields = {
  114. 'sample_id': ExplainFieldsEnum.SAMPLE_ID,
  115. 'benchmark': ExplainFieldsEnum.BENCHMARK,
  116. 'metadata': ExplainFieldsEnum.METADATA
  117. }
  118. tensor_event_value = getattr(event, 'explain')
  119. field_list = []
  120. tensor_value_list = []
  121. for field in fields:
  122. if not getattr(tensor_event_value, field, False):
  123. continue
  124. if ExplainFieldsEnum.METADATA.value == field and not tensor_event_value.metadata.label:
  125. continue
  126. tensor_value = None
  127. if field == ExplainFieldsEnum.SAMPLE_ID.value:
  128. tensor_value = ExplainParser._add_image_data(tensor_event_value)
  129. elif field == ExplainFieldsEnum.BENCHMARK.value:
  130. tensor_value = ExplainParser._add_benchmark(tensor_event_value)
  131. elif field == ExplainFieldsEnum.METADATA.value:
  132. tensor_value = ExplainParser._add_metadata(tensor_event_value)
  133. logger.debug("Event generated, label is %s, step is %s.", field, event.step)
  134. field_list.append(field)
  135. tensor_value_list.append(tensor_value)
  136. return field_list, tensor_value_list
  137. @staticmethod
  138. def _add_image_data(tensor_event_value):
  139. """
  140. Parse image data based on sample_id in Explain message
  141. Args:
  142. tensor_event_value: the object of Explain message
  143. """
  144. inference = InferfenceContainer(
  145. ground_truth_prob=tensor_event_value.inference.ground_truth_prob,
  146. ground_truth_prob_sd=tensor_event_value.inference.ground_truth_prob_sd,
  147. ground_truth_prob_itl95_low=tensor_event_value.inference.ground_truth_prob_itl95_low,
  148. ground_truth_prob_itl95_hi=tensor_event_value.inference.ground_truth_prob_itl95_hi,
  149. predicted_label=tensor_event_value.inference.predicted_label,
  150. predicted_prob=tensor_event_value.inference.predicted_prob,
  151. predicted_prob_sd=tensor_event_value.inference.predicted_prob_sd,
  152. predicted_prob_itl95_low=tensor_event_value.inference.predicted_prob_itl95_low,
  153. predicted_prob_itl95_hi=tensor_event_value.inference.predicted_prob_itl95_hi
  154. )
  155. sample_data = SampleContainer(
  156. sample_id=tensor_event_value.sample_id,
  157. image_path=tensor_event_value.image_path,
  158. ground_truth_label=tensor_event_value.ground_truth_label,
  159. inference=inference,
  160. explanation=tensor_event_value.explanation,
  161. status=tensor_event_value.status
  162. )
  163. return sample_data
  164. @staticmethod
  165. def _add_benchmark(tensor_event_value):
  166. """
  167. Parse benchmark data from Explain message.
  168. Args:
  169. tensor_event_value: the object of Explain message
  170. Returns:
  171. benchmark_data: An object containing benchmark.
  172. """
  173. benchmark_data = BenchmarkContainer(
  174. benchmark=tensor_event_value.benchmark,
  175. status=tensor_event_value.status
  176. )
  177. return benchmark_data
  178. @staticmethod
  179. def _add_metadata(tensor_event_value):
  180. """
  181. Parse metadata from Explain message.
  182. Args:
  183. tensor_event_value: the object of Explain message
  184. Returns:
  185. benchmark_data: An object containing metadata.
  186. """
  187. metadata_value = MetadataContainer(
  188. metadata=tensor_event_value.metadata,
  189. status=tensor_event_value.status
  190. )
  191. return metadata_value