You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_alexnet.py 9.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225
  1. # Copyright 2020-2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. Function:
  17. Test the various combinations based on AlexNet.
  18. """
  19. import os
  20. import shutil
  21. import pytest
  22. from mindinsight.wizard.base.utility import load_network_maker
  23. NETWORK_NAME = 'alexnet'
  24. class TestAlexNet:
  25. """Test AlexNet Module."""
  26. @pytest.mark.level0
  27. @pytest.mark.env_single
  28. @pytest.mark.platform_x86_cpu
  29. @pytest.mark.platform_arm_ascend_training
  30. @pytest.mark.platform_x86_gpu_training
  31. @pytest.mark.platform_x86_ascend_training
  32. @pytest.mark.parametrize('params', [{
  33. 'config': {'loss': 'SoftmaxCrossEntropyWithLogits',
  34. 'optimizer': 'Momentum',
  35. 'dataset': 'Cifar10'},
  36. 'dataset_loader_name': 'Cifar10Dataset'
  37. }, {
  38. 'config': {'loss': 'SoftmaxCrossEntropyWithLogits',
  39. 'optimizer': 'Adam',
  40. 'dataset': 'Cifar10'},
  41. 'dataset_loader_name': 'Cifar10Dataset'
  42. }, {
  43. 'config': {'loss': 'SoftmaxCrossEntropyWithLogits',
  44. 'optimizer': 'SGD',
  45. 'dataset': 'Cifar10'},
  46. 'dataset_loader_name': 'Cifar10Dataset'
  47. }, {
  48. 'config': {'loss': 'SoftmaxCrossEntropyWithLogits',
  49. 'optimizer': 'Momentum',
  50. 'dataset': 'ImageNet'},
  51. 'dataset_loader_name': 'ImageFolderDataset'
  52. }, {
  53. 'config': {'loss': 'SoftmaxCrossEntropyWithLogits',
  54. 'optimizer': 'Adam',
  55. 'dataset': 'ImageNet'},
  56. 'dataset_loader_name': 'ImageFolderDataset'
  57. }, {
  58. 'config': {'loss': 'SoftmaxCrossEntropyWithLogits',
  59. 'optimizer': 'SGD',
  60. 'dataset': 'ImageNet'},
  61. 'dataset_loader_name': 'ImageFolderDataset'
  62. }])
  63. def test_combinations(self, params):
  64. """Do testing."""
  65. network_maker_name = NETWORK_NAME
  66. config = params['config']
  67. dataset_loader_name = params['dataset_loader_name']
  68. network_maker = load_network_maker(network_maker_name)
  69. network_maker.configure(config)
  70. source_files = network_maker.generate(**config)
  71. self.output_dir = os.path.realpath('test_folder')
  72. for source_file in source_files:
  73. source_file.write(self.output_dir)
  74. try:
  75. self.check_scripts()
  76. self.check_src(dataset_loader_name, config)
  77. self.check_train_eval_readme(config['dataset'], config['loss'], config['optimizer'])
  78. finally:
  79. shutil.rmtree(self.output_dir)
  80. def check_src(self, dataset_name, config):
  81. """Check src file."""
  82. unexpected_file_exists = False
  83. dataset_is_right = False
  84. config_dataset_is_right = False
  85. config_optimizer_is_right = False
  86. network_is_right = False
  87. generator_lr_is_right = False
  88. sub_output_dir_list = os.walk(self.output_dir)
  89. for sub_output_dir in sub_output_dir_list:
  90. for sub_output_file in sub_output_dir[-1]:
  91. content_dir = os.path.relpath(os.path.join(sub_output_dir[0], sub_output_file),
  92. self.output_dir)
  93. try:
  94. with open(os.path.realpath(os.path.join(self.output_dir, content_dir)), "r",
  95. encoding="utf-8") as file:
  96. content = file.read()
  97. if content_dir == os.path.normpath('src/dataset.py') and dataset_name in content:
  98. dataset_is_right = True
  99. elif content_dir == os.path.join('src', NETWORK_NAME.lower() + '.py'):
  100. network_is_right = True
  101. elif content_dir == os.path.normpath('src/generator_lr.py'):
  102. generator_lr_is_right = True
  103. elif content_dir == os.path.normpath('src/config.py'):
  104. config_dataset_is_right = self._check_config_dataset(config, content)
  105. config_optimizer_is_right = self._check_config_optimizer(config, content)
  106. except IOError:
  107. unexpected_file_exists = True
  108. assert not unexpected_file_exists
  109. assert dataset_is_right
  110. assert config_dataset_is_right
  111. assert config_optimizer_is_right
  112. assert network_is_right
  113. assert generator_lr_is_right
  114. @staticmethod
  115. def _check_config_dataset(config, content):
  116. """Check dataset in config."""
  117. config_dataset_is_right = False
  118. if config['dataset'] == 'Cifar10':
  119. if "'num_classes': 10" in content:
  120. config_dataset_is_right = True
  121. elif config['dataset'] == 'ImageNet':
  122. if "'num_classes': 1001" in content:
  123. config_dataset_is_right = True
  124. return config_dataset_is_right
  125. @staticmethod
  126. def _check_config_optimizer(config, content):
  127. """Check optimizer in config."""
  128. config_optimizer_is_right = False
  129. if config['optimizer'] == 'Momentum':
  130. if "'lr': 0.002" in content:
  131. config_optimizer_is_right = True
  132. elif config['optimizer'] == 'SGD':
  133. if "'lr': 0.01" in content:
  134. config_optimizer_is_right = True
  135. else:
  136. if "'lr': 0.001" in content:
  137. config_optimizer_is_right = True
  138. return config_optimizer_is_right
  139. def check_train_eval_readme(self, dataset_name, loss_name, optimizer_name):
  140. """Check train and eval."""
  141. unexpected_file_exists = False
  142. train_is_right = False
  143. eval_is_right = False
  144. readme_is_right = False
  145. sub_output_dir_list = os.walk(self.output_dir)
  146. for sub_output_dir in sub_output_dir_list:
  147. for sub_output_file in sub_output_dir[-1]:
  148. content_dir = os.path.relpath(os.path.join(sub_output_dir[0], sub_output_file),
  149. self.output_dir)
  150. try:
  151. with open(os.path.realpath(os.path.join(self.output_dir, content_dir)), "r",
  152. encoding="utf-8") as file:
  153. content = file.read()
  154. if content_dir == 'train.py' and 'alexnet' in content \
  155. and loss_name in content and optimizer_name in content:
  156. train_is_right = True
  157. elif content_dir == 'eval.py' and 'alexnet' in content and loss_name in content:
  158. eval_is_right = True
  159. elif content_dir == 'README.md' and 'AlexNet' in content and dataset_name in content:
  160. readme_is_right = True
  161. except IOError:
  162. unexpected_file_exists = True
  163. assert not unexpected_file_exists
  164. assert train_is_right
  165. assert eval_is_right
  166. assert readme_is_right
  167. def check_scripts(self):
  168. """Check scripts."""
  169. exist_run_distribute_train = False
  170. exist_run_distribute_train_gpu = False
  171. exist_run_eval = False
  172. exist_run_eval_gpu = False
  173. exist_run_standalone_train = False
  174. exist_run_standalone_train_gpu = False
  175. sub_output_dir_list = os.walk(self.output_dir)
  176. for sub_output_dir in sub_output_dir_list:
  177. for sub_output_file in sub_output_dir[-1]:
  178. content_dir = os.path.relpath(
  179. os.path.join(sub_output_dir[0], sub_output_file),
  180. self.output_dir)
  181. if content_dir == os.path.normpath('scripts/run_distribute_train.sh'):
  182. exist_run_distribute_train = True
  183. elif content_dir == os.path.normpath('scripts/run_distribute_train_gpu.sh'):
  184. exist_run_distribute_train_gpu = True
  185. elif content_dir == os.path.normpath('scripts/run_eval.sh'):
  186. exist_run_eval = True
  187. elif content_dir == os.path.normpath('scripts/run_eval_gpu.sh'):
  188. exist_run_eval_gpu = True
  189. elif content_dir == os.path.normpath('scripts/run_standalone_train.sh'):
  190. exist_run_standalone_train = True
  191. elif content_dir == os.path.normpath('scripts/run_standalone_train_gpu.sh'):
  192. exist_run_standalone_train_gpu = True
  193. assert exist_run_distribute_train
  194. assert exist_run_distribute_train_gpu
  195. assert exist_run_eval
  196. assert exist_run_eval_gpu
  197. assert exist_run_standalone_train
  198. assert exist_run_standalone_train_gpu