|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- Fuction:
- Test profiler to watch the performance of training.
- Usage:
- pytest tests/st/func/profiler
- """
- import os
- from unittest import mock
-
- import pytest
-
- from mindinsight.profiler import Profiler
- from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory
- from mindinsight.profiler.parser.framework_parser import FrameworkParser
- from tests.st.func.profiler.conftest import BASE_SUMMARY_DIR
- from tests.ut.profiler import RAW_DATA_BASE
-
-
- OP_GATHER_V2_INFO = {
- 'col_name': [
- 'op_name', 'op_type', 'avg_execution_time (ms)', 'subgraph', 'full_op_name',
- 'op_info'
- ],
- 'object': [
- [
- 'GatherV2-op55', 'GatherV2', 42.220212142857136, 'Default',
- 'Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/'
- '_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op55',
- {
- 'input_0': {
- 'format': 'DefaultFormat',
- 'data_type': 'NUMBER_TYPE_FLOAT32',
- 'shape': '184696,8'
- },
- 'input_1': {
- 'format': 'DefaultFormat',
- 'data_type': 'NUMBER_TYPE_INT32',
- 'shape': '128000,39'
- },
- 'output_0': {
- 'format': 'DefaultFormat',
- 'data_type': 'NUMBER_TYPE_FLOAT32',
- 'shape': '128000,39,8'
- }
- }
- ],
- [
- 'GatherV2-op33', 'GatherV2', 0.9352293333333332, 'Default',
- 'Default/network-TrainStepWrap/network-VirtualDatasetCellTriple/'
- '_backbone-NetWithLossClass/network-WideDeepModel/GatherV2-op33',
- {
- 'input_0': {
- 'format': 'DefaultFormat',
- 'data_type': 'NUMBER_TYPE_FLOAT32',
- 'shape': '184696,1'
- },
- 'input_1': {
- 'format': 'DefaultFormat',
- 'data_type': 'NUMBER_TYPE_INT32',
- 'shape': '16000,39'
- },
- 'output_0': {
- 'format': 'DefaultFormat',
- 'data_type': 'NUMBER_TYPE_FLOAT32',
- 'shape': '16000,39,1'
- }
- }
- ]
- ],
- 'size': 2
- }
-
-
- @pytest.mark.usefixtures('create_summary_dir')
- class TestOpAnalyser:
- """Test AICORE and AICPU analyser module."""
- JOB_ID = 'JOB3'
-
- @classmethod
- def setup_class(cls):
- """Generate parsed files."""
- cls.generate_parsed_files()
-
- def setup_method(self):
- """Create analyser."""
- self._analyser_aicore_type = AnalyserFactory.instance().get_analyser(
- 'aicore_type', self.profiler, '1')
- self._analyser_aicore_detail = AnalyserFactory.instance().get_analyser(
- 'aicore_detail', self.profiler, '1')
-
- @classmethod
- def generate_parsed_files(cls):
- """Test parse raw info about profiler."""
- cls.summary_dir = os.path.join(BASE_SUMMARY_DIR, 'normal_run')
- cls.profiler = os.path.join(cls.summary_dir, 'profiler')
- FrameworkParser._raw_data_dir = RAW_DATA_BASE
- if not os.path.exists(cls.summary_dir):
- os.makedirs(cls.summary_dir)
- Profiler._base_profiling_container_path = os.path.join(RAW_DATA_BASE, 'container')
- with mock.patch('mindinsight.profiler.profiling.PROFILING_LOG_BASE_PATH', RAW_DATA_BASE):
- profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False,
- output_path=cls.summary_dir, job_id=cls.JOB_ID)
- profiler.analyse()
-
- @pytest.mark.level0
- @pytest.mark.env_single
- @pytest.mark.platform_x86_cpu
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_ascend_training
- def test_query_aicore_type_1(self):
- """Test the function of querying AICORE operator type infomation."""
- expect_result = {
- 'col_name': ['op_type', 'execution_time (ms)', 'execution_frequency', 'percent'],
- 'object': [
- ['UnsortedSegmentSum', 44.607826, 2, 35.28],
- ['GatherV2', 43.155441, 2, 34.13],
- ['Slice', 20.376315, 16, 16.12],
- ['Concat', 5.808454, 4, 4.59],
- ['Split', 2.714277, 2, 2.15],
- ['MatMul', 1.936681, 15, 1.53],
- ['Mul', 1.902949, 32, 1.51],
- ['StridedSliceGrad', 1.506834, 2, 1.19],
- ['TransData', 1.115158, 30, 0.88],
- ['ReluGrad', 0.854069, 5, 0.68],
- ['Cast', 0.484685, 15, 0.38],
- ['ReLU', 0.483282, 5, 0.38],
- ['RealDiv', 0.422807, 15, 0.33],
- ['StridedSlice', 0.345569, 2, 0.27],
- ['Adam', 0.285936, 11, 0.23],
- ['BiasAdd', 0.189663, 5, 0.15],
- ['BiasAddGrad', 0.071681, 5, 0.06],
- ['Tile', 0.044158, 4, 0.03],
- ['ReduceSum', 0.030765, 5, 0.02],
- ['ApplyFtrl', 0.025454, 2, 0.02],
- ['AtomicAddrClean', 0.019369, 8, 0.02],
- ['AddN', 0.012836, 1, 0.01],
- ['Square', 0.009799, 1, 0.01],
- ['SigmoidCrossEntropyWithLogitsGrad', 0.009582, 2, 0.01],
- ['TensorAdd', 0.009218, 3, 0.01],
- ['SigmoidCrossEntropyWithLogits', 0.004809, 1, 0.0],
- ['ReduceMean', 0.004535, 1, 0.0],
- ['Assign', 0.002477, 2, 0.0],
- ['AssignAdd', 0.001688, 1, 0.0]
- ],
- 'size': 29
- }
- condition = {
- 'sort_condition': {
- 'name': 'execution_time',
- 'type': 'descending'
- }
- }
- result = self._analyser_aicore_type.query(condition)
- assert expect_result == result
-
- @pytest.mark.level0
- @pytest.mark.env_single
- @pytest.mark.platform_x86_cpu
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_ascend_training
- def test_query_aicore_type_2(self):
- """Test the function of querying AICORE operator type infomation."""
- expect_result = {
- 'col_name': ['op_type', 'execution_time (ms)', 'execution_frequency', 'percent'],
- 'object': [
- ['MatMul', 1.936681, 15, 1.53],
- ['Mul', 1.902949, 32, 1.51]
- ],
- 'size': 2
- }
- condition = {
- 'filter_condition': {
- 'op_type': {
- 'partial_match_str_in': ['Mul']
- }
- },
- 'sort_condition': {
- 'name': 'execution_time',
- 'type': 'descending'
- }
- }
- result = self._analyser_aicore_type.query(condition)
- assert expect_result == result
-
- @pytest.mark.level0
- @pytest.mark.env_single
- @pytest.mark.platform_x86_cpu
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.platform_x86_ascend_training
- def test_query_aicore_detail_1(self):
- """Test the function of querying AICORE operator detail infomation."""
- expect_result = OP_GATHER_V2_INFO
- condition = {
- 'filter_condition': {
- 'op_type': {
- 'in': ['GatherV2']
- }
- },
- 'sort_condition': {
- 'name': 'avg_execution_time',
- 'type': 'descending'
- },
- 'group_condition': {
- 'limit': 10,
- 'offset': 0
- }
- }
- result = self._analyser_aicore_detail.query(condition)
- assert expect_result == result
|