You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

log_operations.py 7.0 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. Log operations.
  17. """
  18. import json
  19. import os
  20. import time
  21. from mindinsight.datavisual.common.enums import PluginNameEnum
  22. from .log_generators.graph_log_generator import GraphLogGenerator
  23. from .log_generators.images_log_generator import ImagesLogGenerator
  24. from .log_generators.scalars_log_generator import ScalarsLogGenerator
  25. from .log_generators.histogram_log_generator import HistogramLogGenerator
  26. log_generators = {
  27. PluginNameEnum.GRAPH.value: GraphLogGenerator(),
  28. PluginNameEnum.IMAGE.value: ImagesLogGenerator(),
  29. PluginNameEnum.SCALAR.value: ScalarsLogGenerator(),
  30. PluginNameEnum.HISTOGRAM.value: HistogramLogGenerator()
  31. }
  32. class LogOperations:
  33. """Log Operations."""
  34. def __init__(self):
  35. self._step_num = 3
  36. self._tag_num = 2
  37. self._time_count = 0
  38. self._graph_base_path = os.path.join(os.path.dirname(__file__), "log_generators", "graph_base.json")
  39. def _get_steps(self):
  40. """Get steps."""
  41. return range(self._step_num)
  42. def _get_tags(self):
  43. """Get tags."""
  44. return ["%s%d" % ("tag_name_", i) for i in range(self._tag_num)]
  45. def create_summary(self, log_dir, steps_list, tag_name_list):
  46. """Create summary in log_dir."""
  47. metadata_dict = dict()
  48. timestamp = time.time() + self._time_count
  49. file_path = os.path.join(log_dir, f'test.summary.{int(timestamp)}')
  50. metadata_dict.update({"plugins": dict()})
  51. metadata_dict.update({"metadata": dict()})
  52. metadata_dict.update({"actual_values": dict()})
  53. for plugin_name in PluginNameEnum.list_members():
  54. metadata_dict["plugins"].update({plugin_name: list()})
  55. log_generator = log_generators.get(plugin_name)
  56. if plugin_name == PluginNameEnum.GRAPH.value:
  57. with open(self._graph_base_path, 'r') as load_f:
  58. graph_dict = json.load(load_f)
  59. values = log_generator.generate_log(file_path, graph_dict)
  60. metadata_dict["actual_values"].update({plugin_name: values})
  61. metadata_dict["plugins"][plugin_name].append("UUID str")
  62. else:
  63. for tag_name in tag_name_list:
  64. metadata, values = log_generator.generate_log(file_path, steps_list, tag_name)
  65. full_tag_name = f'{tag_name}/{plugin_name}'
  66. metadata_dict["metadata"].update({full_tag_name: metadata})
  67. metadata_dict["plugins"][plugin_name].append(full_tag_name)
  68. if plugin_name == PluginNameEnum.IMAGE.value:
  69. metadata_dict["actual_values"].update({full_tag_name: values})
  70. os.utime(file_path, (timestamp, timestamp))
  71. self._time_count += 1
  72. return metadata_dict
  73. def create_summary_logs(self, summary_base_dir, summary_dir_num, dir_prefix, start_index=0):
  74. """Create summary logs in summary_base_dir."""
  75. summary_metadata = dict()
  76. steps_list = self._get_steps()
  77. tag_name_list = self._get_tags()
  78. for i in range(start_index, summary_dir_num + start_index):
  79. log_dir = os.path.join(summary_base_dir, f'{dir_prefix}{i}')
  80. os.makedirs(log_dir)
  81. train_id = log_dir.replace(summary_base_dir, ".")
  82. metadata_dict = self.create_summary(log_dir, steps_list, tag_name_list)
  83. summary_metadata.update({train_id: metadata_dict})
  84. return summary_metadata
  85. def create_multiple_logs(self, summary_base_dir, dir_name, log_nums):
  86. """Create multiple logs in summary_base_dir."""
  87. metadata_dict = None
  88. steps_list = self._get_steps()
  89. tag_name_list = self._get_tags()
  90. log_dir = os.path.join(summary_base_dir, dir_name)
  91. os.makedirs(log_dir)
  92. train_id = log_dir.replace(summary_base_dir, ".")
  93. for _ in range(log_nums):
  94. metadata_dict = self.create_summary(log_dir, steps_list, tag_name_list)
  95. return {train_id: metadata_dict}
  96. def create_reservoir_log(self, summary_base_dir, dir_name, step_num):
  97. """Create reservoir log in summary_base_dir."""
  98. steps_list = range(step_num)
  99. tag_name_list = self._get_tags()
  100. log_dir = os.path.join(summary_base_dir, dir_name)
  101. os.makedirs(log_dir)
  102. train_id = log_dir.replace(summary_base_dir, ".")
  103. metadata_dict = self.create_summary(log_dir, steps_list, tag_name_list)
  104. return {train_id: metadata_dict}
  105. def generate_log(self, plugin_name, log_dir, log_settings=None, valid=True):
  106. """
  107. Generate log for ut.
  108. Args:
  109. plugin_name (str): Plugin name, contains 'graph', 'image', and 'scalar'.
  110. log_dir (str): Log path to write log.
  111. log_settings (dict): Info about the log, e.g.:
  112. {
  113. current_time (int): Timestamp in summary file name, not necessary.
  114. graph_base_path (str): Path of graph_bas.json, necessary for `graph`.
  115. steps (list[int]): Steps for `image` and `scalar`, default is [1].
  116. tag (str): Tag name, default is 'default_tag'.
  117. }
  118. valid (bool): If true, summary name will be valid.
  119. Returns:
  120. str, Summary log path.
  121. """
  122. if log_settings is None:
  123. log_settings = dict()
  124. current_time = log_settings.get('time', int(time.time()))
  125. current_time = int(current_time)
  126. log_generator = log_generators.get(plugin_name)
  127. if valid:
  128. temp_path = os.path.join(log_dir, '%s.%s' % ('test.summary', str(current_time)))
  129. else:
  130. temp_path = os.path.join(log_dir, '%s.%s' % ('test.invalid', str(current_time)))
  131. if plugin_name == PluginNameEnum.GRAPH.value:
  132. with open(self._graph_base_path, 'r') as load_f:
  133. graph_dict = json.load(load_f)
  134. graph_dict = log_generator.generate_log(temp_path, graph_dict)
  135. return temp_path, graph_dict, None
  136. steps_list = log_settings.get('steps', [1])
  137. tag_name = log_settings.get('tag', 'default_tag')
  138. metadata, values = log_generator.generate_log(temp_path, steps_list, tag_name)
  139. return temp_path, metadata, values

MindInsight为MindSpore提供了简单易用的调优调试能力。在训练过程中,可以将标量、张量、图像、计算图、模型超参、训练耗时等数据记录到文件中,通过MindInsight可视化页面进行查看及分析。