- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Explain job list encapsulator."""
-
- import copy
- from datetime import datetime
-
- from mindinsight.explainer.encapsulator.explain_data_encap import ExplainDataEncap
- from mindinsight.datavisual.common.exceptions import TrainJobNotExistError
-
-
- class ExplainJobEncap(ExplainDataEncap):
- """Explain job list encapsulator."""
-
- DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S"
- DEFAULT_MIN_CONFIDENCE = 0.5
-
- def query_explain_jobs(self, offset, limit):
- """
- Query explain job list.
- Args:
- offset (int): Page offset.
- limit (int): Max. no. of items to be returned.
- Returns:
- tuple[int, list[Dict]], total no. of jobs and job list.
- """
- total, dir_infos = self.job_manager.get_job_list(offset=offset, limit=limit)
- job_infos = [self._dir_2_info(dir_info) for dir_info in dir_infos]
-
- return total, job_infos
-
- def query_meta(self, train_id):
- """
- Query explain job meta-data.
- Args:
- train_id (str): Job ID.
- Returns:
- dict, the metadata.
- """
- job = self.job_manager.get_job(train_id)
- if job is None:
- raise TrainJobNotExistError(train_id)
- return self._job_2_meta(job)
-
- @classmethod
- def _dir_2_info(cls, dir_info):
- """Convert ExplainJob object to jsonable info object."""
- info = dict()
- info["train_id"] = dir_info["relative_path"]
- info["create_time"] = dir_info["create_time"].strftime(cls.DATETIME_FORMAT)
- info["update_time"] = dir_info["update_time"].strftime(cls.DATETIME_FORMAT)
- return info
-
- @classmethod
- def _job_2_info(cls, job):
- """Convert ExplainJob object to jsonable info object."""
- info = dict()
- info["train_id"] = job.train_id
- info["create_time"] = datetime.fromtimestamp(job.create_time)\
- .strftime(cls.DATETIME_FORMAT)
- info["update_time"] = datetime.fromtimestamp(job.update_time)\
- .strftime(cls.DATETIME_FORMAT)
- return info
-
- @classmethod
- def _job_2_meta(cls, job):
- """Convert ExplainJob's meta-data to jsonable info object."""
- info = cls._job_2_info(job)
- info["sample_count"] = job.sample_count
- info["classes"] = copy.deepcopy(job.all_classes)
- saliency_info = dict()
- if job.min_confidence is None:
- saliency_info["min_confidence"] = cls.DEFAULT_MIN_CONFIDENCE
- else:
- saliency_info["min_confidence"] = job.min_confidence
- saliency_info["explainers"] = list(job.explainers)
- saliency_info["metrics"] = list(job.metrics)
- info["saliency"] = saliency_info
- info["uncertainty"] = {"enabled": job.uncertainty_enabled}
- return info
|