# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ different Privacy test. """ import pytest from mindspore import context from mindspore import Tensor from mindspore.common import dtype as mstype from mindarmour.diff_privacy import GaussianRandom from mindarmour.diff_privacy import AdaGaussianRandom from mindarmour.diff_privacy import MechanismsFactory @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_graph_gaussian(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") grad = Tensor([3, 2, 4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 net = GaussianRandom(norm_bound, initial_noise_multiplier) res = net(grad) print(res) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_pynative_gaussian(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") grad = Tensor([3, 2, 4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 net = GaussianRandom(norm_bound, initial_noise_multiplier) res = net(grad) print(res) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_graph_ada_gaussian(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") grad = Tensor([3, 2, 4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 alpha = 0.5 decay_policy = 'Step' net = AdaGaussianRandom(norm_bound, initial_noise_multiplier, noise_decay_rate=alpha, decay_policy=decay_policy) res = net(grad) print(res) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_graph_factory(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") grad = Tensor([3, 2, 4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 alpha = 0.5 decay_policy = 'Step' noise_mechanism = MechanismsFactory() noise_construct = noise_mechanism.create('Gaussian', norm_bound, initial_noise_multiplier) noise = noise_construct(grad) print('Gaussian noise: ', noise) ada_mechanism = MechanismsFactory() ada_noise_construct = ada_mechanism.create('AdaGaussian', norm_bound, initial_noise_multiplier, noise_decay_rate=alpha, decay_policy=decay_policy) ada_noise = ada_noise_construct(grad) print('ada noise: ', ada_noise) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_pynative_ada_gaussian(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") grad = Tensor([3, 2, 4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 alpha = 0.5 decay_policy = 'Step' net = AdaGaussianRandom(norm_bound, initial_noise_multiplier, noise_decay_rate=alpha, decay_policy=decay_policy) res = net(grad) print(res) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_pynative_factory(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") grad = Tensor([3, 2, 4], mstype.float32) norm_bound = 1.0 initial_noise_multiplier = 0.1 alpha = 0.5 decay_policy = 'Step' noise_mechanism = MechanismsFactory() noise_construct = noise_mechanism.create('Gaussian', norm_bound, initial_noise_multiplier) noise = noise_construct(grad) print('Gaussian noise: ', noise) ada_mechanism = MechanismsFactory() ada_noise_construct = ada_mechanism.create('AdaGaussian', norm_bound, initial_noise_multiplier, noise_decay_rate=alpha, decay_policy=decay_policy) ada_noise = ada_noise_construct(grad) print('ada noise: ', ada_noise)