You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

node_state.cc 16 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/node_state.h"
  17. #include <chrono>
  18. #include "framework/common/debug/log.h"
  19. #include "graph/compute_graph.h"
  20. #include "graph/utils/tensor_utils.h"
  21. #include "hybrid_execution_context.h"
  22. #include "subgraph_context.h"
  23. namespace ge {
  24. namespace hybrid {
  25. namespace {
  26. // 5s * 120, wait for 10m
  27. constexpr auto kWaitInternal = 5;
  28. constexpr auto kMaxWaitTimes = 120;
  29. }
  30. ShapeInferenceState::ShapeInferenceState(const NodeItem &node_item) : node_item(node_item) {
  31. InitShapeState();
  32. }
  33. void ShapeInferenceState::InitShapeState() {
  34. this->num_pending_shapes_ = node_item.num_inputs - node_item.num_static_input_shapes;
  35. GELOGD("[%s] ShapeInferenceState created, pending shape count = %d",
  36. node_item.NodeName().c_str(),
  37. this->num_pending_shapes_);
  38. input_tensor_desc.resize(node_item.num_inputs);
  39. for (int i = 0; i < node_item.num_inputs; ++i) {
  40. node_item.GetInputDesc(i, input_tensor_desc[i]);
  41. }
  42. output_tensor_desc.resize(node_item.num_outputs);
  43. for (int i = 0; i < node_item.num_outputs; ++i) {
  44. node_item.GetOutputDesc(i, output_tensor_desc[i]);
  45. }
  46. }
  47. Status ShapeInferenceState::UpdateInputShape(int idx, const GeTensorDesc &target) {
  48. if (node_item.IsInputShapeStatic(idx)) {
  49. GELOGD("[%s] Trying to update static shape, idx = %d. old shape = [%s], new shape = [%s]",
  50. node_item.NodeName().c_str(),
  51. idx,
  52. node_item.MutableInputDesc(idx)->GetShape().ToString().c_str(),
  53. target.GetShape().ToString().c_str());
  54. return SUCCESS;
  55. }
  56. std::lock_guard<std::mutex> lk(mu_);
  57. auto &input_desc = input_tensor_desc[idx];
  58. GeShape shape = target.GetShape();
  59. input_desc.SetShape(shape);
  60. input_desc.SetOriginShape(target.GetOriginShape());
  61. int64_t tensor_size = -1;
  62. (void) TensorUtils::GetSize(target, tensor_size);
  63. if (tensor_size <= 0) {
  64. Format format = input_desc.GetFormat();
  65. DataType data_type = input_desc.GetDataType();
  66. if (TensorUtils::CalcTensorMemSize(shape, format, data_type, tensor_size) != GRAPH_SUCCESS) {
  67. GELOGE(FAILED, "[Invoke][CalcTensorMemSize] failed for [%s].", node_item.NodeName().c_str());
  68. REPORT_CALL_ERROR("E19999", "CalcTensorMemSize failed for [%s].", node_item.NodeName().c_str());
  69. return FAILED;
  70. }
  71. }
  72. GELOGD("[%s] Update input shape [%d] with Shape: [%s] and OriginalShape: [%s], size = %ld",
  73. node_item.NodeName().c_str(),
  74. idx,
  75. shape.ToString().c_str(),
  76. target.GetOriginShape().ToString().c_str(),
  77. tensor_size);
  78. (void) TensorUtils::SetSize(input_desc, tensor_size);
  79. if (--num_pending_shapes_ <= 0) {
  80. ready_cv_.notify_all();
  81. }
  82. return SUCCESS;
  83. }
  84. void ShapeInferenceState::UpdateInputShapeFuture(int idx, ShapeFuture &&future) {
  85. if (node_item.IsInputShapeStatic(idx)) {
  86. GELOGD("[%s] Trying to update constant shape, idx = %d", node_item.NodeName().c_str(), idx);
  87. return;
  88. }
  89. GELOGD("[%s] Update input shape [%d] with ShapeFuture.", node_item.NodeName().c_str(), idx);
  90. std::lock_guard<std::mutex> lk(mu_);
  91. shape_futures.emplace_back(idx, std::move(future));
  92. if (--num_pending_shapes_ == 0) {
  93. ready_cv_.notify_all();
  94. }
  95. }
  96. Status ShapeInferenceState::AwaitShapesReady(const GraphExecutionContext &context) {
  97. if (!node_item.is_dynamic) {
  98. return SUCCESS;
  99. }
  100. std::unique_lock<std::mutex> lk(mu_);
  101. if (num_pending_shapes_ > 0) {
  102. GELOGD("[%s] Await pending shape or shape future start.", node_item.NodeName().c_str());
  103. int try_count = 0;
  104. bool wait_success = false;
  105. while (try_count++ < kMaxWaitTimes) {
  106. if (ready_cv_.wait_for(lk, std::chrono::seconds(kWaitInternal), [&]() { return num_pending_shapes_ == 0; })) {
  107. GELOGD("[%s] Await pending shape or shape future end.", node_item.NodeName().c_str());
  108. wait_success = true;
  109. break;
  110. }
  111. if (context.is_eos_) {
  112. GELOGD("[%s] Await pending shape cancelled due to end of sequence", node_item.NodeName().c_str());
  113. return END_OF_SEQUENCE;
  114. }
  115. if (context.GetStatus() != SUCCESS) {
  116. GELOGE(FAILED, "[Check][Status][%s] Await pending shape cancelled.", node_item.NodeName().c_str());
  117. REPORT_CALL_ERROR("E19999", "[%s] Await pending shape cancelled.", node_item.NodeName().c_str());
  118. break;
  119. }
  120. }
  121. if (!wait_success) {
  122. GELOGE(FAILED, "[Check][Status][%s] Wait for shape timeout:%d.", node_item.NodeName().c_str(), kWaitInternal);
  123. REPORT_CALL_ERROR("E19999", "[%s] Wait for shape timeout:%d.", node_item.NodeName().c_str(), kWaitInternal);
  124. return FAILED;
  125. }
  126. }
  127. {
  128. const auto &guard = node_item.MutexGuard("AwaitShapesReady");
  129. for (size_t i = 0; i < input_tensor_desc.size(); ++i) {
  130. auto dst_tensor_desc = node_item.MutableInputDesc(i);
  131. if (dst_tensor_desc == nullptr) {
  132. continue;
  133. }
  134. auto &tensor_desc = input_tensor_desc[i];
  135. int64_t tensor_size = -1;
  136. (void)TensorUtils::GetSize(tensor_desc, tensor_size);
  137. dst_tensor_desc->SetShape(tensor_desc.MutableShape());
  138. dst_tensor_desc->SetOriginShape(tensor_desc.GetOriginShape());
  139. (void)TensorUtils::SetSize(*dst_tensor_desc, tensor_size);
  140. }
  141. }
  142. for (auto &p : shape_futures) {
  143. auto idx = p.first;
  144. auto &future = p.second;
  145. RECORD_SHAPE_INFERENCE_EVENT(&context, node_item.NodeName().c_str(), "[AwaitShape] [idx = %u] Start", idx);
  146. const GeTensorDesc* src_tensor_desc = nullptr;
  147. GE_CHK_STATUS_RET_NOLOG(future.GetTensorDesc(&src_tensor_desc));
  148. GE_CHECK_NOTNULL(src_tensor_desc);
  149. RECORD_SHAPE_INFERENCE_EVENT(&context, node_item.NodeName().c_str(), "[AwaitShape] [idx = %u] End", idx);
  150. int64_t tensor_size = -1;
  151. (void) TensorUtils::GetSize(*src_tensor_desc, tensor_size);
  152. GELOGD("[%s] Update input shape [%u] with shape: [%s] and ori_shape: [%s], index = %zu",
  153. node_item.NodeName().c_str(),
  154. idx,
  155. src_tensor_desc->GetShape().ToString().c_str(),
  156. src_tensor_desc->GetOriginShape().ToString().c_str(),
  157. tensor_size);
  158. const auto &guard = node_item.MutexGuard("AwaitShapesReady");
  159. auto input_desc = node_item.MutableInputDesc(idx);
  160. GE_CHECK_NOTNULL(input_desc);
  161. input_desc->SetShape(src_tensor_desc->GetShape());
  162. input_desc->SetOriginShape(src_tensor_desc->GetOriginShape());
  163. (void) TensorUtils::SetSize(*input_desc, tensor_size);
  164. }
  165. return SUCCESS;
  166. }
  167. const vector<GeTensorDesc> &ShapeInferenceState::GetOutputTensorDesc() const {
  168. return output_tensor_desc;
  169. }
  170. Status ShapeInferenceState::UpdateOutputDesc() {
  171. for (size_t i = 0; i < output_tensor_desc.size(); ++i) {
  172. auto src_tensor_desc = node_item.MutableOutputDesc(i);
  173. GE_CHECK_NOTNULL(src_tensor_desc);
  174. auto &dst_tensor_desc = output_tensor_desc[i];
  175. dst_tensor_desc.SetShape(src_tensor_desc->MutableShape());
  176. dst_tensor_desc.SetOriginShape(src_tensor_desc->GetOriginShape());
  177. int64_t tensor_size = -1;
  178. (void) TensorUtils::GetSize(*src_tensor_desc, tensor_size);
  179. (void) TensorUtils::SetSize(dst_tensor_desc, tensor_size);
  180. }
  181. return SUCCESS;
  182. }
  183. ShapeFuture::ShapeFuture(NodeState *src_node,
  184. uint32_t src_index,
  185. SubgraphContext *subgraph_context)
  186. : src_node_(src_node), src_index_(src_index), subgraph_context_(subgraph_context) {
  187. }
  188. NodeState::NodeState(const NodeItem &node_item, SubgraphContext *subgraph_context)
  189. : node_item_(&node_item), shape_inference_state_(node_item), subgraph_context_(subgraph_context) {
  190. this->op_desc_ = node_item.node->GetOpDesc();
  191. }
  192. Status NodeState::AwaitInputTensors(GraphExecutionContext &context) const {
  193. if (node_item_->IsMergeOp()) {
  194. GELOGD("[%s] merge index %d, input nodes: %zu", GetName().c_str(), merge_index_, node_item_->data_recv_.size());
  195. return SUCCESS;
  196. }
  197. for (auto &src_node : node_item_->dependents_for_execution) {
  198. GELOGD("[%s] Start to wait for data dependent node: [%s]",
  199. node_item_->NodeName().c_str(),
  200. src_node->GetName().c_str());
  201. RECORD_EXECUTION_EVENT(&context,
  202. node_item_->NodeName().c_str(),
  203. "[AwaitNodeDone] [%s] Start",
  204. src_node->GetName().c_str());
  205. HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node),
  206. "[%s] Await node [%s] failed.",
  207. GetName().c_str(),
  208. src_node->GetName().c_str());
  209. RECORD_EXECUTION_EVENT(&context,
  210. node_item_->NodeName().c_str(),
  211. "[AwaitNodeDone] [%s] End",
  212. src_node->GetName().c_str());
  213. GELOGD("[%s] Done waiting node: [%s]", node_item_->NodeName().c_str(), src_node->GetName().c_str());
  214. }
  215. return SUCCESS;
  216. }
  217. Status NodeState::WaitForPrepareDone() {
  218. if (prepare_future_.valid()) {
  219. GELOGD("[%s] Start to wait for prepare future.", GetName().c_str());
  220. GE_CHK_STATUS_RET(prepare_future_.get(), "[Check][Status][%s] PreRun failed.", GetName().c_str());
  221. }
  222. return SUCCESS;
  223. }
  224. Status NodeState::UpdateOutputShapes(int index, const GeShape &shape, const GeShape &ori_shape) {
  225. auto self_tensor_desc = op_desc_->MutableOutputDesc(index);
  226. GE_CHECK_NOTNULL(self_tensor_desc);
  227. self_tensor_desc->SetShape(shape);
  228. self_tensor_desc->SetOriginShape(ori_shape);
  229. return SUCCESS;
  230. }
  231. void NodeState::SetTaskContext(std::shared_ptr<TaskContext> &task_context) {
  232. task_context_ = task_context;
  233. }
  234. std::shared_ptr<TaskContext> NodeState::GetTaskContext() {
  235. return task_context_;
  236. }
  237. void NodeState::ResetContext(int group) {
  238. SetGroup(group);
  239. if (loop_count_ == 0) {
  240. ++loop_count_;
  241. return;
  242. }
  243. ++loop_count_;
  244. if (loop_count_ == UINT64_MAX) {
  245. loop_count_ = 1;
  246. }
  247. switch_index_ = -1;
  248. const auto &guard = node_item_->MutexGuard("ResetContext");
  249. shape_inference_state_.InitShapeState();
  250. subgraph_context_->ResetContext(node_item_->node);
  251. GELOGD("Node[%s] in while loop, current loop: %lu, merge index: %d", GetName().c_str(), loop_count_, merge_index_);
  252. }
  253. void NodeState::ResetSchedule() {
  254. std::lock_guard<std::mutex> lk(mu_);
  255. data_scheduled_ = static_cast<uint32_t>(node_item_->root_data_.size());
  256. ctrl_scheduled_ = static_cast<uint32_t>(node_item_->root_ctrl_.size());
  257. GELOGD("[%s] set schedule for root nodes, data: %u, ctrl: %u", GetName().c_str(), data_scheduled_, ctrl_scheduled_);
  258. }
  259. Status NodeState::NodeScheduled(const std::function<void(const NodeItem *)> &ready) const {
  260. // Schedule data output.
  261. for (const auto &node : node_item_->data_send_) {
  262. const auto &dst_node_state = subgraph_context_->GetOrCreateNodeState(node);
  263. GE_CHECK_NOTNULL(dst_node_state);
  264. dst_node_state->SetDataSchedule(node_item_, ready);
  265. }
  266. // Schedule ctrl output.
  267. for (const auto &node : node_item_->ctrl_send_) {
  268. const auto &dst_node_state = subgraph_context_->GetOrCreateNodeState(node);
  269. GE_CHECK_NOTNULL(dst_node_state);
  270. dst_node_state->SetCtrlSchedule(node_item_, ready);
  271. }
  272. // Schedule switch group.
  273. if (switch_index_ >= 0 && static_cast<uint32_t>(switch_index_) < node_item_->switch_groups_.size()) {
  274. GELOGI("After [%s] scheduled, switch index: %d", GetName().c_str(), switch_index_);
  275. for (const auto &node : node_item_->switch_groups_[switch_index_]) {
  276. const auto &dst_node_state = subgraph_context_->GetOrCreateNodeState(node);
  277. GE_CHECK_NOTNULL(dst_node_state);
  278. dst_node_state->SetCtrlSchedule(node_item_, ready);
  279. }
  280. }
  281. return SUCCESS;
  282. }
  283. bool NodeState::IsScheduleReady() const {
  284. GELOGD("[%s] data[input: %zu, scheduled: %u], ctrl[input: %zu, scheduled: %u]", GetName().c_str(),
  285. node_item_->data_recv_.size(), data_scheduled_, node_item_->ctrl_recv_.size(), ctrl_scheduled_);
  286. if (ctrl_scheduled_ != node_item_->ctrl_recv_.size()) {
  287. return false;
  288. }
  289. if (node_item_->IsMergeOp()) {
  290. return data_scheduled_ > 0;
  291. }
  292. // Exit may feed loop times...
  293. return data_scheduled_ >= node_item_->data_recv_.size();
  294. }
  295. void NodeState::SetDataSchedule(const NodeItem *node_item, const std::function<void(const NodeItem *)> &ready) {
  296. GELOGD("[%s] data schedule node[%s], data num: %zu, current scheduled: %u, ctrl num: %zu, current scheduled: %u",
  297. node_item->node_name.c_str(), GetName().c_str(), node_item_->data_recv_.size(), data_scheduled_,
  298. node_item_->ctrl_recv_.size(), ctrl_scheduled_);
  299. std::lock_guard<std::mutex> lk(mu_);
  300. ++data_scheduled_;
  301. if (node_item_->IsMergeOp()) {
  302. const auto it = node_item_->data_recv_.find(node_item);
  303. if (it != node_item_->data_recv_.end()) {
  304. merge_index_ = it->second;
  305. (void)AttrUtils::SetInt(node_item_->node->GetOpDesc(), ATTR_NAME_MERGE_INPUT_INDEX, it->second);
  306. GELOGD("[%s] scheduled, [%s] set merge index: %d", node_item->node_name.c_str(), GetName().c_str(), it->second);
  307. } else {
  308. GELOGW("[%s] scheduled, [%s] not followed", node_item->node_name.c_str(), GetName().c_str());
  309. }
  310. }
  311. if (IsScheduleReady()) {
  312. ready(node_item_);
  313. }
  314. }
  315. void NodeState::SetCtrlSchedule(const NodeItem *node_item, const std::function<void(const NodeItem *)> &ready) {
  316. GELOGD("[%s] ctrl schedule node[%s], data num: %zu, current scheduled: %u, ctrl num: %zu, current scheduled: %u",
  317. node_item->node_name.c_str(), GetName().c_str(), node_item_->data_recv_.size(), data_scheduled_,
  318. node_item_->ctrl_recv_.size(), ctrl_scheduled_);
  319. std::lock_guard<std::mutex> lk(mu_);
  320. ++ctrl_scheduled_;
  321. if (IsScheduleReady()) {
  322. ready(node_item_);
  323. }
  324. }
  325. void NodeState::SetScheduleFuture(std::future<Status> &&future) {
  326. schedule_future_ = std::move(future);
  327. }
  328. Status NodeState::WaitForScheduleDone() {
  329. if (schedule_future_.valid()) {
  330. GELOGD("[%s] Start to wait for schedule future.", GetName().c_str());
  331. GE_CHK_STATUS_RET(schedule_future_.get(), "[Check][Status][%s] wait thread failed", GetName().c_str());
  332. }
  333. return SUCCESS;
  334. }
  335. Status ShapeFuture::Get(GeShape &ori_shape, GeShape &shape) {
  336. GELOGD("Start to wait node: %s for getting shape", src_node_->GetName().c_str());
  337. HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node_->GetNodeItem()->node), "cancelled");
  338. auto &output_desc = src_node_->GetShapeInferenceState().GetOutputTensorDesc().at(src_index_);
  339. shape = output_desc.GetShape();
  340. ori_shape = output_desc.GetOriginShape();
  341. GELOGD("Get shape from %s:%u. shape = [%s]", src_node_->GetName().c_str(), src_index_, shape.ToString().c_str());
  342. return SUCCESS;
  343. }
  344. Status ShapeFuture::GetTensorDesc(const GeTensorDesc **tensor_desc) {
  345. GE_CHECK_NOTNULL(tensor_desc);
  346. GELOGD("Start to wait node: %s for getting shape", src_node_->GetName().c_str());
  347. HYBRID_CHK_STATUS_RET(subgraph_context_->Await(src_node_->GetNodeItem()->node), "cancelled");
  348. *tensor_desc = &src_node_->GetShapeInferenceState().GetOutputTensorDesc().at(src_index_);
  349. return SUCCESS;
  350. }
  351. } // namespace hybrid
  352. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知.