You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

subgraph_context.cc 5.4 kB

4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "subgraph_context.h"
  17. #include "common/debug/log.h"
  18. #include "hybrid/executor/hybrid_model_executor.h"
  19. namespace ge {
  20. namespace hybrid {
  21. SubgraphContext::SubgraphContext(const GraphItem *graph_item, const GraphExecutionContext *execution_context)
  22. : graph_item_(graph_item), execution_context_(execution_context) {
  23. }
  24. Status SubgraphContext::Init() {
  25. GE_CHECK_NOTNULL(graph_item_);
  26. GELOGD("[%s] Start to init subgraph context. total inputs = %d, total outputs = %d",
  27. graph_item_->GetName().c_str(),
  28. graph_item_->TotalInputs(),
  29. graph_item_->TotalOutputs());
  30. all_inputs_.resize(static_cast<unsigned long>(graph_item_->TotalInputs()));
  31. all_outputs_.resize(static_cast<unsigned long>(graph_item_->TotalOutputs()));
  32. return SUCCESS;
  33. }
  34. void SubgraphContext::ResetContext(const NodePtr &node) {
  35. node_done_manager_.Reset(node);
  36. }
  37. NodeStatePtr SubgraphContext::GetOrCreateNodeState(const NodeItem *node_item) {
  38. std::lock_guard<std::mutex> lk(mu_);
  39. auto &node_state = node_states_[node_item];
  40. if (node_state == nullptr) {
  41. const auto &guard = node_item->MutexGuard("GetOrCreateNodeState");
  42. node_state.reset(new(std::nothrow)NodeState(*node_item, this));
  43. }
  44. return node_state;
  45. }
  46. Status SubgraphContext::SetInput(int index, const TensorValue &tensor) {
  47. if (static_cast<size_t>(index) >= all_inputs_.size()) {
  48. GELOGE(INTERNAL_ERROR,
  49. "[Check][Param:index]input index out of range. all input num = %zu, input index = %d",
  50. all_inputs_.size(), index);
  51. REPORT_INNER_ERROR("E19999", "input param index out of range, all input num = %zu, input index = %d.",
  52. all_inputs_.size(), index);
  53. return INTERNAL_ERROR;
  54. }
  55. all_inputs_[index] = tensor;
  56. return SUCCESS;
  57. }
  58. Status SubgraphContext::SetInput(const NodeItem &node_item, int input_index, const TensorValue &tensor) {
  59. auto index = node_item.input_start + input_index;
  60. return SetInput(index, tensor);
  61. }
  62. Status SubgraphContext::SetOutput(const NodeItem &node_item, int output_index, const TensorValue &tensor) {
  63. auto index = node_item.output_start + output_index;
  64. if ((output_index >= node_item.num_outputs) || (static_cast<size_t>(index) >= all_outputs_.size())) {
  65. GELOGE(INTERNAL_ERROR, "[Check][Param:output_index]output index out of range. all output num = %zu,"
  66. "node_item = %s, output index = %d.",
  67. all_outputs_.size(), node_item.DebugString().c_str(), output_index);
  68. REPORT_INNER_ERROR("E19999", "output index out of range. all output num = %zu, node_item = %s, output index = %d.",
  69. all_outputs_.size(), node_item.DebugString().c_str(), output_index);
  70. return INTERNAL_ERROR;
  71. }
  72. all_outputs_[index] = tensor;
  73. return SUCCESS;
  74. }
  75. Status SubgraphContext::GetInput(int index, TensorValue &tensor) {
  76. GE_CHECK_GE(all_inputs_.size(), index + 1U);
  77. tensor = all_inputs_[index];
  78. return SUCCESS;
  79. }
  80. Status SubgraphContext::GetOutputs(std::vector<TensorValue> &outputs) {
  81. if (graph_item_->IsDynamic()) {
  82. GELOGD("[%s] graph is dynamic, get outputs from net output input tensors", graph_item_->GetName().c_str());
  83. // get from net output inputs
  84. auto output_node = graph_item_->GetOutputNode();
  85. if (output_node != nullptr) {
  86. for (int i = 0; i < output_node->num_inputs; ++i) {
  87. TensorValue tensor;
  88. GE_CHK_STATUS_RET_NOLOG(GetInput(output_node->input_start + i, tensor));
  89. GELOGD("[%s] Adding output tensor by input index [%d], tensor = %s",
  90. graph_item_->GetName().c_str(),
  91. output_node->input_start + i,
  92. tensor.DebugString().c_str());
  93. outputs.emplace_back(std::move(tensor));
  94. }
  95. }
  96. } else {
  97. GELOGD("[%s] graph is non-dynamic, get outputs from subgraph outputs", graph_item_->GetName().c_str());
  98. for (auto &tensor : all_outputs_) {
  99. GELOGD("[%s] Adding output tensor: %s", graph_item_->GetName().c_str(), tensor.DebugString().c_str());
  100. outputs.emplace_back(tensor);
  101. }
  102. }
  103. return SUCCESS;
  104. }
  105. Status SubgraphContext::Await(const NodePtr &node) {
  106. if (node_done_manager_.Await(node)) {
  107. return SUCCESS;
  108. }
  109. if (execution_context_->is_eos_) {
  110. return END_OF_SEQUENCE;
  111. }
  112. return FAILED;
  113. }
  114. void SubgraphContext::OnError(Status error) {
  115. if (error != END_OF_SEQUENCE) {
  116. GELOGE(error, "[Check][Param:error][%s] Error:%d occurred while executing graph.",
  117. graph_item_->GetName().c_str(), error);
  118. REPORT_INNER_ERROR("E19999", "[%s] Error:%d occurred while executing graph.",
  119. graph_item_->GetName().c_str(), error);
  120. }
  121. node_done_manager_.Destroy();
  122. }
  123. void SubgraphContext::NodeDone(const NodePtr &node) {
  124. node_done_manager_.NodeDone(node);
  125. }
  126. } // namespace hybrid
  127. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知.