|
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
-
- #ifndef ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
- #define ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
-
- #include <cassert>
- #include <cmath>
- #include <istream>
- #include <limits>
- #include <type_traits>
-
- #include "absl/meta/type_traits.h"
- #include "absl/random/internal/fast_uniform_bits.h"
- #include "absl/random/internal/generate_real.h"
- #include "absl/random/internal/iostream_state_saver.h"
-
- namespace absl
- {
- ABSL_NAMESPACE_BEGIN
-
- // absl::exponential_distribution:
- // Generates a number conforming to an exponential distribution and is
- // equivalent to the standard [rand.dist.pois.exp] distribution.
- template<typename RealType = double>
- class exponential_distribution
- {
- public:
- using result_type = RealType;
-
- class param_type
- {
- public:
- using distribution_type = exponential_distribution;
-
- explicit param_type(result_type lambda = 1) :
- lambda_(lambda)
- {
- assert(lambda > 0);
- neg_inv_lambda_ = -result_type(1) / lambda_;
- }
-
- result_type lambda() const
- {
- return lambda_;
- }
-
- friend bool operator==(const param_type& a, const param_type& b)
- {
- return a.lambda_ == b.lambda_;
- }
-
- friend bool operator!=(const param_type& a, const param_type& b)
- {
- return !(a == b);
- }
-
- private:
- friend class exponential_distribution;
-
- result_type lambda_;
- result_type neg_inv_lambda_;
-
- static_assert(
- std::is_floating_point<RealType>::value,
- "Class-template absl::exponential_distribution<> must be parameterized "
- "using a floating-point type."
- );
- };
-
- exponential_distribution() :
- exponential_distribution(1)
- {
- }
-
- explicit exponential_distribution(result_type lambda) :
- param_(lambda)
- {
- }
-
- explicit exponential_distribution(const param_type& p) :
- param_(p)
- {
- }
-
- void reset()
- {
- }
-
- // Generating functions
- template<typename URBG>
- result_type operator()(URBG& g)
- { // NOLINT(runtime/references)
- return (*this)(g, param_);
- }
-
- template<typename URBG>
- result_type operator()(URBG& g, // NOLINT(runtime/references)
- const param_type& p);
-
- param_type param() const
- {
- return param_;
- }
- void param(const param_type& p)
- {
- param_ = p;
- }
-
- result_type(min)() const
- {
- return 0;
- }
- result_type(max)() const
- {
- return std::numeric_limits<result_type>::infinity();
- }
-
- result_type lambda() const
- {
- return param_.lambda();
- }
-
- friend bool operator==(const exponential_distribution& a, const exponential_distribution& b)
- {
- return a.param_ == b.param_;
- }
- friend bool operator!=(const exponential_distribution& a, const exponential_distribution& b)
- {
- return a.param_ != b.param_;
- }
-
- private:
- param_type param_;
- random_internal::FastUniformBits<uint64_t> fast_u64_;
- };
-
- // --------------------------------------------------------------------------
- // Implementation details follow
- // --------------------------------------------------------------------------
-
- template<typename RealType>
- template<typename URBG>
- typename exponential_distribution<RealType>::result_type
- exponential_distribution<RealType>::operator()(
- URBG& g, // NOLINT(runtime/references)
- const param_type& p
- )
- {
- using random_internal::GenerateNegativeTag;
- using random_internal::GenerateRealFromBits;
- using real_type =
- absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
-
- const result_type u = GenerateRealFromBits<real_type, GenerateNegativeTag,
- false>(fast_u64_(g)); // U(-1, 0)
-
- // log1p(-x) is mathematically equivalent to log(1 - x) but has more
- // accuracy for x near zero.
- return p.neg_inv_lambda_ * std::log1p(u);
- }
-
- template<typename CharT, typename Traits, typename RealType>
- std::basic_ostream<CharT, Traits>& operator<<(
- std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
- const exponential_distribution<RealType>& x
- )
- {
- auto saver = random_internal::make_ostream_state_saver(os);
- os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
- os << x.lambda();
- return os;
- }
-
- template<typename CharT, typename Traits, typename RealType>
- std::basic_istream<CharT, Traits>& operator>>(
- std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
- exponential_distribution<RealType>& x
- )
- { // NOLINT(runtime/references)
- using result_type = typename exponential_distribution<RealType>::result_type;
- using param_type = typename exponential_distribution<RealType>::param_type;
- result_type lambda;
-
- auto saver = random_internal::make_istream_state_saver(is);
- lambda = random_internal::read_floating_point<result_type>(is);
- if (!is.fail())
- {
- x.param(param_type(lambda));
- }
- return is;
- }
-
- ABSL_NAMESPACE_END
- } // namespace absl
-
- #endif // ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_
|