|
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
-
- #ifndef ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_
- #define ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_
-
- #include <algorithm>
- #include <cinttypes>
- #include <cstdlib>
- #include <iostream>
- #include <iterator>
- #include <limits>
- #include <type_traits>
-
- #include "absl/base/internal/endian.h"
- #include "absl/meta/type_traits.h"
- #include "absl/random/internal/iostream_state_saver.h"
- #include "absl/random/internal/randen.h"
-
- namespace absl
- {
- ABSL_NAMESPACE_BEGIN
- namespace random_internal
- {
-
- // Deterministic pseudorandom byte generator with backtracking resistance
- // (leaking the state does not compromise prior outputs). Based on Reverie
- // (see "A Robust and Sponge-Like PRNG with Improved Efficiency") instantiated
- // with an improved Simpira-like permutation.
- // Returns values of type "T" (must be a built-in unsigned integer type).
- //
- // RANDen = RANDom generator or beetroots in Swiss High German.
- // 'Strong' (well-distributed, unpredictable, backtracking-resistant) random
- // generator, faster in some benchmarks than std::mt19937_64 and pcg64_c32.
- template<typename T>
- class alignas(8) randen_engine
- {
- public:
- // C++11 URBG interface:
- using result_type = T;
- static_assert(std::is_unsigned<result_type>::value, "randen_engine template argument must be a built-in unsigned "
- "integer type");
-
- static constexpr result_type(min)()
- {
- return (std::numeric_limits<result_type>::min)();
- }
-
- static constexpr result_type(max)()
- {
- return (std::numeric_limits<result_type>::max)();
- }
-
- randen_engine() :
- randen_engine(0)
- {
- }
- explicit randen_engine(result_type seed_value)
- {
- seed(seed_value);
- }
-
- template<class SeedSequence, typename = typename absl::enable_if_t<!std::is_same<SeedSequence, randen_engine>::value>>
- explicit randen_engine(SeedSequence&& seq)
- {
- seed(seq);
- }
-
- // alignment requirements dictate custom copy and move constructors.
- randen_engine(const randen_engine& other) :
- next_(other.next_),
- impl_(other.impl_)
- {
- std::memcpy(state(), other.state(), kStateSizeT * sizeof(result_type));
- }
- randen_engine& operator=(const randen_engine& other)
- {
- next_ = other.next_;
- impl_ = other.impl_;
- std::memcpy(state(), other.state(), kStateSizeT * sizeof(result_type));
- return *this;
- }
-
- // Returns random bits from the buffer in units of result_type.
- result_type operator()()
- {
- // Refill the buffer if needed (unlikely).
- auto* begin = state();
- if (next_ >= kStateSizeT)
- {
- next_ = kCapacityT;
- impl_.Generate(begin);
- }
- return little_endian::ToHost(begin[next_++]);
- }
-
- template<class SeedSequence>
- typename absl::enable_if_t<
- !std::is_convertible<SeedSequence, result_type>::value>
- seed(SeedSequence&& seq)
- {
- // Zeroes the state.
- seed();
- reseed(seq);
- }
-
- void seed(result_type seed_value = 0)
- {
- next_ = kStateSizeT;
- // Zeroes the inner state and fills the outer state with seed_value to
- // mimic the behaviour of reseed
- auto* begin = state();
- std::fill(begin, begin + kCapacityT, 0);
- std::fill(begin + kCapacityT, begin + kStateSizeT, seed_value);
- }
-
- // Inserts entropy into (part of) the state. Calling this periodically with
- // sufficient entropy ensures prediction resistance (attackers cannot predict
- // future outputs even if state is compromised).
- template<class SeedSequence>
- void reseed(SeedSequence& seq)
- {
- using sequence_result_type = typename SeedSequence::result_type;
- static_assert(sizeof(sequence_result_type) == 4, "SeedSequence::result_type must be 32-bit");
- constexpr size_t kBufferSize =
- Randen::kSeedBytes / sizeof(sequence_result_type);
- alignas(16) sequence_result_type buffer[kBufferSize];
-
- // Randen::Absorb XORs the seed into state, which is then mixed by a call
- // to Randen::Generate. Seeding with only the provided entropy is preferred
- // to using an arbitrary generate() call, so use [rand.req.seed_seq]
- // size as a proxy for the number of entropy units that can be generated
- // without relying on seed sequence mixing...
- const size_t entropy_size = seq.size();
- if (entropy_size < kBufferSize)
- {
- // ... and only request that many values, or 256-bits, when unspecified.
- const size_t requested_entropy = (entropy_size == 0) ? 8u : entropy_size;
- std::fill(buffer + requested_entropy, buffer + kBufferSize, 0);
- seq.generate(buffer, buffer + requested_entropy);
- #ifdef ABSL_IS_BIG_ENDIAN
- // Randen expects the seed buffer to be in Little Endian; reverse it on
- // Big Endian platforms.
- for (sequence_result_type& e : buffer)
- {
- e = absl::little_endian::FromHost(e);
- }
- #endif
- // The Randen paper suggests preferentially initializing even-numbered
- // 128-bit vectors of the randen state (there are 16 such vectors).
- // The seed data is merged into the state offset by 128-bits, which
- // implies prefering seed bytes [16..31, ..., 208..223]. Since the
- // buffer is 32-bit values, we swap the corresponding buffer positions in
- // 128-bit chunks.
- size_t dst = kBufferSize;
- while (dst > 7)
- {
- // leave the odd bucket as-is.
- dst -= 4;
- size_t src = dst >> 1;
- // swap 128-bits into the even bucket
- std::swap(buffer[--dst], buffer[--src]);
- std::swap(buffer[--dst], buffer[--src]);
- std::swap(buffer[--dst], buffer[--src]);
- std::swap(buffer[--dst], buffer[--src]);
- }
- }
- else
- {
- seq.generate(buffer, buffer + kBufferSize);
- }
- impl_.Absorb(buffer, state());
-
- // Generate will be called when operator() is called
- next_ = kStateSizeT;
- }
-
- void discard(uint64_t count)
- {
- uint64_t step = std::min<uint64_t>(kStateSizeT - next_, count);
- count -= step;
-
- constexpr uint64_t kRateT = kStateSizeT - kCapacityT;
- auto* begin = state();
- while (count > 0)
- {
- next_ = kCapacityT;
- impl_.Generate(*reinterpret_cast<result_type(*)[kStateSizeT]>(begin));
- step = std::min<uint64_t>(kRateT, count);
- count -= step;
- }
- next_ += step;
- }
-
- bool operator==(const randen_engine& other) const
- {
- const auto* begin = state();
- return next_ == other.next_ &&
- std::equal(begin, begin + kStateSizeT, other.state());
- }
-
- bool operator!=(const randen_engine& other) const
- {
- return !(*this == other);
- }
-
- template<class CharT, class Traits>
- friend std::basic_ostream<CharT, Traits>& operator<<(
- std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
- const randen_engine<T>& engine
- )
- { // NOLINT(runtime/references)
- using numeric_type =
- typename random_internal::stream_format_type<result_type>::type;
- auto saver = random_internal::make_ostream_state_saver(os);
- auto* it = engine.state();
- for (auto* end = it + kStateSizeT; it < end; ++it)
- {
- // In the case that `elem` is `uint8_t`, it must be cast to something
- // larger so that it prints as an integer rather than a character. For
- // simplicity, apply the cast all circumstances.
- os << static_cast<numeric_type>(little_endian::FromHost(*it))
- << os.fill();
- }
- os << engine.next_;
- return os;
- }
-
- template<class CharT, class Traits>
- friend std::basic_istream<CharT, Traits>& operator>>(
- std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
- randen_engine<T>& engine
- )
- { // NOLINT(runtime/references)
- using numeric_type =
- typename random_internal::stream_format_type<result_type>::type;
- result_type state[kStateSizeT];
- size_t next;
- for (auto& elem : state)
- {
- // It is not possible to read uint8_t from wide streams, so it is
- // necessary to read a wider type and then cast it to uint8_t.
- numeric_type value;
- is >> value;
- elem = little_endian::ToHost(static_cast<result_type>(value));
- }
- is >> next;
- if (is.fail())
- {
- return is;
- }
- std::memcpy(engine.state(), state, sizeof(state));
- engine.next_ = next;
- return is;
- }
-
- private:
- static constexpr size_t kStateSizeT =
- Randen::kStateBytes / sizeof(result_type);
- static constexpr size_t kCapacityT =
- Randen::kCapacityBytes / sizeof(result_type);
-
- // Returns the state array pointer, which is aligned to 16 bytes.
- // The first kCapacityT are the `inner' sponge; the remainder are available.
- result_type* state()
- {
- return reinterpret_cast<result_type*>(
- (reinterpret_cast<uintptr_t>(&raw_state_) & 0xf) ? (raw_state_ + 8) : raw_state_
- );
- }
- const result_type* state() const
- {
- return const_cast<randen_engine*>(this)->state();
- }
-
- // raw state array, manually aligned in state(). This overallocates
- // by 8 bytes since C++ does not guarantee extended heap alignment.
- alignas(8) char raw_state_[Randen::kStateBytes + 8];
- size_t next_; // index within state()
- Randen impl_;
- };
-
- } // namespace random_internal
- ABSL_NAMESPACE_END
- } // namespace absl
-
- #endif // ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_
|