|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457 |
- # Algorithm
-
- ---
-
- 天梯分数计算算法
-
- 原始记录在:<https://github.com/eesast/THUAI5/discussions/86>
-
- 内容如下:
-
- ## THUAI4
-
- 关于根据队式每场比赛的分数映射到天梯分数的问题:
- 队式比赛为两队对战,每队得分的区间均为 [0, 2500]。
- 以 tanh 函数为基础进行设计。
- 设计原则如下:
-
- 1. 输的扣少量天梯分,赢的得大量天梯分
- 2. 本就有极高天梯分数的虐本就天梯分数低的,这种降维打击现象,天梯分数涨幅极小甚至不涨天梯分
- 3. 如果在某场比赛中,两者表现差不多,即赢的比输的得分高得不多的话,那么天梯分数涨幅也不是很高
- 4. 如果本来天梯分数很低的,赢了天梯分数很高的,那么他得到的天梯分会较高,而另一个人,天梯分数降分稍多一些
- 5. 如果天梯分数低的赢了天梯分数高的,但是这场比赛赢得不多的话,会把两人的分数向中间靠拢
- 6. 总体上,赢的队伍不会降天梯分;输的队伍不会加天梯分
- 7. 其他条件相同的情况下,在本场游戏中得分越多,加的天梯分数也越高
-
- 上述原则可以保证以下两个目的的达成:
-
- 1. 总体来看,进行的游戏场次越多,所有队伍的平均天梯分数就越高
- 2. 经过足够多次的游戏场次,实力有一定差距的队伍的天体分数差距逐渐拉开,实力相近的队伍的天梯分数不会差别过大,各支队伍的排名趋近于收敛
-
- 用 cpp 代码编写算法代码如下(`cal` 函数):
-
- ```cpp
- #include <iostream>
- #include <algorithm>
- #include <cmath>
- using namespace std;
-
- template <typename T>
- using mypair = pair<T, T>;
-
- // orgScore 是天梯中两队的分数;competitionScore 是这次游戏两队的得分
-
- mypair<int> cal(mypair<int> orgScore, mypair<int> competitionScore)
- {
-
- // 调整顺序,让第一个元素成为获胜者,便于计算
-
- bool reverse = false; // 记录是否需要调整
-
- if (competitionScore.first < competitionScore.second)
- {
- reverse = true;
- }
- else if (competitionScore.first == competitionScore.second)
- {
- if (orgScore.first == orgScore.second) // 完全平局,不改变天梯分数
- {
- return orgScore;
- }
-
- if (orgScore.first > orgScore.second) // 本次游戏平局,但一方天梯分数高,另一方天梯分数低,需要将两者向中间略微靠拢,因此天梯分数低的定为获胜者
- {
- reverse = true;
- }
- else
- {
- reverse = false;
- }
- }
-
- if (reverse) // 如果需要换,换两者的顺序
- {
- swap(competitionScore.first, competitionScore.second);
- swap(orgScore.first, orgScore.second);
- }
-
-
- // 转成浮点数
- mypair<double> orgScoreLf;
- mypair<double> competitionScoreLf;
- orgScoreLf.first = orgScore.first;
- orgScoreLf.second = orgScore.second;
- competitionScoreLf.first = competitionScore.first;
- competitionScoreLf.second = competitionScore.second;
- mypair<int> resScore;
-
- const double deltaWeight = 80.0; // 差距悬殊判断参数,比赛分差超过此值就可以认定为非常悬殊了,天梯分数增量很小,防止大佬虐菜鸡的现象造成两极分化
-
- double delta = (orgScoreLf.first - orgScoreLf.second) / deltaWeight;
- cout << "Tanh delta: " << tanh(delta) << endl;
- {
-
- const double firstnerGet = 8e-5; // 胜利者天梯得分权值
- const double secondrGet = 5e-6; // 失败者天梯得分权值
-
- double deltaScore = 100.0; // 两队竞争分差超过多少时就认为非常大
- double correctRate = (orgScoreLf.first - orgScoreLf.second) / 100.0; // 订正的幅度,该值越小,则在势均力敌时天梯分数改变越大
- double correct = 0.5 * (tanh((competitionScoreLf.first - competitionScoreLf.second - deltaScore) / deltaScore - correctRate) + 1.0); // 一场比赛中,在双方势均力敌时,减小天梯分数的改变量
-
- resScore.first = orgScore.first + round(competitionScoreLf.first * competitionScoreLf.first * firstnerGet * (1 - tanh(delta)) * correct); // 胜者所加天梯分
- resScore.second = orgScore.second - round((2500.0 - competitionScoreLf.second) * (2500.0 - competitionScoreLf.second) * secondrGet * (1 - tanh(delta)) * correct); // 败者所扣天梯分,2500 为得分的最大值(THUAI4 每场得分介于 0~2500 之间)
- }
-
- // 如果换过,再换回来
- if (reverse)
- {
- swap(resScore.first, resScore.second);
- }
-
- return resScore;
- }
- ```
-
- **特别注意**:此算法是在 THUAI4 的比赛直接得分封顶为 2500 分、最低不低于 0 分的前提下设计的,因此并不一定适用于 THUAI5 的情形。
-
- ## THUAI5
-
- 今年把得分上限这个东西去掉了。理论上今年可以得很高很高分,但是我估计大部分比赛得分在400-600左右,最高估计1000左右。算法 借 鉴 了THUAI4,算法,换了个激活函数(正态CDF),感觉分数变化相对更好了一些?
- 代码如下:
-
- ```cpp
- #include <iostream>
- #include <algorithm>
- #include <cmath>
- using namespace std;
-
- template <typename T>
- using mypair = pair<T, T>;
-
- double PHI(double x) // THUAI3: Sigmoid; THUAI4: Tanh; THUAI5: Normal Distribution CDF
- {
- //double a1 = 0.2548292592;
- //double a2 = -0.284496736;
- //double a3 = 1.421413741;
- //double a4 = -1.453152027;
- //double a5 = 1.061405429;
- //double p = 0.3275911;
- //int sign = 1;
- //if (x < 0)
- // sign = -1;
- //x = fabs(x) / sqrt(2.0);
- //double t = 1.0 / (1.0 + p * x);
- //double y = 1.0 - ((((((a5 * t + a4) * t + a3) * t) + a2) * t) + a1) * t * exp(-x * x);
- //double cdf = 0.5 * (1.0 + sign * y);
- //return (cdf - 0.5) * 2.0; // 化到[-1,1]之间
-
- return erf(x / sqrt(2));
- }
-
- // orgScore 是天梯中两队的分数;competitionScore 是这次游戏两队的得分
- mypair<int> cal(mypair<int> orgScore, mypair<int> competitionScore)
- {
-
- // 调整顺序,让第一个元素成为获胜者,便于计算
-
- bool reverse = false; // 记录是否需要调整
-
- if (competitionScore.first < competitionScore.second)
- {
- reverse = true;
- }
- else if (competitionScore.first == competitionScore.second)
- {
- if (orgScore.first == orgScore.second) // 完全平局,不改变天梯分数
- {
- return orgScore;
- }
-
- if (orgScore.first > orgScore.second) // 本次游戏平局,但一方天梯分数高,另一方天梯分数低,需要将两者向中间略微靠拢,因此天梯分数低的定为获胜者
- {
- reverse = true;
- }
- else
- {
- reverse = false;
- }
- }
-
- if (reverse) // 如果需要换,换两者的顺序
- {
- swap(competitionScore.first, competitionScore.second);
- swap(orgScore.first, orgScore.second);
- }
-
-
- // 转成浮点数
- mypair<double> orgScoreLf;
- mypair<double> competitionScoreLf;
- orgScoreLf.first = orgScore.first;
- orgScoreLf.second = orgScore.second;
- competitionScoreLf.first = competitionScore.first;
- competitionScoreLf.second = competitionScore.second;
- mypair<int> resScore;
-
- const double deltaWeight = 90.0; // 差距悬殊判断参数,比赛分差超过此值就可以认定为非常悬殊了,天梯分数增量很小,防止大佬虐菜鸡的现象造成两极分化
-
- double delta = (orgScoreLf.first - orgScoreLf.second) / deltaWeight;
- cout << "Normal CDF delta: " << PHI(delta) << endl;
- {
-
- const double firstnerGet = 3e-4; // 胜利者天梯得分权值
- const double secondrGet = 1e-4; // 失败者天梯得分权值
-
- double deltaScore = 100.0; // 两队竞争分差超过多少时就认为非常大
- double correctRate = (orgScoreLf.first - orgScoreLf.second) / 100.0; // 订正的幅度,该值越小,则在势均力敌时天梯分数改变越大
- double correct = 0.5 * (PHI((competitionScoreLf.first - competitionScoreLf.second - deltaScore) / deltaScore - correctRate) + 1.0); // 一场比赛中,在双方势均力敌时,减小天梯分数的改变量
-
- resScore.first = orgScore.first + round(competitionScoreLf.first * competitionScoreLf.first * firstnerGet * (1 - PHI(delta)) * correct); // 胜者所加天梯分
- if (competitionScoreLf.second < 1000)
- resScore.second = orgScore.second - round((1000.0 - competitionScoreLf.second) * (1000.0 - competitionScoreLf.second) * secondrGet * (1 - PHI(delta)) * correct); // 败者所扣天梯分
- else
- resScore.second = orgScore.second; // 败者拿1000分,已经很强了,不扣分
- }
-
- // 如果换过,再换回来
- if (reverse)
- {
- swap(resScore.first, resScore.second);
- }
-
- return resScore;
- }
-
- void Print(mypair<int> score)
- {
- std::cout << " team1: " << score.first << std::endl
- << "team2: " << score.second << std::endl;
- }
-
- int main()
- {
- int x, y;
- std::cout << "origin score of team 1 and 2: " << std::endl;
- std::cin >> x >> y;
- auto ori = mypair<int>(x, y);
- std::cout << "game score of team 1 and 2: " << std::endl;
- std::cin >> x >> y;
- auto sco = mypair<int>(x, y);
- Print(cal(ori, sco));
- }
- ```
-
- `1000 - score`(x
- `ReLU(1000 - score)`(√
- 防止真的超过了 1000)
-
- ## THUAI6
-
- ### high-ladder
-
- 因为今年的对局得分是两局得分之和,所以会出现一定程度的“数值膨胀”,在这里调低了胜者得分权值,同时提高了比赛分差距悬殊阈值和天梯分差距悬殊阈值。同时由于今年得分的上限不好确定,所以负者失分的基础值变为与胜者的得分之差。
-
- ```c++
- #include <iostream>
- #include <algorithm>
- #include <cmath>
- using namespace std;
-
- template <typename T>
- using mypair = pair<T, T>;
-
- // orgScore 是天梯中两队的分数;competitionScore 是这次游戏两队的得分
-
- mypair<int> cal(mypair<int> orgScore, mypair<int> competitionScore)
- {
-
- // 调整顺序,让第一个元素成为获胜者,便于计算
-
- bool reverse = false; // 记录是否需要调整
-
- if (competitionScore.first < competitionScore.second)
- {
- reverse = true;
- }
- else if (competitionScore.first == competitionScore.second)
- {
- if (orgScore.first == orgScore.second) // 完全平局,不改变天梯分数
- {
- return orgScore;
- }
-
- if (orgScore.first > orgScore.second) // 本次游戏平局,但一方天梯分数高,另一方天梯分数低,需要将两者向中间略微靠拢,因此天梯分数低的定为获胜者
- {
- reverse = true;
- }
- else
- {
- reverse = false;
- }
- }
-
- if (reverse) // 如果需要换,换两者的顺序
- {
- swap(competitionScore.first, competitionScore.second);
- swap(orgScore.first, orgScore.second);
- }
-
- // 转成浮点数
- mypair<double> orgScoreLf;
- mypair<double> competitionScoreLf;
- orgScoreLf.first = orgScore.first;
- orgScoreLf.second = orgScore.second;
- competitionScoreLf.first = competitionScore.first;
- competitionScoreLf.second = competitionScore.second;
- mypair<int> resScore;
-
- const double deltaWeight = 1000.0; // 差距悬殊判断参数,比赛分差超过此值就可以认定为非常悬殊了,天梯分数增量很小,防止大佬虐菜鸡的现象造成两极分化
-
- double delta = (orgScoreLf.first - orgScoreLf.second) / deltaWeight;
- cout << "Tanh delta: " << tanh(delta) << endl;
- {
-
- const double firstnerGet = 9e-6; // 胜利者天梯得分权值
- const double secondrGet = 5e-6; // 失败者天梯得分权值
-
- double deltaScore = 2100.0; // 两队竞争分差超过多少时就认为非常大
- double correctRate = (orgScoreLf.first - orgScoreLf.second) / (deltaWeight * 1.2); // 订正的幅度,该值越小,则在势均力敌时天梯分数改变越大
- double correct = 0.5 * (tanh((competitionScoreLf.first - competitionScoreLf.second - deltaScore) / deltaScore - correctRate) + 1.0); // 一场比赛中,在双方势均力敌时,减小天梯分数的改变量
- cout << "correct: " << correct << endl;
- resScore.first = orgScore.first + round(competitionScoreLf.first * competitionScoreLf.first * firstnerGet * (1 - tanh(delta)) * correct); // 胜者所加天梯分
- resScore.second = orgScore.second - round((competitionScoreLf.first - competitionScoreLf.second) * (competitionScoreLf.first - competitionScoreLf.second) * secondrGet * (1 - tanh(delta)) * correct); // 败者所扣天梯分
- }
-
- // 如果换过,再换回来
- if (reverse)
- {
- swap(resScore.first, resScore.second);
- }
-
- return resScore;
- }
- ```
-
- ### competition
-
- 与天梯得分算法要满足的“枫氏七条”类似,比赛得分算法也要满足“唐氏四律”,分别如下:
-
- 1. 两队经过某场比赛的得分变化,应只与该场比赛有关,而与历史积分无关。
- 2. 须赋予比赛获胜一方基础得分,哪怕获胜一方的优势非常小。也就是说,哪怕胜利一方仅以微弱优势获胜,也需要拉开胜者与败者的分差。
- 3. 胜利一方优势越大,得分理应越高。
- 4. 对于一场比赛,胜利一方的得分不能无限大,须控制在一个合理的数值以下。
-
- - 在非平局的情况下,(胜者)天梯得分与双方比赛分差值成正相关,得分函数如下(以x表示得分差值,y表示(胜者)天梯得分,a、b为固定参数)
-
- $$y=ax^2(1-0.375\cdot(\tanh(\frac{x}{b}-1)+1))$$
-
- - 在平局情况下,(双方)天梯得分与比赛分成正相关,得分函数如下(以x表示比赛分,y表示(双方)天梯得分,c为固定参数)
-
- $$y=cx^2$$
-
- - 不管是哪种情况,都有得分下界,非平局为100,平局为25
-
- ```c++
- #include <iostream>
- #include <algorithm>
- #include <cmath>
- #include <cassert>
- using namespace std;
-
- template <typename T>
- using mypair = pair<T, T>;
- double minScore = 100;
-
- double TieScore(double gameScore)
- {
- const double get = 9e-5; // 天梯得分权值
- double deltaScore = 2000.0; // 订正的幅度,该值越小,则在双方分差较大时,天梯分数改变量越小,整个函数的变化范围大约为0~2*deltaScore
- double highScore = 6000.0; // 将highScore设定为较大值,使得correct较小
- double correct = 1 - 0.375 * (tanh((highScore - deltaScore) / deltaScore) + 1.0); // 一场比赛中,在双方分差较大时,减小天梯分数的改变量
- cout << "correct: " << correct << endl;
- int score = round(gameScore * gameScore * get * correct / 4);
- return score > minScore / 4 ? score : minScore / 4;
- }
-
- double WinScore(double delta, double winnerGameScore) // 根据游戏得分差值,与绝对分数,决定最后的加分
- {
- assert(delta > 0);
- const double firstnerGet = 9e-5; // 胜利者天梯得分权值
- double deltaScore = 2000.0; // 订正的幅度,该值越小,则在双方分差较大时,天梯分数改变量越小,整个函数的变化范围大约为0~2*deltaScore
- double correct = 1 - 0.375 * (tanh((delta - deltaScore) / deltaScore) + 1.0); // 一场比赛中,在双方分差较大时,减小天梯分数的改变量
- cout << "correct: " << correct << endl;
- int score = round(delta * delta * firstnerGet * correct);
- return score > minScore ? score : minScore;
- }
-
- // orgScore 是天梯中两队的分数;competitionScore 是这次游戏两队的得分
- mypair<double> cal(mypair<double> orgScore, mypair<double> competitionScore)
- {
- // 调整顺序,让第一个元素成为获胜者,便于计算
-
- bool reverse = false; // 记录是否需要调整
-
- if (competitionScore.first < competitionScore.second)
- {
- reverse = true;
- }
-
- if (reverse) // 如果需要换,换两者的顺序
- {
- swap(competitionScore.first, competitionScore.second);
- swap(orgScore.first, orgScore.second);
- }
-
- double delta = competitionScore.first - competitionScore.second;
- double addScore;
- mypair<double> resScore;
-
- // 先处理平局的情况
- if (delta == 0)
- {
- addScore = TieScore(competitionScore.first);
- resScore = mypair<double>(orgScore.first + addScore, orgScore.second + addScore);
- }
-
- // 再处理有胜负的情况
- else
- {
- addScore = WinScore(delta, competitionScore.first);
- resScore = mypair<double>(orgScore.first + addScore, orgScore.second);
- }
-
- // 如果换过,再换回来
- if (reverse)
- {
- swap(resScore.first, resScore.second);
- }
-
- return resScore;
- }
-
- void Print(mypair<double> score)
- {
- std::cout << "team1: " << score.first << std::endl
- << "team2: " << score.second << std::endl;
- }
-
- int main()
- {
- double x, y, t, i = 0;
- cin >> t;
- while (i < t)
- {
- cout << "----------------------------------------\n";
- std::cout << "origin score of team 1 and 2: " << std::endl;
- std::cin >> x >> y;
- auto ori = mypair<double>(x, y);
- std::cout << "game score of team 1 and 2: " << std::endl;
- std::cin >> x >> y;
- auto sco = mypair<double>(x, y);
- Print(cal(ori, sco));
- ++i;
- }
- return 0;
- }
- ```
-
|