|
- import hashlib
- import os
- import numpy as np
- import urllib
- import warnings
- from typing import Union, List
-
- import jittor as jt
- from tqdm import tqdm
-
- from .model import build_model
- from .simple_tokenizer import SimpleTokenizer as _Tokenizer
- from PIL import Image
- from jittor.transform import CenterCrop, ImageNormalize, Compose, _setup_size, to_pil_image, resize
-
- __all__ = ["available_models", "load", "tokenize"]
- _tokenizer = _Tokenizer()
-
- _MODELS = {
- "RN50":
- "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
- "RN101":
- "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
- "RN50x4":
- "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
- "RN50x16":
- "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
- "RN50x64":
- "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
- "ViT-B/32":
- "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
- "ViT-B/16":
- "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
- "ViT-L/14":
- "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
- "ViT-L/14@336px":
- "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
- }
-
-
- def _download(url: str, root: str):
- os.makedirs(root, exist_ok=True)
- filename = os.path.basename(url)
-
- expected_sha256 = url.split("/")[-2]
- download_target = os.path.join(root, filename)
-
- if os.path.exists(download_target) and not os.path.isfile(download_target):
- raise RuntimeError(
- f"{download_target} exists and is not a regular file")
-
- if os.path.isfile(download_target):
- if hashlib.sha256(open(download_target,
- "rb").read()).hexdigest() == expected_sha256:
- return download_target
- else:
- warnings.warn(
- f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file"
- )
-
- with urllib.request.urlopen(url) as source, open(download_target,
- "wb") as output:
- with tqdm(total=int(source.info().get("Content-Length")),
- ncols=80,
- unit='iB',
- unit_scale=True,
- unit_divisor=1024) as loop:
- while True:
- buffer = source.read(8192)
- if not buffer:
- break
-
- output.write(buffer)
- loop.update(len(buffer))
-
- if hashlib.sha256(open(download_target,
- "rb").read()).hexdigest() != expected_sha256:
- raise RuntimeError(
- "Model has been downloaded but the SHA256 checksum does not not match"
- )
-
- return download_target
-
-
- def _convert_image_to_rgb(image):
- return image.convert("RGB")
-
-
- def to_tensor(data):
- return jt.Var(data)
-
-
- class ImageToTensor(object):
-
- def __call__(self, input):
- input = np.asarray(input)
- if len(input.shape) < 3:
- input = np.expand_dims(input, -1)
- return to_tensor(input)
-
-
- class Resize:
-
- def __init__(self, size, mode=Image.BILINEAR):
- if isinstance(size, int):
- self.size = size
- else:
- self.size = _setup_size(
- size,
- error_msg="If size is a sequence, it should have 2 values")
- self.mode = mode
-
- def __call__(self, img: Image.Image):
- if not isinstance(img, Image.Image):
- img = to_pil_image(img)
- if isinstance(self.size, int):
- w, h = img.size
-
- short, long = (w, h) if w <= h else (h, w)
- if short == self.size:
- return img
-
- new_short, new_long = self.size, int(self.size * long / short)
- new_w, new_h = (new_short, new_long) if w <= h else (new_long,
- new_short)
- size = (new_h, new_w)
- return resize(img, size, self.mode)
-
-
- def _transform(n_px):
- return Compose([
- Resize(n_px, mode=Image.BICUBIC),
- CenterCrop(n_px), _convert_image_to_rgb,
- ImageNormalize((0.48145466, 0.4578275, 0.40821073),
- (0.26862954, 0.26130258, 0.27577711)),
- ImageToTensor()
- ])
-
-
- def available_models() -> List[str]:
- """Returns the names of available CLIP models"""
- return list(_MODELS.keys())
-
-
- def load(name, download_root=None):
- if name in _MODELS:
- model_path = _download(
- _MODELS[name], download_root
- or os.path.expanduser("~/.cache/clip"))
- elif os.path.isfile(name):
- model_path = name
- else:
- raise RuntimeError(
- f"Model {name} not found; available models = {available_models()}")
-
- # with open(model_path, 'rb') as opened_file:
- state_dict = jt.load(model_path)
-
- model = build_model(state_dict)
- return model, _transform(model.visual.input_resolution)
-
-
- def tokenize(texts: Union[str, List[str]],
- context_length: int = 77,
- truncate: bool = False):
- if isinstance(texts, str):
- texts = [texts]
-
- sot_token = _tokenizer.encoder["<|startoftext|>"]
- eot_token = _tokenizer.encoder["<|endoftext|>"]
- all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token]
- for text in texts]
-
- result = jt.zeros((len(all_tokens), context_length), dtype=jt.int64)
-
- for i, tokens in enumerate(all_tokens):
- if len(tokens) > context_length:
- if truncate:
- tokens = tokens[:context_length]
- tokens[-1] = eot_token
- else:
- raise RuntimeError(
- f"Input {texts[i]} is too long for context length {context_length}"
- )
- result[i, :len(tokens)] = jt.Var(tokens)
-
- return result
|