import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import jittor as jt from jittor import transform from jittor.optim import Adam, AdamW, SGD, Adan from PIL import Image from datetime import datetime from natsort import natsorted class EarlyStop(object): """早停 1. 当模型的损失长时间不下降时,停止训练 2. 当模型的损失长时间增大时,也提前停止训练 """ def __init__(self, patience=7, delta=0.0001, patience_up=20): self.patience = patience self.delta = delta self.counter = 0 self.counter_up = 0 self.last_loss = None self.early_stop = False self.patience_up = patience_up def __call__(self, loss): """当输入的loss多次不下降或者上升的时候,返回True,正常时返回False Args: loss (float): 当前的损失值 Returns: bool: 是否早停 """ if self.last_loss is None: self.last_loss = loss return False # loss下降明显低于delta,当前清零 if loss < self.last_loss - self.delta: self.counter = 0 self.counter_up = 0 self.last_loss = loss # loss上升明显高于delta,counter_up开始计数 elif loss > self.last_loss + self.delta: self.counter_up += 1 if self.counter_up >= self.patience_up: self.early_stop = True return True # loss上升和下降均小于delta,在区间震荡,counter开始计数 else: self.counter += 1 if self.counter >= self.patience: self.early_stop = True return True return False def accuracy(model, dataloader, zeroshot_weights): """计算模型的准确率""" model.eval() corrct = 0 total_count = 0 with jt.no_grad(): for i, batch in enumerate(dataloader): images, targets, texts = batch total_count += len(images) image_features = model.encode_image(images) image_features = image_features / image_features.norm(dim=1, keepdim=True) logits = (100 * image_features @ zeroshot_weights).softmax(dim=-1) preds = jt.argmax(logits, dim=1)[0] corrct += jt.equal(preds, targets).sum().item() return corrct / total_count def get_current_date(end_time='day'): # 获取当前日期时间对象 current_date = datetime.now() # 格式化日期为月日时分格式 if end_time == 'day': formatted_date = current_date.strftime("%m-%d") elif end_time == 'minute': formatted_date = current_date.strftime("%m-%d_%H:%M") return formatted_date def get_save_path(given_path, optimizer): """获取tensorboard日志/模型保存路径""" # 文件保存路径如下: # given_path/date/optimizer/version_x path = os.path.join(given_path, get_current_date(end_time='day')) os.makedirs(path, exist_ok=True) try: last_version = int(natsorted(os.listdir(path))[-1].split('_')[-1]) current_path = os.path.join(path, f'version_{last_version + 1}') os.makedirs(current_path, exist_ok=True) except IndexError: current_path = os.path.join(path, 'version_0') os.makedirs(current_path, exist_ok=True) return current_path def get_optimizer(args, model): """根据输入参数获取优化器""" if args.optimizer == 'Adam': optimizer = Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, betas=args.betas, eps=args.eps) elif args.optimizer == 'AdamW': optimizer = AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, betas=args.betas, eps=args.eps) elif args.optimizer == 'Adan': if len(args.betas) == 2: raise ValueError('Adan optimizer requires betas has the shape like (0.9,0.98, 0.99)') optimizer = Adan(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, betas=args.betas, eps=args.eps) elif args.optimizer == 'SGD': optimizer = SGD(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, momentum=0.9) else: raise ValueError('Unsupported optimizer, please check the optimizer name.') return optimizer def get_scheduler(optimizer, args): """根据输入参数获取学习率调度器""" pass def get_transform(args): """根据输入参数获取数据预处理""" if args.data_preprocess == 1: transforms = transform.Compose([ transform.Resize(224, mode=Image.BICUBIC), transform.CenterCrop(224), lambda image: image.convert("RGB"), transform.ImageNormalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) ]) return transforms elif args.data_preprocess == 2: transforms = transform.Compose([ transform.Resize(224, mode=Image.BICUBIC), transform.CenterCrop(224), lambda image: image.convert("RGB"), transform.ColorJitter(brightness=0.2, contrast=0.3, saturation=0.4, hue=0.1), transform.RandomRotation(10), transform.RandomHorizontalFlip(), transform.ImageNormalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))]) def compute_loss(logits_image, logits_text): """计算损失函数,用来建立文本与图像的语义关系,实现语义对其""" ground_truth = jt.arange(len(logits_image), dtype=jt.int32) loss = (jt.nn.cross_entropy_loss(logits_image, ground_truth) +\ jt.nn.cross_entropy_loss(logits_text, ground_truth)) / 2 return loss