import hashlib import os import numpy as np import urllib import warnings from typing import Union, List import jittor as jt from tqdm import tqdm from .model import build_model from .simple_tokenizer import SimpleTokenizer as _Tokenizer from PIL import Image from jittor.transform import CenterCrop, ImageNormalize, Compose, _setup_size, to_pil_image, resize __all__ = ["available_models", "load", "tokenize"] _tokenizer = _Tokenizer() _MODELS = { "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", "RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt", "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt", } def _download(url: str, root: str): os.makedirs(root, exist_ok=True) filename = os.path.basename(url) expected_sha256 = url.split("/")[-2] download_target = os.path.join(root, filename) if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError( f"{download_target} exists and is not a regular file") if os.path.isfile(download_target): if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: return download_target else: warnings.warn( f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" ) with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match" ) return download_target def _convert_image_to_rgb(image): return image.convert("RGB") def to_tensor(data): return jt.Var(data) class ImageToTensor(object): def __call__(self, input): input = np.asarray(input) if len(input.shape) < 3: input = np.expand_dims(input, -1) return to_tensor(input) class Resize: def __init__(self, size, mode=Image.BILINEAR): if isinstance(size, int): self.size = size else: self.size = _setup_size( size, error_msg="If size is a sequence, it should have 2 values") self.mode = mode def __call__(self, img: Image.Image): if not isinstance(img, Image.Image): img = to_pil_image(img) if isinstance(self.size, int): w, h = img.size short, long = (w, h) if w <= h else (h, w) if short == self.size: return img new_short, new_long = self.size, int(self.size * long / short) new_w, new_h = (new_short, new_long) if w <= h else (new_long, new_short) size = (new_h, new_w) return resize(img, size, self.mode) def _transform(n_px): return Compose([ Resize(n_px, mode=Image.BICUBIC), CenterCrop(n_px), _convert_image_to_rgb, ImageNormalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ImageToTensor() ]) def available_models() -> List[str]: """Returns the names of available CLIP models""" return list(_MODELS.keys()) def load(name, download_root=None): if name in _MODELS: model_path = _download( _MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) elif os.path.isfile(name): model_path = name else: raise RuntimeError( f"Model {name} not found; available models = {available_models()}") # with open(model_path, 'rb') as opened_file: state_dict = jt.load(model_path) model = build_model(state_dict) return model, _transform(model.visual.input_resolution) def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False): if isinstance(texts, str): texts = [texts] sot_token = _tokenizer.encoder["<|startoftext|>"] eot_token = _tokenizer.encoder["<|endoftext|>"] all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] result = jt.zeros((len(all_tokens), context_length), dtype=jt.int64) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate: tokens = tokens[:context_length] tokens[-1] = eot_token else: raise RuntimeError( f"Input {texts[i]} is too long for context length {context_length}" ) result[i, :len(tokens)] = jt.Var(tokens) return result