Browse Source

ADD file via upload

master
BIT2024 1 year ago
parent
commit
7dda438787
1 changed files with 164 additions and 0 deletions
  1. +164
    -0
      utils/helper.py

+ 164
- 0
utils/helper.py View File

@@ -0,0 +1,164 @@

import os

os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import jittor as jt
from jittor import transform
from jittor.optim import Adam, AdamW, SGD, Adan
from PIL import Image
from datetime import datetime
from natsort import natsorted

class EarlyStop(object):
"""早停
1. 当模型的损失长时间不下降时,停止训练
2. 当模型的损失长时间增大时,也提前停止训练
"""
def __init__(self, patience=7, delta=0.0001, patience_up=20):
self.patience = patience
self.delta = delta
self.counter = 0
self.counter_up = 0
self.last_loss = None
self.early_stop = False
self.patience_up = patience_up
def __call__(self, loss):
"""当输入的loss多次不下降或者上升的时候,返回True,正常时返回False

Args:
loss (float): 当前的损失值

Returns:
bool: 是否早停
"""
if self.last_loss is None:
self.last_loss = loss
return False

# loss下降明显低于delta,当前清零
if loss < self.last_loss - self.delta:
self.counter = 0
self.counter_up = 0
self.last_loss = loss
# loss上升明显高于delta,counter_up开始计数
elif loss > self.last_loss + self.delta:
self.counter_up += 1
if self.counter_up >= self.patience_up:
self.early_stop = True
return True
# loss上升和下降均小于delta,在区间震荡,counter开始计数
else:
self.counter += 1
if self.counter >= self.patience:
self.early_stop = True
return True

return False
def accuracy(model, dataloader, zeroshot_weights):
"""计算模型的准确率"""
model.eval()
corrct = 0
total_count = 0
with jt.no_grad():
for i, batch in enumerate(dataloader):
images, targets, texts = batch
total_count += len(images)
image_features = model.encode_image(images)
image_features = image_features / image_features.norm(dim=1, keepdim=True)
logits = (100 * image_features @ zeroshot_weights).softmax(dim=-1)
preds = jt.argmax(logits, dim=1)[0]
corrct += jt.equal(preds, targets).sum().item()
return corrct / total_count

def get_current_date(end_time='day'):
# 获取当前日期时间对象
current_date = datetime.now()
# 格式化日期为月日时分格式
if end_time == 'day':
formatted_date = current_date.strftime("%m-%d")
elif end_time == 'minute':
formatted_date = current_date.strftime("%m-%d_%H:%M")
return formatted_date

def get_save_path(given_path, optimizer):
"""获取tensorboard日志/模型保存路径"""
# 文件保存路径如下:
# given_path/date/optimizer/version_x
path = os.path.join(given_path, get_current_date(end_time='day'))
os.makedirs(path, exist_ok=True)
try:
last_version = int(natsorted(os.listdir(path))[-1].split('_')[-1])
current_path = os.path.join(path, f'version_{last_version + 1}')
os.makedirs(current_path, exist_ok=True)
except IndexError:
current_path = os.path.join(path, 'version_0')
os.makedirs(current_path, exist_ok=True)
return current_path




def get_optimizer(args, model):
"""根据输入参数获取优化器"""
if args.optimizer == 'Adam':
optimizer = Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay,
betas=args.betas, eps=args.eps)
elif args.optimizer == 'AdamW':
optimizer = AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay,
betas=args.betas, eps=args.eps)

elif args.optimizer == 'Adan':
if len(args.betas) == 2:
raise ValueError('Adan optimizer requires betas has the shape like (0.9,0.98, 0.99)')
optimizer = Adan(model.parameters(), lr=args.lr, weight_decay=args.weight_decay,
betas=args.betas, eps=args.eps)
elif args.optimizer == 'SGD':
optimizer = SGD(model.parameters(), lr=args.lr, weight_decay=args.weight_decay,
momentum=0.9)
else:
raise ValueError('Unsupported optimizer, please check the optimizer name.')
return optimizer

def get_scheduler(optimizer, args):
"""根据输入参数获取学习率调度器"""
pass

def get_transform(args):
"""根据输入参数获取数据预处理"""
if args.data_preprocess == 1:
transforms = transform.Compose([
transform.Resize(224, mode=Image.BICUBIC),
transform.CenterCrop(224), lambda image: image.convert("RGB"),
transform.ImageNormalize(mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711))
])
return transforms
elif args.data_preprocess == 2:
transforms = transform.Compose([
transform.Resize(224, mode=Image.BICUBIC),
transform.CenterCrop(224), lambda image: image.convert("RGB"),
transform.ColorJitter(brightness=0.2, contrast=0.3, saturation=0.4, hue=0.1),
transform.RandomRotation(10),
transform.RandomHorizontalFlip(),
transform.ImageNormalize(mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711))])

def compute_loss(logits_image, logits_text):
"""计算损失函数,用来建立文本与图像的语义关系,实现语义对其"""
ground_truth = jt.arange(len(logits_image), dtype=jt.int32)
loss = (jt.nn.cross_entropy_loss(logits_image, ground_truth) +\
jt.nn.cross_entropy_loss(logits_text, ground_truth)) / 2
return loss

Loading…
Cancel
Save