|
|
@@ -0,0 +1,187 @@ |
|
|
|
import hashlib |
|
|
|
import os |
|
|
|
import numpy as np |
|
|
|
import urllib |
|
|
|
import warnings |
|
|
|
from typing import Union, List |
|
|
|
|
|
|
|
import jittor as jt |
|
|
|
from tqdm import tqdm |
|
|
|
|
|
|
|
from .model import build_model |
|
|
|
from .simple_tokenizer import SimpleTokenizer as _Tokenizer |
|
|
|
from PIL import Image |
|
|
|
from jittor.transform import CenterCrop, ImageNormalize, Compose, _setup_size, to_pil_image, resize |
|
|
|
|
|
|
|
__all__ = ["available_models", "load", "tokenize"] |
|
|
|
_tokenizer = _Tokenizer() |
|
|
|
|
|
|
|
_MODELS = { |
|
|
|
"RN50": |
|
|
|
"https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", |
|
|
|
"RN101": |
|
|
|
"https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", |
|
|
|
"RN50x4": |
|
|
|
"https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", |
|
|
|
"RN50x16": |
|
|
|
"https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", |
|
|
|
"RN50x64": |
|
|
|
"https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt", |
|
|
|
"ViT-B/32": |
|
|
|
"https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", |
|
|
|
"ViT-B/16": |
|
|
|
"https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", |
|
|
|
"ViT-L/14": |
|
|
|
"https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", |
|
|
|
"ViT-L/14@336px": |
|
|
|
"https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt", |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
def _download(url: str, root: str): |
|
|
|
os.makedirs(root, exist_ok=True) |
|
|
|
filename = os.path.basename(url) |
|
|
|
|
|
|
|
expected_sha256 = url.split("/")[-2] |
|
|
|
download_target = os.path.join(root, filename) |
|
|
|
|
|
|
|
if os.path.exists(download_target) and not os.path.isfile(download_target): |
|
|
|
raise RuntimeError( |
|
|
|
f"{download_target} exists and is not a regular file") |
|
|
|
|
|
|
|
if os.path.isfile(download_target): |
|
|
|
if hashlib.sha256(open(download_target, |
|
|
|
"rb").read()).hexdigest() == expected_sha256: |
|
|
|
return download_target |
|
|
|
else: |
|
|
|
warnings.warn( |
|
|
|
f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" |
|
|
|
) |
|
|
|
|
|
|
|
with urllib.request.urlopen(url) as source, open(download_target, |
|
|
|
"wb") as output: |
|
|
|
with tqdm(total=int(source.info().get("Content-Length")), |
|
|
|
ncols=80, |
|
|
|
unit='iB', |
|
|
|
unit_scale=True, |
|
|
|
unit_divisor=1024) as loop: |
|
|
|
while True: |
|
|
|
buffer = source.read(8192) |
|
|
|
if not buffer: |
|
|
|
break |
|
|
|
|
|
|
|
output.write(buffer) |
|
|
|
loop.update(len(buffer)) |
|
|
|
|
|
|
|
if hashlib.sha256(open(download_target, |
|
|
|
"rb").read()).hexdigest() != expected_sha256: |
|
|
|
raise RuntimeError( |
|
|
|
"Model has been downloaded but the SHA256 checksum does not not match" |
|
|
|
) |
|
|
|
|
|
|
|
return download_target |
|
|
|
|
|
|
|
|
|
|
|
def _convert_image_to_rgb(image): |
|
|
|
return image.convert("RGB") |
|
|
|
|
|
|
|
|
|
|
|
def to_tensor(data): |
|
|
|
return jt.Var(data) |
|
|
|
|
|
|
|
|
|
|
|
class ImageToTensor(object): |
|
|
|
|
|
|
|
def __call__(self, input): |
|
|
|
input = np.asarray(input) |
|
|
|
if len(input.shape) < 3: |
|
|
|
input = np.expand_dims(input, -1) |
|
|
|
return to_tensor(input) |
|
|
|
|
|
|
|
|
|
|
|
class Resize: |
|
|
|
|
|
|
|
def __init__(self, size, mode=Image.BILINEAR): |
|
|
|
if isinstance(size, int): |
|
|
|
self.size = size |
|
|
|
else: |
|
|
|
self.size = _setup_size( |
|
|
|
size, |
|
|
|
error_msg="If size is a sequence, it should have 2 values") |
|
|
|
self.mode = mode |
|
|
|
|
|
|
|
def __call__(self, img: Image.Image): |
|
|
|
if not isinstance(img, Image.Image): |
|
|
|
img = to_pil_image(img) |
|
|
|
if isinstance(self.size, int): |
|
|
|
w, h = img.size |
|
|
|
|
|
|
|
short, long = (w, h) if w <= h else (h, w) |
|
|
|
if short == self.size: |
|
|
|
return img |
|
|
|
|
|
|
|
new_short, new_long = self.size, int(self.size * long / short) |
|
|
|
new_w, new_h = (new_short, new_long) if w <= h else (new_long, |
|
|
|
new_short) |
|
|
|
size = (new_h, new_w) |
|
|
|
return resize(img, size, self.mode) |
|
|
|
|
|
|
|
|
|
|
|
def _transform(n_px): |
|
|
|
return Compose([ |
|
|
|
Resize(n_px, mode=Image.BICUBIC), |
|
|
|
CenterCrop(n_px), _convert_image_to_rgb, |
|
|
|
ImageNormalize((0.48145466, 0.4578275, 0.40821073), |
|
|
|
(0.26862954, 0.26130258, 0.27577711)), |
|
|
|
ImageToTensor() |
|
|
|
]) |
|
|
|
|
|
|
|
|
|
|
|
def available_models() -> List[str]: |
|
|
|
"""Returns the names of available CLIP models""" |
|
|
|
return list(_MODELS.keys()) |
|
|
|
|
|
|
|
|
|
|
|
def load(name, download_root=None): |
|
|
|
if name in _MODELS: |
|
|
|
model_path = _download( |
|
|
|
_MODELS[name], download_root |
|
|
|
or os.path.expanduser("~/.cache/clip")) |
|
|
|
elif os.path.isfile(name): |
|
|
|
model_path = name |
|
|
|
else: |
|
|
|
raise RuntimeError( |
|
|
|
f"Model {name} not found; available models = {available_models()}") |
|
|
|
|
|
|
|
# with open(model_path, 'rb') as opened_file: |
|
|
|
state_dict = jt.load(model_path) |
|
|
|
|
|
|
|
model = build_model(state_dict) |
|
|
|
return model, _transform(model.visual.input_resolution) |
|
|
|
|
|
|
|
|
|
|
|
def tokenize(texts: Union[str, List[str]], |
|
|
|
context_length: int = 77, |
|
|
|
truncate: bool = False): |
|
|
|
if isinstance(texts, str): |
|
|
|
texts = [texts] |
|
|
|
|
|
|
|
sot_token = _tokenizer.encoder["<|startoftext|>"] |
|
|
|
eot_token = _tokenizer.encoder["<|endoftext|>"] |
|
|
|
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] |
|
|
|
for text in texts] |
|
|
|
|
|
|
|
result = jt.zeros((len(all_tokens), context_length), dtype=jt.int64) |
|
|
|
|
|
|
|
for i, tokens in enumerate(all_tokens): |
|
|
|
if len(tokens) > context_length: |
|
|
|
if truncate: |
|
|
|
tokens = tokens[:context_length] |
|
|
|
tokens[-1] = eot_token |
|
|
|
else: |
|
|
|
raise RuntimeError( |
|
|
|
f"Input {texts[i]} is too long for context length {context_length}" |
|
|
|
) |
|
|
|
result[i, :len(tokens)] = jt.Var(tokens) |
|
|
|
|
|
|
|
return result |