| @@ -0,0 +1,187 @@ | |||
| import hashlib | |||
| import os | |||
| import numpy as np | |||
| import urllib | |||
| import warnings | |||
| from typing import Union, List | |||
| import jittor as jt | |||
| from tqdm import tqdm | |||
| from .model import build_model | |||
| from .simple_tokenizer import SimpleTokenizer as _Tokenizer | |||
| from PIL import Image | |||
| from jittor.transform import CenterCrop, ImageNormalize, Compose, _setup_size, to_pil_image, resize | |||
| __all__ = ["available_models", "load", "tokenize"] | |||
| _tokenizer = _Tokenizer() | |||
| _MODELS = { | |||
| "RN50": | |||
| "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", | |||
| "RN101": | |||
| "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", | |||
| "RN50x4": | |||
| "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", | |||
| "RN50x16": | |||
| "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", | |||
| "RN50x64": | |||
| "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt", | |||
| "ViT-B/32": | |||
| "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", | |||
| "ViT-B/16": | |||
| "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", | |||
| "ViT-L/14": | |||
| "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", | |||
| "ViT-L/14@336px": | |||
| "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt", | |||
| } | |||
| def _download(url: str, root: str): | |||
| os.makedirs(root, exist_ok=True) | |||
| filename = os.path.basename(url) | |||
| expected_sha256 = url.split("/")[-2] | |||
| download_target = os.path.join(root, filename) | |||
| if os.path.exists(download_target) and not os.path.isfile(download_target): | |||
| raise RuntimeError( | |||
| f"{download_target} exists and is not a regular file") | |||
| if os.path.isfile(download_target): | |||
| if hashlib.sha256(open(download_target, | |||
| "rb").read()).hexdigest() == expected_sha256: | |||
| return download_target | |||
| else: | |||
| warnings.warn( | |||
| f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" | |||
| ) | |||
| with urllib.request.urlopen(url) as source, open(download_target, | |||
| "wb") as output: | |||
| with tqdm(total=int(source.info().get("Content-Length")), | |||
| ncols=80, | |||
| unit='iB', | |||
| unit_scale=True, | |||
| unit_divisor=1024) as loop: | |||
| while True: | |||
| buffer = source.read(8192) | |||
| if not buffer: | |||
| break | |||
| output.write(buffer) | |||
| loop.update(len(buffer)) | |||
| if hashlib.sha256(open(download_target, | |||
| "rb").read()).hexdigest() != expected_sha256: | |||
| raise RuntimeError( | |||
| "Model has been downloaded but the SHA256 checksum does not not match" | |||
| ) | |||
| return download_target | |||
| def _convert_image_to_rgb(image): | |||
| return image.convert("RGB") | |||
| def to_tensor(data): | |||
| return jt.Var(data) | |||
| class ImageToTensor(object): | |||
| def __call__(self, input): | |||
| input = np.asarray(input) | |||
| if len(input.shape) < 3: | |||
| input = np.expand_dims(input, -1) | |||
| return to_tensor(input) | |||
| class Resize: | |||
| def __init__(self, size, mode=Image.BILINEAR): | |||
| if isinstance(size, int): | |||
| self.size = size | |||
| else: | |||
| self.size = _setup_size( | |||
| size, | |||
| error_msg="If size is a sequence, it should have 2 values") | |||
| self.mode = mode | |||
| def __call__(self, img: Image.Image): | |||
| if not isinstance(img, Image.Image): | |||
| img = to_pil_image(img) | |||
| if isinstance(self.size, int): | |||
| w, h = img.size | |||
| short, long = (w, h) if w <= h else (h, w) | |||
| if short == self.size: | |||
| return img | |||
| new_short, new_long = self.size, int(self.size * long / short) | |||
| new_w, new_h = (new_short, new_long) if w <= h else (new_long, | |||
| new_short) | |||
| size = (new_h, new_w) | |||
| return resize(img, size, self.mode) | |||
| def _transform(n_px): | |||
| return Compose([ | |||
| Resize(n_px, mode=Image.BICUBIC), | |||
| CenterCrop(n_px), _convert_image_to_rgb, | |||
| ImageNormalize((0.48145466, 0.4578275, 0.40821073), | |||
| (0.26862954, 0.26130258, 0.27577711)), | |||
| ImageToTensor() | |||
| ]) | |||
| def available_models() -> List[str]: | |||
| """Returns the names of available CLIP models""" | |||
| return list(_MODELS.keys()) | |||
| def load(name, download_root=None): | |||
| if name in _MODELS: | |||
| model_path = _download( | |||
| _MODELS[name], download_root | |||
| or os.path.expanduser("~/.cache/clip")) | |||
| elif os.path.isfile(name): | |||
| model_path = name | |||
| else: | |||
| raise RuntimeError( | |||
| f"Model {name} not found; available models = {available_models()}") | |||
| # with open(model_path, 'rb') as opened_file: | |||
| state_dict = jt.load(model_path) | |||
| model = build_model(state_dict) | |||
| return model, _transform(model.visual.input_resolution) | |||
| def tokenize(texts: Union[str, List[str]], | |||
| context_length: int = 77, | |||
| truncate: bool = False): | |||
| if isinstance(texts, str): | |||
| texts = [texts] | |||
| sot_token = _tokenizer.encoder["<|startoftext|>"] | |||
| eot_token = _tokenizer.encoder["<|endoftext|>"] | |||
| all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] | |||
| for text in texts] | |||
| result = jt.zeros((len(all_tokens), context_length), dtype=jt.int64) | |||
| for i, tokens in enumerate(all_tokens): | |||
| if len(tokens) > context_length: | |||
| if truncate: | |||
| tokens = tokens[:context_length] | |||
| tokens[-1] = eot_token | |||
| else: | |||
| raise RuntimeError( | |||
| f"Input {texts[i]} is too long for context length {context_length}" | |||
| ) | |||
| result[i, :len(tokens)] = jt.Var(tokens) | |||
| return result | |||