You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.log 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. 2024-07-30 09:42:54 train_clip.py [line:144] INFO: Model will be saved at ckptFE/07-30/version_1
  2. 2024-07-30 09:42:54 train_clip.py [line:73] INFO: model parameters:
  3. 2024-07-30 09:42:54 train_clip.py [line:74] INFO: +-----------------------+-------------------+
  4. | Parameter | Value |
  5. +=======================+===================+
  6. | seed | 123 |
  7. +-----------------------+-------------------+
  8. | optimizer | Adan |
  9. +-----------------------+-------------------+
  10. | lr | 3e-06 |
  11. +-----------------------+-------------------+
  12. | betas | [0.9, 0.98, 0.98] |
  13. +-----------------------+-------------------+
  14. | eps | 1e-08 |
  15. +-----------------------+-------------------+
  16. | weight_decay | 0.2 |
  17. +-----------------------+-------------------+
  18. | batch_size | 256 |
  19. +-----------------------+-------------------+
  20. | num_workers | 8 |
  21. +-----------------------+-------------------+
  22. | epochs | 100 |
  23. +-----------------------+-------------------+
  24. | early_stop | False |
  25. +-----------------------+-------------------+
  26. | patience | 10 |
  27. +-----------------------+-------------------+
  28. | delta | 0.0001 |
  29. +-----------------------+-------------------+
  30. | caption_version | 2 |
  31. +-----------------------+-------------------+
  32. | data_augment | 0 |
  33. +-----------------------+-------------------+
  34. | model_save_path | ckptFE |
  35. +-----------------------+-------------------+
  36. | log_save_path | logs |
  37. +-----------------------+-------------------+
  38. | compute_acc_frequency | 0 |
  39. +-----------------------+-------------------+
  40. | use_scheduler | False |
  41. +-----------------------+-------------------+
  42. | save_frequency | 5 |
  43. +-----------------------+-------------------+
  44. | freeze_version | 2 |
  45. +-----------------------+-------------------+
  46. 2024-07-30 09:42:54 train_clip.py [line:76] INFO:
  47. Start training...
  48. 2024-07-30 09:43:15 train_clip.py [line:116] INFO: Epoch: 1, Loss: 6.7326 Min Loss: 6.7326
  49. 2024-07-30 09:43:26 train_clip.py [line:116] INFO: Epoch: 2, Loss: 4.8350 Min Loss: 4.8350
  50. 2024-07-30 09:43:36 train_clip.py [line:116] INFO: Epoch: 3, Loss: 4.2236 Min Loss: 4.2236
  51. 2024-07-30 09:43:47 train_clip.py [line:116] INFO: Epoch: 4, Loss: 3.6406 Min Loss: 3.6406
  52. 2024-07-30 09:44:00 train_clip.py [line:116] INFO: Epoch: 5, Loss: 3.1923 Min Loss: 3.1923
  53. 2024-07-30 09:44:10 train_clip.py [line:116] INFO: Epoch: 6, Loss: 2.7900 Min Loss: 2.7900
  54. 2024-07-30 09:44:21 train_clip.py [line:116] INFO: Epoch: 7, Loss: 2.7613 Min Loss: 2.7613
  55. 2024-07-30 09:44:31 train_clip.py [line:116] INFO: Epoch: 8, Loss: 2.4837 Min Loss: 2.4837
  56. 2024-07-30 09:44:42 train_clip.py [line:116] INFO: Epoch: 9, Loss: 2.3107 Min Loss: 2.3107
  57. 2024-07-30 09:44:52 train_clip.py [line:116] INFO: Epoch: 10, Loss: 2.5804 Min Loss: 2.3107
  58. 2024-07-30 09:45:03 train_clip.py [line:116] INFO: Epoch: 11, Loss: 2.3105 Min Loss: 2.3105
  59. 2024-07-30 09:45:13 train_clip.py [line:116] INFO: Epoch: 12, Loss: 2.2390 Min Loss: 2.2390
  60. 2024-07-30 09:45:24 train_clip.py [line:116] INFO: Epoch: 13, Loss: 2.1971 Min Loss: 2.1971
  61. 2024-07-30 09:45:34 train_clip.py [line:116] INFO: Epoch: 14, Loss: 2.1353 Min Loss: 2.1353
  62. 2024-07-30 09:45:44 train_clip.py [line:116] INFO: Epoch: 15, Loss: 2.1982 Min Loss: 2.1353
  63. 2024-07-30 09:45:55 train_clip.py [line:116] INFO: Epoch: 16, Loss: 2.1203 Min Loss: 2.1203
  64. 2024-07-30 09:46:06 train_clip.py [line:116] INFO: Epoch: 17, Loss: 2.0903 Min Loss: 2.0903
  65. 2024-07-30 09:46:12 train_clip.py [line:116] INFO: Epoch: 18, Loss: 2.2247 Min Loss: 2.0903
  66. 2024-07-30 09:46:23 train_clip.py [line:116] INFO: Epoch: 19, Loss: 1.9555 Min Loss: 1.9555
  67. 2024-07-30 09:46:34 train_clip.py [line:116] INFO: Epoch: 20, Loss: 2.1647 Min Loss: 1.9555
  68. 2024-07-30 09:46:40 train_clip.py [line:116] INFO: Epoch: 21, Loss: 2.1485 Min Loss: 1.9555
  69. 2024-07-30 09:46:48 train_clip.py [line:116] INFO: Epoch: 22, Loss: 1.9868 Min Loss: 1.9555
  70. 2024-07-30 09:46:55 train_clip.py [line:116] INFO: Epoch: 23, Loss: 2.0948 Min Loss: 1.9555
  71. 2024-07-30 09:47:02 train_clip.py [line:116] INFO: Epoch: 24, Loss: 2.2866 Min Loss: 1.9555
  72. 2024-07-30 09:47:14 train_clip.py [line:116] INFO: Epoch: 25, Loss: 2.0188 Min Loss: 1.9555
  73. 2024-07-30 09:47:20 train_clip.py [line:116] INFO: Epoch: 26, Loss: 1.9677 Min Loss: 1.9555
  74. 2024-07-30 09:47:27 train_clip.py [line:116] INFO: Epoch: 27, Loss: 2.1724 Min Loss: 1.9555
  75. 2024-07-30 09:47:35 train_clip.py [line:116] INFO: Epoch: 28, Loss: 2.1688 Min Loss: 1.9555
  76. 2024-07-30 09:47:42 train_clip.py [line:116] INFO: Epoch: 29, Loss: 2.1263 Min Loss: 1.9555
  77. 2024-07-30 09:47:53 train_clip.py [line:116] INFO: Epoch: 30, Loss: 1.9607 Min Loss: 1.9555
  78. 2024-07-30 09:48:00 train_clip.py [line:116] INFO: Epoch: 31, Loss: 2.1069 Min Loss: 1.9555
  79. 2024-07-30 09:48:07 train_clip.py [line:116] INFO: Epoch: 32, Loss: 2.1050 Min Loss: 1.9555
  80. 2024-07-30 09:48:14 train_clip.py [line:116] INFO: Epoch: 33, Loss: 1.9982 Min Loss: 1.9555
  81. 2024-07-30 09:48:22 train_clip.py [line:116] INFO: Epoch: 34, Loss: 2.0697 Min Loss: 1.9555
  82. 2024-07-30 09:48:33 train_clip.py [line:116] INFO: Epoch: 35, Loss: 2.0341 Min Loss: 1.9555
  83. 2024-07-30 09:48:39 train_clip.py [line:116] INFO: Epoch: 36, Loss: 2.1605 Min Loss: 1.9555
  84. 2024-07-30 09:48:47 train_clip.py [line:116] INFO: Epoch: 37, Loss: 1.9961 Min Loss: 1.9555
  85. 2024-07-30 09:48:54 train_clip.py [line:116] INFO: Epoch: 38, Loss: 2.1738 Min Loss: 1.9555
  86. 2024-07-30 09:49:01 train_clip.py [line:116] INFO: Epoch: 39, Loss: 2.1491 Min Loss: 1.9555
  87. 2024-07-30 09:49:12 train_clip.py [line:116] INFO: Epoch: 40, Loss: 1.9688 Min Loss: 1.9555
  88. 2024-07-30 09:49:19 train_clip.py [line:116] INFO: Epoch: 41, Loss: 2.0219 Min Loss: 1.9555
  89. 2024-07-30 09:49:26 train_clip.py [line:116] INFO: Epoch: 42, Loss: 1.9816 Min Loss: 1.9555
  90. 2024-07-30 09:49:34 train_clip.py [line:116] INFO: Epoch: 43, Loss: 2.0341 Min Loss: 1.9555
  91. 2024-07-30 09:49:41 train_clip.py [line:116] INFO: Epoch: 44, Loss: 2.1563 Min Loss: 1.9555
  92. 2024-07-30 09:49:52 train_clip.py [line:116] INFO: Epoch: 45, Loss: 1.9851 Min Loss: 1.9555
  93. 2024-07-30 09:49:59 train_clip.py [line:116] INFO: Epoch: 46, Loss: 2.0096 Min Loss: 1.9555
  94. 2024-07-30 09:50:10 train_clip.py [line:116] INFO: Epoch: 47, Loss: 1.9379 Min Loss: 1.9379
  95. 2024-07-30 09:50:17 train_clip.py [line:116] INFO: Epoch: 48, Loss: 2.0642 Min Loss: 1.9379
  96. 2024-07-30 09:50:24 train_clip.py [line:116] INFO: Epoch: 49, Loss: 2.0583 Min Loss: 1.9379
  97. 2024-07-30 09:50:35 train_clip.py [line:116] INFO: Epoch: 50, Loss: 1.9452 Min Loss: 1.9379
  98. 2024-07-30 09:50:42 train_clip.py [line:116] INFO: Epoch: 51, Loss: 2.0361 Min Loss: 1.9379
  99. 2024-07-30 09:50:49 train_clip.py [line:116] INFO: Epoch: 52, Loss: 1.9722 Min Loss: 1.9379
  100. 2024-07-30 09:50:56 train_clip.py [line:116] INFO: Epoch: 53, Loss: 1.9925 Min Loss: 1.9379
  101. 2024-07-30 09:51:04 train_clip.py [line:116] INFO: Epoch: 54, Loss: 2.1328 Min Loss: 1.9379
  102. 2024-07-30 09:51:15 train_clip.py [line:116] INFO: Epoch: 55, Loss: 2.0497 Min Loss: 1.9379
  103. 2024-07-30 09:51:21 train_clip.py [line:116] INFO: Epoch: 56, Loss: 2.0061 Min Loss: 1.9379
  104. 2024-07-30 09:51:29 train_clip.py [line:116] INFO: Epoch: 57, Loss: 2.2227 Min Loss: 1.9379
  105. 2024-07-30 09:51:36 train_clip.py [line:116] INFO: Epoch: 58, Loss: 1.9891 Min Loss: 1.9379
  106. 2024-07-30 09:51:43 train_clip.py [line:116] INFO: Epoch: 59, Loss: 1.9929 Min Loss: 1.9379
  107. 2024-07-30 09:51:54 train_clip.py [line:116] INFO: Epoch: 60, Loss: 2.0990 Min Loss: 1.9379
  108. 2024-07-30 09:52:01 train_clip.py [line:116] INFO: Epoch: 61, Loss: 2.0332 Min Loss: 1.9379
  109. 2024-07-30 09:52:12 train_clip.py [line:116] INFO: Epoch: 62, Loss: 1.9359 Min Loss: 1.9359
  110. 2024-07-30 09:52:19 train_clip.py [line:116] INFO: Epoch: 63, Loss: 2.0810 Min Loss: 1.9359
  111. 2024-07-30 09:52:26 train_clip.py [line:116] INFO: Epoch: 64, Loss: 2.1124 Min Loss: 1.9359
  112. 2024-07-30 09:52:37 train_clip.py [line:116] INFO: Epoch: 65, Loss: 2.0724 Min Loss: 1.9359
  113. 2024-07-30 09:52:44 train_clip.py [line:116] INFO: Epoch: 66, Loss: 2.0832 Min Loss: 1.9359
  114. 2024-07-30 09:52:52 train_clip.py [line:116] INFO: Epoch: 67, Loss: 2.0640 Min Loss: 1.9359
  115. 2024-07-30 09:53:03 train_clip.py [line:116] INFO: Epoch: 68, Loss: 1.9184 Min Loss: 1.9184
  116. 2024-07-30 09:53:10 train_clip.py [line:116] INFO: Epoch: 69, Loss: 1.9776 Min Loss: 1.9184
  117. 2024-07-30 09:53:22 train_clip.py [line:116] INFO: Epoch: 70, Loss: 1.9696 Min Loss: 1.9184
  118. 2024-07-30 09:53:28 train_clip.py [line:116] INFO: Epoch: 71, Loss: 2.1936 Min Loss: 1.9184
  119. 2024-07-30 09:53:35 train_clip.py [line:116] INFO: Epoch: 72, Loss: 2.1248 Min Loss: 1.9184
  120. 2024-07-30 09:53:43 train_clip.py [line:116] INFO: Epoch: 73, Loss: 2.1000 Min Loss: 1.9184
  121. 2024-07-30 09:53:50 train_clip.py [line:116] INFO: Epoch: 74, Loss: 1.9791 Min Loss: 1.9184
  122. 2024-07-30 09:54:02 train_clip.py [line:116] INFO: Epoch: 75, Loss: 1.9313 Min Loss: 1.9184
  123. 2024-07-30 09:54:08 train_clip.py [line:116] INFO: Epoch: 76, Loss: 2.1005 Min Loss: 1.9184
  124. 2024-07-30 09:54:15 train_clip.py [line:116] INFO: Epoch: 77, Loss: 2.1343 Min Loss: 1.9184
  125. 2024-07-30 09:54:23 train_clip.py [line:116] INFO: Epoch: 78, Loss: 2.0381 Min Loss: 1.9184
  126. 2024-07-30 09:54:30 train_clip.py [line:116] INFO: Epoch: 79, Loss: 2.0349 Min Loss: 1.9184
  127. 2024-07-30 09:54:41 train_clip.py [line:116] INFO: Epoch: 80, Loss: 2.1082 Min Loss: 1.9184
  128. 2024-07-30 09:54:48 train_clip.py [line:116] INFO: Epoch: 81, Loss: 1.9580 Min Loss: 1.9184
  129. 2024-07-30 09:54:55 train_clip.py [line:116] INFO: Epoch: 82, Loss: 2.0330 Min Loss: 1.9184
  130. 2024-07-30 09:55:02 train_clip.py [line:116] INFO: Epoch: 83, Loss: 2.0308 Min Loss: 1.9184
  131. 2024-07-30 09:55:09 train_clip.py [line:116] INFO: Epoch: 84, Loss: 1.9555 Min Loss: 1.9184
  132. 2024-07-30 09:55:21 train_clip.py [line:116] INFO: Epoch: 85, Loss: 2.0020 Min Loss: 1.9184
  133. 2024-07-30 09:55:28 train_clip.py [line:116] INFO: Epoch: 86, Loss: 2.0153 Min Loss: 1.9184
  134. 2024-07-30 09:55:39 train_clip.py [line:116] INFO: Epoch: 87, Loss: 1.9062 Min Loss: 1.9062
  135. 2024-07-30 09:55:46 train_clip.py [line:116] INFO: Epoch: 88, Loss: 2.1427 Min Loss: 1.9062
  136. 2024-07-30 09:55:53 train_clip.py [line:116] INFO: Epoch: 89, Loss: 2.1196 Min Loss: 1.9062
  137. 2024-07-30 09:56:08 train_clip.py [line:116] INFO: Epoch: 90, Loss: 1.8230 Min Loss: 1.8230
  138. 2024-07-30 09:56:14 train_clip.py [line:116] INFO: Epoch: 91, Loss: 2.1242 Min Loss: 1.8230
  139. 2024-07-30 09:56:22 train_clip.py [line:116] INFO: Epoch: 92, Loss: 2.0993 Min Loss: 1.8230
  140. 2024-07-30 09:56:29 train_clip.py [line:116] INFO: Epoch: 93, Loss: 1.9123 Min Loss: 1.8230
  141. 2024-07-30 09:56:36 train_clip.py [line:116] INFO: Epoch: 94, Loss: 2.0217 Min Loss: 1.8230
  142. 2024-07-30 09:56:48 train_clip.py [line:116] INFO: Epoch: 95, Loss: 1.9521 Min Loss: 1.8230
  143. 2024-07-30 09:56:54 train_clip.py [line:116] INFO: Epoch: 96, Loss: 2.0764 Min Loss: 1.8230
  144. 2024-07-30 09:57:02 train_clip.py [line:116] INFO: Epoch: 97, Loss: 1.9347 Min Loss: 1.8230
  145. 2024-07-30 09:57:09 train_clip.py [line:116] INFO: Epoch: 98, Loss: 1.9534 Min Loss: 1.8230
  146. 2024-07-30 09:57:16 train_clip.py [line:116] INFO: Epoch: 99, Loss: 2.0558 Min Loss: 1.8230
  147. 2024-07-30 09:57:28 train_clip.py [line:116] INFO: Epoch: 100, Loss: 1.9141 Min Loss: 1.8230
  148. 2024-07-30 09:57:28 train_clip.py [line:125] INFO:
  149. Finish training...

冻结ViT-B/32版本的CLIP模型中的全部图像层,用Adan优化器训练模型,训练100个epoch,每隔5个epoch对模型进行保存;完成CLIP模型训练后,运行test_clip.py用测试集中的数据和自定义的提示词对保存的模型进行测试,选取测试精度最好的模型和对应的提示词,运行predict.py文件,选择“min_loss.pth”模型,提交官方系统测试,top1的精度是0.6788。

Contributors (1)