| @@ -0,0 +1,286 @@ | |||
| from typing import Tuple, Union | |||
| import numpy as np | |||
| import jittor as jt | |||
| from jittor import nn, init | |||
| from .mha import MultiheadAttention | |||
| def normal_(module, mean=0, std=1, bias=0): | |||
| if hasattr(module, 'weight') and module.weight is not None: | |||
| init.gauss_(module.weight, mean, std) | |||
| if hasattr(module, 'bias') and isinstance( | |||
| module.bias, jt.Var) and module.bias is not None: | |||
| init.constant_(module.bias, bias) | |||
| class LayerNorm(nn.LayerNorm): | |||
| def execute(self, x): | |||
| ret = super().execute(x) | |||
| return ret | |||
| class QuickGELU(nn.Module): | |||
| def execute(self, x): | |||
| return x * jt.sigmoid(1.702 * x) | |||
| class MLP(nn.Module): | |||
| def __init__(self, d_model): | |||
| super().__init__() | |||
| self.c_fc = nn.Linear(d_model, d_model * 4) | |||
| self.gelu = QuickGELU() | |||
| self.c_proj = nn.Linear(d_model * 4, d_model) | |||
| def execute(self, x): | |||
| return self.c_proj(self.gelu(self.c_fc(x))) | |||
| class ResidualAttentionBlock(nn.Module): | |||
| def __init__(self, d_model, n_head, attn_mask): | |||
| super().__init__() | |||
| self.attn = MultiheadAttention(d_model, n_head) | |||
| self.ln_1 = LayerNorm(d_model) | |||
| self.mlp = MLP(d_model) | |||
| self.ln_2 = LayerNorm(d_model) | |||
| self.attn_mask = attn_mask | |||
| def attention(self, x): | |||
| self.attn_mask = self.attn_mask.to( | |||
| dtype=x.dtype) if self.attn_mask is not None else None | |||
| return self.attn(x, x, x, need_weights=False, | |||
| attn_mask=self.attn_mask)[0] | |||
| def execute(self, x): | |||
| x = x + self.attention(self.ln_1(x)) | |||
| x = x + self.mlp(self.ln_2(x)) | |||
| return x | |||
| class Transformer(nn.Module): | |||
| def __init__(self, width, layers, heads, attn_mask=None): | |||
| super().__init__() | |||
| self.width = width | |||
| self.layers = layers | |||
| self.resblocks = nn.Sequential(*[ | |||
| ResidualAttentionBlock(width, heads, attn_mask) | |||
| for _ in range(layers) | |||
| ]) | |||
| def execute(self, x): | |||
| return self.resblocks(x) | |||
| class VisionTransformer(nn.Module): | |||
| def __init__(self, input_resolution: int, patch_size: int, width: int, | |||
| layers: int, heads: int, output_dim: int): | |||
| super().__init__() | |||
| self.input_resolution = input_resolution | |||
| self.output_dim = output_dim | |||
| self.conv1 = nn.Conv2d(in_channels=3, | |||
| out_channels=width, | |||
| kernel_size=patch_size, | |||
| stride=patch_size, | |||
| bias=False) | |||
| scale = width**-0.5 | |||
| self.class_embedding = scale * jt.randn((width)) | |||
| self.positional_embedding = scale * jt.randn( | |||
| ((input_resolution // patch_size)**2 + 1, width)) | |||
| self.ln_pre = LayerNorm(width) | |||
| self.transformer = Transformer(width, layers, heads) | |||
| self.ln_post = LayerNorm(width) | |||
| self.proj = scale * jt.randn((width, output_dim)) | |||
| def execute(self, x): | |||
| x = self.conv1(x) # shape = [*, width, grid, grid] | |||
| x = x.reshape(x.shape[0], x.shape[1], | |||
| -1) # shape = [*, width, grid ** 2] | |||
| x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |||
| x = jt.concat([ | |||
| self.class_embedding.to(x.dtype) + jt.zeros( | |||
| (x.shape[0], 1, x.shape[-1]), dtype=x.dtype), x | |||
| ], | |||
| dim=1) # shape = [*, grid ** 2 + 1, width] | |||
| x = x + self.positional_embedding.to(x.dtype) | |||
| x = self.ln_pre(x) | |||
| x = x.permute(1, 0, 2) # NLD -> LND | |||
| x = self.transformer(x) | |||
| x = x.permute(1, 0, 2) # LND -> NLD | |||
| x = self.ln_post(x[:, 0, :]) | |||
| if self.proj is not None: | |||
| x = x @ self.proj | |||
| return x | |||
| class CLIP(nn.Module): | |||
| def __init__( | |||
| self, | |||
| embed_dim: int, | |||
| # vision | |||
| image_resolution: int, | |||
| vision_layers: Union[Tuple[int, int, int, int], int], | |||
| vision_width: int, | |||
| vision_patch_size: int, | |||
| # text | |||
| context_length: int, | |||
| vocab_size: int, | |||
| transformer_width: int, | |||
| transformer_heads: int, | |||
| transformer_layers: int): | |||
| super().__init__() | |||
| self.context_length = context_length | |||
| vision_heads = vision_width // 64 | |||
| self.visual = VisionTransformer(input_resolution=image_resolution, | |||
| patch_size=vision_patch_size, | |||
| width=vision_width, | |||
| layers=vision_layers, | |||
| heads=vision_heads, | |||
| output_dim=embed_dim) | |||
| self.transformer = Transformer(width=transformer_width, | |||
| layers=transformer_layers, | |||
| heads=transformer_heads, | |||
| attn_mask=self.build_attention_mask()) | |||
| self.vocab_size = vocab_size | |||
| self.token_embedding = nn.Embedding(vocab_size, transformer_width) | |||
| self.positional_embedding = jt.empty( | |||
| (self.context_length, transformer_width)) | |||
| self.ln_final = LayerNorm(transformer_width) | |||
| self.text_projection = jt.empty((transformer_width, embed_dim)) | |||
| self.logit_scale = jt.ones([]) * np.log(1 / 0.07) | |||
| self.initialize_parameters() | |||
| def initialize_parameters(self): | |||
| normal_(self.token_embedding.weight, std=0.02) | |||
| normal_(self.positional_embedding, std=0.01) | |||
| proj_std = (self.transformer.width**-0.5) * ( | |||
| (2 * self.transformer.layers)**-0.5) | |||
| attn_std = self.transformer.width**-0.5 | |||
| fc_std = (2 * self.transformer.width)**-0.5 | |||
| for block in self.transformer.resblocks: | |||
| normal_(block.attn.in_proj_weight, std=attn_std) | |||
| normal_(block.attn.out_proj.weight, std=proj_std) | |||
| normal_(block.mlp.c_fc.weight, std=fc_std) | |||
| normal_(block.mlp.c_proj.weight, std=proj_std) | |||
| if self.text_projection is not None: | |||
| normal_(self.text_projection, std=self.transformer.width**-0.5) | |||
| def build_attention_mask(self): | |||
| mask = jt.empty((self.context_length, self.context_length)) | |||
| mask.fill_(float("-inf")) | |||
| mask = jt.triu(mask, 1) # zero out the lower diagonal | |||
| return mask | |||
| @property | |||
| def dtype(self): | |||
| return self.visual.conv1.weight.dtype | |||
| def encode_image(self, image): | |||
| return self.visual(image) | |||
| def encode_text(self, text): | |||
| x = self.token_embedding(text) | |||
| x = x + self.positional_embedding | |||
| x = x.permute(1, 0, 2) # NLD -> LND | |||
| x = self.transformer(x) | |||
| x = x.permute(1, 0, 2) # LND -> NLD | |||
| x = self.ln_final(x) | |||
| # x.shape = [batch_size, n_ctx, transformer.width] | |||
| # take features from the eot embedding (eot_token is the highest number in each sequence) | |||
| x = x[jt.arange(x.shape[0]), | |||
| text.argmax(dim=-1)[0]] @ self.text_projection | |||
| return x | |||
| def execute(self, image, text): | |||
| image_features = self.encode_image(image) | |||
| text_features = self.encode_text(text) | |||
| # normalized features | |||
| image_features = image_features / image_features.norm(dim=1, | |||
| keepdim=True) | |||
| text_features = text_features / text_features.norm(dim=1, keepdim=True) | |||
| # cosine similarity as logits | |||
| logit_scale = self.logit_scale.exp() | |||
| logits_per_image = logit_scale * image_features @ text_features.t() | |||
| logits_per_text = logits_per_image.t() | |||
| # shape = [global_batch_size, global_batch_size] | |||
| return logits_per_image, logits_per_text | |||
| def build_model(state_dict: dict): | |||
| vit = "visual.proj" in state_dict | |||
| if vit: | |||
| vision_width = state_dict["visual.conv1.weight"].shape[0] | |||
| vision_layers = len([ | |||
| k for k in state_dict.keys() | |||
| if k.startswith("visual.") and k.endswith(".attn.in_proj_weight") | |||
| ]) | |||
| vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] | |||
| grid_size = round( | |||
| (state_dict["visual.positional_embedding"].shape[0] - 1)**0.5) | |||
| image_resolution = vision_patch_size * grid_size | |||
| else: | |||
| counts: list = [ | |||
| len( | |||
| set( | |||
| k.split(".")[2] for k in state_dict | |||
| if k.startswith(f"visual.layer{b}"))) | |||
| for b in [1, 2, 3, 4] | |||
| ] | |||
| vision_layers = tuple(counts) | |||
| vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] | |||
| output_width = round( | |||
| (state_dict["visual.attnpool.positional_embedding"].shape[0] - | |||
| 1)**0.5) | |||
| vision_patch_size = None | |||
| assert output_width**2 + 1 == state_dict[ | |||
| "visual.attnpool.positional_embedding"].shape[0] | |||
| image_resolution = output_width * 32 | |||
| embed_dim = state_dict["text_projection"].shape[1] | |||
| context_length = state_dict["positional_embedding"].shape[0] | |||
| vocab_size = state_dict["token_embedding.weight"].shape[0] | |||
| transformer_width = state_dict["ln_final.weight"].shape[0] | |||
| transformer_heads = transformer_width // 64 | |||
| transformer_layers = len( | |||
| set( | |||
| k.split(".")[2] for k in state_dict | |||
| if k.startswith("transformer.resblocks"))) | |||
| model = CLIP(embed_dim, image_resolution, vision_layers, vision_width, | |||
| vision_patch_size, context_length, vocab_size, | |||
| transformer_width, transformer_heads, transformer_layers) | |||
| for key in ["input_resolution", "context_length", "vocab_size"]: | |||
| if key in state_dict: | |||
| del state_dict[key] | |||
| model.load_parameters(state_dict) | |||
| return model.eval() | |||