|
- import os
- import os.path as osp
- import pickle
- import random
- import gdown
- import zipfile
- from collections import defaultdict
-
- import cv2
- import numpy as np
- from torchvision.transforms import transforms
-
- CURRENT_DIR = os.path.abspath(os.path.dirname(__file__))
-
- def download_and_unzip(url, zip_file_name):
- try:
- gdown.download(url, zip_file_name)
- with zipfile.ZipFile(zip_file_name, 'r') as zip_ref:
- zip_ref.extractall(CURRENT_DIR)
- os.remove(zip_file_name)
- except Exception as e:
- if os.path.exists(zip_file_name):
- os.remove(zip_file_name)
- raise Exception(f"An error occurred during download or unzip: {e}. Instead, you can download the dataset from {url} and unzip it in 'examples/hed/datasets' folder")
-
-
- def get_pretrain_data(labels, image_size=(28, 28, 1)):
- transform = transforms.Compose([transforms.ToTensor()])
- X = []
- img_dir = osp.join(CURRENT_DIR, "mnist_images")
- for label in labels:
- label_path = osp.join(img_dir, label)
- img_path_list = os.listdir(label_path)
- for img_path in img_path_list:
- img = cv2.imread(osp.join(label_path, img_path), cv2.IMREAD_GRAYSCALE)
- img = cv2.resize(img, (image_size[1], image_size[0]))
- X.append(np.array(img, dtype=np.float32))
-
- X = [((img[:, :, np.newaxis] - 127) / 128.0) for img in X]
- Y = [img.copy().reshape(image_size[0] * image_size[1] * image_size[2]) for img in X]
-
- X = [transform(img) for img in X]
- return X, Y
-
-
- def divide_equations_by_len(equations, labels):
- equations_by_len = {1: defaultdict(list), 0: defaultdict(list)}
- for i, equation in enumerate(equations):
- equations_by_len[labels[i]][len(equation)].append(equation)
- return equations_by_len
-
-
- def split_equation(equations_by_len, prop_train, prop_val):
- """
- Split the equations in each length to training and validation data according to the proportion
- """
- train_equations_by_len = {1: dict(), 0: dict()}
- val_equations_by_len = {1: dict(), 0: dict()}
-
- for label in range(2):
- for equation_len, equations in equations_by_len[label].items():
- random.shuffle(equations)
- train_equations_by_len[label][equation_len] = equations[
- : len(equations) // (prop_train + prop_val) * prop_train
- ]
- val_equations_by_len[label][equation_len] = equations[
- len(equations) // (prop_train + prop_val) * prop_train :
- ]
-
- return train_equations_by_len, val_equations_by_len
-
-
- def get_dataset(dataset="mnist", train=True):
- data_dir = CURRENT_DIR + '/mnist_images'
-
- if not os.path.exists(data_dir):
- print("Dataset not exist, downloading it...")
- url = 'https://drive.google.com/u/0/uc?id=1XoJDjO3cNUdytqVgXUKOBe9dOcUBobom&export=download'
- download_and_unzip(url, os.path.join(CURRENT_DIR, "HED.zip"))
- print("Download and extraction complete.")
-
- if train:
- file = os.path.join(data_dir, "expr_train.json")
- else:
- file = os.path.join(data_dir, "expr_test.json")
-
- if dataset == "mnist":
- file = osp.join(CURRENT_DIR, "mnist_equation_data_train_len_26_test_len_26_sys_2_.pk")
- elif dataset == "random":
- file = osp.join(CURRENT_DIR, "random_equation_data_train_len_26_test_len_26_sys_2_.pk")
- else:
- raise ValueError("Undefined dataset")
-
- with open(file, "rb") as f:
- img_dataset = pickle.load(f)
-
- X, Y = [], []
- if train:
- positive = img_dataset["train:positive"]
- negative = img_dataset["train:negative"]
- else:
- positive = img_dataset["test:positive"]
- negative = img_dataset["test:negative"]
-
- for equation in positive:
- equation = equation.astype(np.float32)
- img_list = np.vsplit(equation, equation.shape[0])
- X.append(img_list)
- Y.append(1)
-
- for equation in negative:
- equation = equation.astype(np.float32)
- img_list = np.vsplit(equation, equation.shape[0])
- X.append(img_list)
- Y.append(0)
-
- equations_by_len = divide_equations_by_len(X, Y)
- return equations_by_len
|