# coding: utf-8 # ================================================================# # Copyright (C) 2021 Freecss All rights reserved. # # File Name :share_example.py # Author :freecss # Email :karlfreecss@gmail.com # Created Date :2021/06/07 # Description : # # ================================================================# import sys sys.path.append("../") from abl.utils.plog import logger, INFO from abl.utils.utils import reduce_dimension import torch.nn as nn import torch from abl.models.nn import LeNet5, SymbolNet from abl.models.basic_model import BasicModel, BasicDataset from abl.models.wabl_models import DecisionTree, WABLBasicModel from sklearn.neighbors import KNeighborsClassifier from abl.abducer.abducer_base import AbducerBase from abl.abducer.kb import add_KB, HWF_KB, prolog_KB from datasets.mnist_add.get_mnist_add import get_mnist_add from datasets.hwf.get_hwf import get_hwf from datasets.hed.get_hed import get_hed, split_equation from abl import framework_hed_knn def run_test(): # kb = add_KB(True) # kb = HWF_KB(True) # abducer = AbducerBase(kb) kb = prolog_KB(pseudo_label_list=[1, 0, '+', '='], pl_file='../examples/datasets/hed/learn_add.pl') abducer = AbducerBase(kb, zoopt=True, multiple_predictions=True) recorder = logger() total_train_data = get_hed(train=True) train_data, val_data = split_equation(total_train_data, 3, 1) test_data = get_hed(train=False) # ========================= KNN model ============================ # reduce_dimension(train_data) reduce_dimension(val_data) reduce_dimension(test_data) base_model = KNeighborsClassifier(n_neighbors=3) pretrain_data_X, pretrain_data_Y = framework_hed_knn.hed_pretrain(base_model) model = WABLBasicModel(base_model, kb.pseudo_label_list) model, mapping = framework_hed_knn.train_with_rule( model, abducer, train_data, val_data, (pretrain_data_X, pretrain_data_Y), select_num=10, min_len=5, max_len=8 ) framework_hed_knn.hed_test( model, abducer, mapping, train_data, test_data, min_len=5, max_len=8 ) # ============================ End =============================== # recorder.dump() return True if __name__ == "__main__": run_test()