Browse Source

Merge branch 'Dev' into main

main
troyyyyy 1 year ago
parent
commit
c81c823f16
5 changed files with 15 additions and 9 deletions
  1. +3
    -3
      README.md
  2. +2
    -2
      docs/Intro/Datasets.rst
  3. +1
    -1
      docs/References.rst
  4. +2
    -2
      docs/conf.py
  5. +7
    -1
      docs/requirements.txt

+ 3
- 3
README.md View File

@@ -8,7 +8,7 @@
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![ABLKit-CI](https://github.com/AbductiveLearning/ABLKit/actions/workflows/build-and-test.yaml/badge.svg)](https://github.com/AbductiveLearning/ABLKit/actions/workflows/build-and-test.yaml) [![ABLKit-CI](https://github.com/AbductiveLearning/ABLKit/actions/workflows/build-and-test.yaml/badge.svg)](https://github.com/AbductiveLearning/ABLKit/actions/workflows/build-and-test.yaml)


[📘Documentation](https://www.lamda.nju.edu.cn/abl_test/docs/build/html/index.html) |
[📘Documentation](https://ablkit.readthedocs.io/en/latest/index.html) |
[📚Examples](https://github.com/AbductiveLearning/ABLKit/tree/main/examples) | [📚Examples](https://github.com/AbductiveLearning/ABLKit/tree/main/examples) |
[💬Reporting Issues](https://github.com/AbductiveLearning/ABLKit/issues/new) [💬Reporting Issues](https://github.com/AbductiveLearning/ABLKit/issues/new)


@@ -61,7 +61,7 @@ pip install -v -e .


### (Optional) Install SWI-Prolog ### (Optional) Install SWI-Prolog


If the use of a [Prolog-based knowledge base](https://www.lamda.nju.edu.cn/abl_test/docs/build/html/Intro/Reasoning.html#prolog) is necessary, please also install [SWI-Prolog](https://www.swi-prolog.org/):
If the use of a [Prolog-based knowledge base](https://ablkit.readthedocs.io/en/latest/Intro/Reasoning.html#prolog) is necessary, please also install [SWI-Prolog](https://www.swi-prolog.org/):


For Linux users: For Linux users:


@@ -194,7 +194,7 @@ bridge.test(test_data)


</details> </details>


To explore detailed tutorials and information, please refer to - [document](https://www.lamda.nju.edu.cn/abl_test/docs/build/html/index.html).
To explore detailed tutorials and information, please refer to - [document](https://ablkit.readthedocs.io/en/latest/index.html).


## Examples ## Examples




+ 2
- 2
docs/Intro/Datasets.rst View File

@@ -62,11 +62,11 @@ where each sublist in ``X``, e.g., |data_example|, is a data example and each im
Data Structure Data Structure
-------------- --------------


Besides the user-provided dataset, various forms of data are utilized and dynamicly generated throughout the training and testing process of ABL framework. Examples include raw data, predicted pseudo-label, abduced pseudo-label, pseudo-label indices, etc. To manage this diversity and ensure a stable, versatile interface, ABL Kit employs `abstract data interfaces <../API/ablkit.data.html#structure>`_ to encapsulate different forms of data that will be used in the total learning process.
Besides the user-provided dataset, various forms of data are utilized and dynamicly generated throughout the training and testing process of ABL framework. Examples include raw data, predicted pseudo-label, abduced pseudo-label, pseudo-label indices, etc. To manage this diversity and ensure a stable, versatile interface, ABL Kit employs `abstract data interfaces <../API/ablkit.data.html#structures>`_ to encapsulate different forms of data that will be used in the total learning process.


``ListData`` is the underlying abstract data interface utilized in ABL Kit. As the fundamental data structure, ``ListData`` implements commonly used data manipulation methods and is responsible for transferring data between various components of ABL, ensuring that stages such as prediction, abductive reasoning, and training can utilize ``ListData`` as a unified input format. Before proceeding to other stages, user-provided datasets will be firstly converted into ``ListData``. ``ListData`` is the underlying abstract data interface utilized in ABL Kit. As the fundamental data structure, ``ListData`` implements commonly used data manipulation methods and is responsible for transferring data between various components of ABL, ensuring that stages such as prediction, abductive reasoning, and training can utilize ``ListData`` as a unified input format. Before proceeding to other stages, user-provided datasets will be firstly converted into ``ListData``.


Besides providing a tuple of ``(X, gt_pseudo_label, Y)``, ABL Kit also allows users to directly supply data in ``ListData`` format, which similarly requires the inclusion of these three attributes. The following code shows the basic usage of ``ListData``. More information can be found in the `API documentation <../API/ablkit.data.html#structure>`_.
Besides providing a tuple of ``(X, gt_pseudo_label, Y)``, ABL Kit also allows users to directly supply data in ``ListData`` format, which similarly requires the inclusion of these three attributes. The following code shows the basic usage of ``ListData``. More information can be found in the `API documentation <../API/ablkit.data.html#structures>`_.


.. code-block:: python .. code-block:: python




+ 1
- 1
docs/References.rst View File

@@ -1,7 +1,7 @@
References References
========== ==========


Zhi-Hua Zhou. `Abductive learning: Towards bridging machine learning and logical reasoning. <http://scis.scichina.com/en/2019/076101.pdf>`_. **Science China Information Sciences**, 2019, 62: 076101.
Zhi-Hua Zhou. `Abductive learning: Towards bridging machine learning and logical reasoning <http://scis.scichina.com/en/2019/076101.pdf>`_. **Science China Information Sciences**, 2019, 62: 076101.


Zhi-Hua Zhou and Yu-Xuan Huang. `Abductive learning <https://www.lamda.nju.edu.cn/publication/chap_ABL.pdf>`_. In P. Hitzler and M. K. Sarker eds., **Neuro-Symbolic Artificial Intelligence: The State of the Art**, IOP Press, Amsterdam, 2022, p.353-379 Zhi-Hua Zhou and Yu-Xuan Huang. `Abductive learning <https://www.lamda.nju.edu.cn/publication/chap_ABL.pdf>`_. In P. Hitzler and M. K. Sarker eds., **Neuro-Symbolic Artificial Intelligence: The State of the Art**, IOP Press, Amsterdam, 2022, p.353-379




+ 2
- 2
docs/conf.py View File

@@ -9,8 +9,8 @@ from sphinx.application import Sphinx


# -- Path setup -------------------------------------------------------------- # -- Path setup --------------------------------------------------------------


if "READTHEDOCS" not in os.environ:
sys.path.insert(0, os.path.abspath(".."))
sys.path.insert(0, os.path.abspath(".."))
import ablkit # noqa: E402


# -- Project information ----------------------------------------------------- # -- Project information -----------------------------------------------------




+ 7
- 1
docs/requirements.txt View File

@@ -2,4 +2,10 @@ sphinx
sphinx-rtd-theme sphinx-rtd-theme
recommonmark recommonmark
sphinx-markdown-tables sphinx-markdown-tables
sphinx-copybutton
sphinx-copybutton
numpy
pyswip
torch
torchvision
zoopt
termcolor

Loading…
Cancel
Save