Browse Source

[ENH] add references in readme

pull/1/head
troyyyyy 1 year ago
parent
commit
c72ac8870a
4 changed files with 16 additions and 6 deletions
  1. +8
    -4
      README.md
  2. +1
    -1
      docs/Examples/MNISTAdd.rst
  3. +1
    -1
      docs/Intro/Quick-Start.rst
  4. +6
    -0
      docs/README.rst

+ 8
- 4
README.md View File

@@ -20,7 +20,7 @@ ABL-Package encapsulates advanced ABL techniques, providing users with
an efficient and convenient package to develop dual-driven ABL systems,
which leverage the power of both data and knowledge.

To learn how to use it, please refer to - [document](https://www.lamda.nju.edu.cn/abl_test/docs/build/html/Overview/Abductive-Learning.html).
To learn how to use it, please refer to - [document](https://www.lamda.nju.edu.cn/abl_test/docs/build/html/index.html).

## Installation

@@ -62,7 +62,7 @@ We provide several examples in `examples/`. Each example is stored in a separate
+ [MNIST Addition](https://github.com/AbductiveLearning/ABL-Package/blob/Dev/examples/mnist_add)
+ [Handwritten Formula](https://github.com/AbductiveLearning/ABL-Package/blob/Dev/examples/hwf)
+ [Handwritten Equation Decipherment](https://github.com/AbductiveLearning/ABL-Package/tree/Dev/examples/hed)
+ [Zoo](https://gitub.com/AbductiveLearning/ABL-Package/tree/Dev/examples/zoo)
+ [Zoo](https://github.com/AbductiveLearning/ABL-Package/tree/Dev/examples/zoo)

## Quick Start

@@ -164,6 +164,10 @@ bridge = SimpleBridge(model, reasoner, metric_list)
Finally, we proceed with training and testing.

```python
​bridge.train(train_data, loops=1)
​bridge.train(train_data, loops=1, segment_size=0.01)
bridge.test(test_data)
```
```

## References

For more information about ABL, please refer to: [Zhou, 2019](https://link.springer.com/epdf/10.1007/s11432-018-9801-4?author_access_token=jgJe1Ox3Mk-K7ORSnX7jtfe4RwlQNchNByi7wbcMAY7_PxTx-xNLP7Lp0mIZ04ORp3VG4wioIBHSCIAO3B_TBJkj87YzapmdnYVSQvgBIO3aEpQWppxZG25KolINetygc2W_Cj2gtoBdiG_J1hU3pA==) and [Zhou and Huang, 2022](https://www.lamda.nju.edu.cn/publication/chap_ABL.pdf).

+ 1
- 1
docs/Examples/MNISTAdd.rst View File

@@ -376,6 +376,6 @@ Out:
abl - INFO - Eval start: loop(val) [1]
abl - INFO - Evaluation ended, mnist_add/character_accuracy: 0.986 mnist_add/reasoning_accuracy: 0.973
abl - INFO - Saving model: loop(save) [1]
abl - INFO - Checkpoints will be saved to results/20231222_22_25_07/weights/model_checkpoint_loop_1.pth
abl - INFO - Checkpoints will be saved to log_dir/weights/model_checkpoint_loop_1.pth
abl - INFO - Test start:
abl - INFO - Evaluation ended, mnist_add/character_accuracy: 0.983 mnist_add/reasoning_accuracy: 0.967

+ 1
- 1
docs/Intro/Quick-Start.rst View File

@@ -123,7 +123,7 @@ Finally, we proceed with training and testing.

.. code:: python

bridge.train(train_data, loops=1)
bridge.train(train_data, loops=1, segment_size=0.01)
bridge.test(test_data)

Read more about `bridging machine learning and reasoning <Bridge.html>`_.

+ 6
- 0
docs/README.rst View File

@@ -52,3 +52,9 @@ For Linux users:
$ sudo apt-get install swi-prolog

For Windows and Mac users, please refer to the `Swi-Prolog Download Page <https://www.swi-prolog.org/Download.html>`_.

References
----------

For more information about ABL, please refer to: `Zhou, 2019 <https://link.springer.com/epdf/10.1007/s11432-018-9801-4?author_access_token=jgJe1Ox3Mk-K7ORSnX7jtfe4RwlQNchNByi7wbcMAY7_PxTx-xNLP7Lp0mIZ04ORp3VG4wioIBHSCIAO3B_TBJkj87YzapmdnYVSQvgBIO3aEpQWppxZG25KolINetygc2W_Cj2gtoBdiG_J1hU3pA==>`_
and `Zhou and Huang, 2022 <https://www.lamda.nju.edu.cn/publication/chap_ABL.pdf>`_.

Loading…
Cancel
Save