|
|
@@ -1,16 +1,17 @@ |
|
|
|
# coding: utf-8 |
|
|
|
#================================================================# |
|
|
|
# ================================================================# |
|
|
|
# Copyright (C) 2021 Freecss All rights reserved. |
|
|
|
# |
|
|
|
# |
|
|
|
# File Name :abducer_base.py |
|
|
|
# Author :freecss |
|
|
|
# Email :karlfreecss@gmail.com |
|
|
|
# Created Date :2021/06/03 |
|
|
|
# Description : |
|
|
|
# |
|
|
|
#================================================================# |
|
|
|
# ================================================================# |
|
|
|
|
|
|
|
import sys |
|
|
|
|
|
|
|
sys.path.append(".") |
|
|
|
sys.path.append("..") |
|
|
|
|
|
|
@@ -18,30 +19,31 @@ import abc |
|
|
|
from abducer.kb import * |
|
|
|
import numpy as np |
|
|
|
from zoopt import Dimension, Objective, Parameter, Opt |
|
|
|
from utils.utils import _confidence_dist, _flatten, _hamming_dist |
|
|
|
from utils.utils import confidence_dist, flatten, hamming_dist |
|
|
|
|
|
|
|
import math |
|
|
|
import time |
|
|
|
|
|
|
|
|
|
|
|
class AbducerBase(abc.ABC): |
|
|
|
def __init__(self, kb, dist_func = 'confidence', zoopt = False, multiple_predictions = False, cache = True): |
|
|
|
def __init__(self, kb, dist_func='confidence', zoopt=False, multiple_predictions=False, cache=True): |
|
|
|
self.kb = kb |
|
|
|
assert(dist_func == 'hamming' or dist_func == 'confidence') |
|
|
|
self.dist_func = dist_func |
|
|
|
assert dist_func == 'hamming' or dist_func == 'confidence' |
|
|
|
self.dist_func = dist_func |
|
|
|
self.zoopt = zoopt |
|
|
|
self.multiple_predictions = multiple_predictions |
|
|
|
self.cache = cache |
|
|
|
|
|
|
|
|
|
|
|
if self.cache: |
|
|
|
self.cache_min_address_num = {} |
|
|
|
self.cache_candidates = {} |
|
|
|
|
|
|
|
|
|
|
|
def _get_cost_list(self, pred_res, pred_res_prob, candidates): |
|
|
|
if self.dist_func == 'hamming': |
|
|
|
return _hamming_dist(pred_res, candidates) |
|
|
|
return hamming_dist(pred_res, candidates) |
|
|
|
elif self.dist_func == 'confidence': |
|
|
|
mapping = dict(zip(self.kb.pseudo_label_list, list(range(len(self.kb.pseudo_label_list))))) |
|
|
|
return _confidence_dist(pred_res_prob, [list(map(lambda x : mapping[x], c)) for c in candidates]) |
|
|
|
return confidence_dist(pred_res_prob, [list(map(lambda x: mapping[x], c)) for c in candidates]) |
|
|
|
|
|
|
|
def _get_one_candidate(self, pred_res, pred_res_prob, candidates): |
|
|
|
if len(candidates) == 0: |
|
|
@@ -54,37 +56,46 @@ class AbducerBase(abc.ABC): |
|
|
|
idxs = np.where(cost_list == min_address_num)[0] |
|
|
|
return [candidates[idx] for idx in idxs][0] |
|
|
|
|
|
|
|
|
|
|
|
# for zoopt |
|
|
|
def _zoopt_address_score(self, pred_res, key, address_idx): |
|
|
|
candidates = self.kb.address_by_idx(pred_res, key, address_idx, self.multiple_predictions) |
|
|
|
return 0 if len(candidates) > 0 else 1 |
|
|
|
|
|
|
|
# for zoopt |
|
|
|
def _zoopt_score_multiple(self, pred_res, key, solution): |
|
|
|
all_address_flag = reform_idx(solution, pred_res) |
|
|
|
score = 0 |
|
|
|
for idx in enumerate(len(pred_res)): |
|
|
|
address_idx = [i for i, flag in enumerate(all_address_flag[idx]) if flag != 0] |
|
|
|
candidate = self.kb.address_by_idx([pred_res[idx]], key[idx], address_idx, True) |
|
|
|
if len(candidate) > 0: |
|
|
|
score += 1 |
|
|
|
return score |
|
|
|
|
|
|
|
def _zoopt_address_score(self, pred_res, key, sol): |
|
|
|
if not self.multiple_predictions: |
|
|
|
address_idx = [idx for idx, i in enumerate(sol.get_x()) if i != 0] |
|
|
|
candidates = self.kb.address_by_idx(pred_res, key, address_idx, self.multiple_predictions) |
|
|
|
return 1 if len(candidates) > 0 else 0 |
|
|
|
else: |
|
|
|
return self._zoopt_score_multiple(pred_res, key, sol.get_x()) |
|
|
|
|
|
|
|
def _constrain_address_num(self, solution, max_address_num): |
|
|
|
x = solution.get_x() |
|
|
|
return max_address_num - x.sum() |
|
|
|
|
|
|
|
def _zoopt_get_address_idx(self, pred_res, key, max_address_num): |
|
|
|
length = len(_flatten(pred_res)) |
|
|
|
dimension = Dimension(size=length, |
|
|
|
regs=[[0, 1]] * length, |
|
|
|
tys=[False] * length) |
|
|
|
objective = Objective(lambda sol: self._zoopt_address_score(pred_res, key, [idx for idx, i in enumerate(sol.get_x()) if i != 0]), |
|
|
|
dim=dimension, |
|
|
|
constraint=lambda sol: self._constrain_address_num(sol, max_address_num)) |
|
|
|
parameter = Parameter(budget=100 * dimension.get_size(), autoset=True) |
|
|
|
def zoopt_get_solution(self, pred_res, key, max_address_num): |
|
|
|
length = len(flatten(pred_res)) |
|
|
|
dimension = Dimension(size=length, regs=[[0, 1]] * length, tys=[False] * length) |
|
|
|
objective = Objective( |
|
|
|
lambda sol: -self._zoopt_address_score(pred_res, key, sol), |
|
|
|
dim=dimension, |
|
|
|
constraint=lambda sol: self._constrain_address_num(sol, max_address_num), |
|
|
|
) |
|
|
|
parameter = Parameter(budget=100, autoset=True) |
|
|
|
solution = Opt.min(objective, parameter).get_x() |
|
|
|
|
|
|
|
address_idx = [idx for idx, i in enumerate(solution) if i != 0] |
|
|
|
address_num = int(solution.sum()) |
|
|
|
|
|
|
|
return address_idx, address_num |
|
|
|
|
|
|
|
|
|
|
|
return solution |
|
|
|
|
|
|
|
def _get_cache(self, data, max_address_num, require_more_address): |
|
|
|
pred_res, pred_res_prob, key = data |
|
|
|
if self.multiple_predictions: |
|
|
|
pred_res = _flatten(pred_res) |
|
|
|
pred_res = flatten(pred_res) |
|
|
|
key = tuple(key) |
|
|
|
if (tuple(pred_res), key) in self.cache_min_address_num: |
|
|
|
address_num = min(max_address_num, self.cache_min_address_num[(tuple(pred_res), key)] + require_more_address) |
|
|
@@ -95,132 +106,135 @@ class AbducerBase(abc.ABC): |
|
|
|
else: |
|
|
|
return self._get_one_candidate(pred_res, pred_res_prob, candidates) |
|
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
def _set_cache(self, pred_res, key, min_address_num, address_num, candidates): |
|
|
|
if self.multiple_predictions: |
|
|
|
pred_res = _flatten(pred_res) |
|
|
|
pred_res = flatten(pred_res) |
|
|
|
key = tuple(key) |
|
|
|
self.cache_min_address_num[(tuple(pred_res), key)] = min_address_num |
|
|
|
self.cache_candidates[(tuple(pred_res), key, address_num)] = candidates |
|
|
|
|
|
|
|
|
|
|
|
def abduce(self, data, max_address_num = -1, require_more_address = 0): |
|
|
|
def abduce(self, data, max_address_num=-1, require_more_address=0): |
|
|
|
pred_res, pred_res_prob, key = data |
|
|
|
if max_address_num == -1: |
|
|
|
max_address_num = len(_flatten(pred_res)) |
|
|
|
|
|
|
|
max_address_num = len(flatten(pred_res)) |
|
|
|
|
|
|
|
if self.cache: |
|
|
|
candidate = self._get_cache(data, max_address_num, require_more_address) |
|
|
|
if candidate is not None: |
|
|
|
return candidate |
|
|
|
|
|
|
|
if self.zoopt: |
|
|
|
address_idx, address_num = self._zoopt_get_address_idx(pred_res, key, max_address_num) |
|
|
|
solution = self.zoopt_get_solution(pred_res, key, max_address_num) |
|
|
|
address_idx = [idx for idx, i in enumerate(solution) if i != 0] |
|
|
|
candidates = self.kb.address_by_idx(pred_res, key, address_idx, self.multiple_predictions) |
|
|
|
address_num = int(solution.sum()) |
|
|
|
min_address_num = address_num |
|
|
|
else: |
|
|
|
candidates, min_address_num, address_num = self.kb.abduce_candidates(pred_res, key, max_address_num, require_more_address, self.multiple_predictions) |
|
|
|
|
|
|
|
candidates, min_address_num, address_num = self.kb.abduce_candidates( |
|
|
|
pred_res, key, max_address_num, require_more_address, self.multiple_predictions |
|
|
|
) |
|
|
|
|
|
|
|
candidate = self._get_one_candidate(pred_res, pred_res_prob, candidates) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.cache: |
|
|
|
self._set_cache(pred_res, key, min_address_num, address_num, candidates) |
|
|
|
|
|
|
|
return candidate |
|
|
|
|
|
|
|
|
|
|
|
def abduce_rules(self, pred_res): |
|
|
|
return self.kb.abduce_rules(pred_res) |
|
|
|
|
|
|
|
|
|
|
|
def batch_abduce(self, Z, Y, max_address_num = -1, require_more_address = 0): |
|
|
|
|
|
|
|
def batch_abduce(self, Z, Y, max_address_num=-1, require_more_address=0): |
|
|
|
if self.multiple_predictions: |
|
|
|
return self.abduce((Z['cls'], Z['prob'], Y), max_address_num, require_more_address) |
|
|
|
else: |
|
|
|
return [ |
|
|
|
self.abduce((z, prob, y), max_address_num, require_more_address)\ |
|
|
|
for z, prob, y in zip(Z['cls'], Z['prob'], Y) |
|
|
|
] |
|
|
|
return [self.abduce((z, prob, y), max_address_num, require_more_address) for z, prob, y in zip(Z['cls'], Z['prob'], Y)] |
|
|
|
|
|
|
|
def __call__(self, Z, Y, max_address_num = -1, require_more_address = 0): |
|
|
|
def __call__(self, Z, Y, max_address_num=-1, require_more_address=0): |
|
|
|
return self.batch_abduce(Z, Y, max_address_num, require_more_address) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
prob1 = [[0, 0.99, 0.01, 0, 0, 0, 0, 0, 0, 0], [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]] |
|
|
|
prob2 = [[0, 0, 0.01, 0, 0, 0, 0, 0.99, 0, 0], [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]] |
|
|
|
|
|
|
|
|
|
|
|
kb = add_KB() |
|
|
|
abd = AbducerBase(kb, 'confidence') |
|
|
|
res = abd.abduce(([1, 1], prob1, 8), max_address_num = 2, require_more_address = 0) |
|
|
|
res = abd.abduce(([1, 1], prob1, 8), max_address_num=2, require_more_address=0) |
|
|
|
print(res) |
|
|
|
res = abd.abduce(([1, 1], prob2, 8), max_address_num = 2, require_more_address = 0) |
|
|
|
res = abd.abduce(([1, 1], prob2, 8), max_address_num=2, require_more_address=0) |
|
|
|
print(res) |
|
|
|
res = abd.abduce(([1, 1], prob1, 17), max_address_num = 2, require_more_address = 0) |
|
|
|
res = abd.abduce(([1, 1], prob1, 17), max_address_num=2, require_more_address=0) |
|
|
|
print(res) |
|
|
|
res = abd.abduce(([1, 1], prob1, 17), max_address_num = 1, require_more_address = 0) |
|
|
|
res = abd.abduce(([1, 1], prob1, 17), max_address_num=1, require_more_address=0) |
|
|
|
print(res) |
|
|
|
res = abd.abduce(([1, 1], prob1, 20), max_address_num = 2, require_more_address = 0) |
|
|
|
res = abd.abduce(([1, 1], prob1, 20), max_address_num=2, require_more_address=0) |
|
|
|
print(res) |
|
|
|
print() |
|
|
|
|
|
|
|
|
|
|
|
kb = add_prolog_KB() |
|
|
|
abd = AbducerBase(kb, 'confidence') |
|
|
|
res = abd.abduce(([1, 1], prob1, 8), max_address_num = 2, require_more_address = 0) |
|
|
|
res = abd.abduce(([1, 1], prob1, 8), max_address_num=2, require_more_address=0) |
|
|
|
print(res) |
|
|
|
res = abd.abduce(([1, 1], prob2, 8), max_address_num = 2, require_more_address = 0) |
|
|
|
res = abd.abduce(([1, 1], prob2, 8), max_address_num=2, require_more_address=0) |
|
|
|
print(res) |
|
|
|
res = abd.abduce(([1, 1], prob1, 17), max_address_num = 2, require_more_address = 0) |
|
|
|
res = abd.abduce(([1, 1], prob1, 17), max_address_num=2, require_more_address=0) |
|
|
|
print(res) |
|
|
|
res = abd.abduce(([1, 1], prob1, 17), max_address_num = 1, require_more_address = 0) |
|
|
|
res = abd.abduce(([1, 1], prob1, 17), max_address_num=1, require_more_address=0) |
|
|
|
print(res) |
|
|
|
res = abd.abduce(([1, 1], prob1, 20), max_address_num = 2, require_more_address = 0) |
|
|
|
res = abd.abduce(([1, 1], prob1, 20), max_address_num=2, require_more_address=0) |
|
|
|
print(res) |
|
|
|
print() |
|
|
|
|
|
|
|
|
|
|
|
kb = add_prolog_KB() |
|
|
|
abd = AbducerBase(kb, 'confidence', zoopt = True) |
|
|
|
res = abd.abduce(([1, 1], prob1, 8), max_address_num = 2, require_more_address = 0) |
|
|
|
abd = AbducerBase(kb, 'confidence', zoopt=True) |
|
|
|
res = abd.abduce(([1, 1], prob1, 8), max_address_num=2, require_more_address=0) |
|
|
|
print(res) |
|
|
|
res = abd.abduce(([1, 1], prob2, 8), max_address_num = 2, require_more_address = 0) |
|
|
|
res = abd.abduce(([1, 1], prob2, 8), max_address_num=2, require_more_address=0) |
|
|
|
print(res) |
|
|
|
res = abd.abduce(([1, 1], prob1, 17), max_address_num = 2, require_more_address = 0) |
|
|
|
res = abd.abduce(([1, 1], prob1, 17), max_address_num=2, require_more_address=0) |
|
|
|
print(res) |
|
|
|
res = abd.abduce(([1, 1], prob1, 17), max_address_num = 1, require_more_address = 0) |
|
|
|
res = abd.abduce(([1, 1], prob1, 17), max_address_num=1, require_more_address=0) |
|
|
|
print(res) |
|
|
|
res = abd.abduce(([1, 1], prob1, 20), max_address_num = 2, require_more_address = 0) |
|
|
|
res = abd.abduce(([1, 1], prob1, 20), max_address_num=2, require_more_address=0) |
|
|
|
print(res) |
|
|
|
print() |
|
|
|
|
|
|
|
kb = HWF_KB(len_list = [1, 3, 5]) |
|
|
|
|
|
|
|
kb = HWF_KB(len_list=[1, 3, 5]) |
|
|
|
abd = AbducerBase(kb, 'hamming') |
|
|
|
res = abd.abduce((['5', '+', '2'], None, 3), max_address_num = 2, require_more_address = 0) |
|
|
|
res = abd.abduce((['5', '+', '2'], None, 3), max_address_num=2, require_more_address=0) |
|
|
|
print(res) |
|
|
|
res = abd.abduce((['5', '+', '2'], None, 64), max_address_num = 3, require_more_address = 0) |
|
|
|
res = abd.abduce((['5', '+', '2'], None, 64), max_address_num=3, require_more_address=0) |
|
|
|
print(res) |
|
|
|
res = abd.abduce((['5', '+', '2'], None, 1.67), max_address_num = 3, require_more_address = 0) |
|
|
|
res = abd.abduce((['5', '+', '2'], None, 1.67), max_address_num=3, require_more_address=0) |
|
|
|
print(res) |
|
|
|
res = abd.abduce((['5', '8', '8', '8', '8'], None, 3.17), max_address_num = 5, require_more_address = 3) |
|
|
|
res = abd.abduce((['5', '8', '8', '8', '8'], None, 3.17), max_address_num=5, require_more_address=3) |
|
|
|
print(res) |
|
|
|
print() |
|
|
|
|
|
|
|
|
|
|
|
kb = HED_prolog_KB() |
|
|
|
abd = AbducerBase(kb, zoopt=True, multiple_predictions=True) |
|
|
|
consist_exs = [[1, '+', 0, '=', 0], [1, '+', 1, '=', 0], [0, '+', 0, '=', 1, 1]] |
|
|
|
consist_exs2 = [[1, '+', 0, '=', 0], [1, '+', 1, '=', 0], [0, '+', 1, '=', 1, 1]] # not consistent with rules |
|
|
|
consist_exs2 = [[1, '+', 0, '=', 0], [1, '+', 1, '=', 0], [0, '+', 1, '=', 1, 1]] # not consistent with rules |
|
|
|
inconsist_exs = [[1, '+', 0, '=', 0], [1, '=', 1, '=', 0], [0, '=', 0, '=', 1, 1]] |
|
|
|
# inconsist_exs = [[1, '+', 0, '=', 0], ['=', '=', '=', '=', 0], ['=', '=', 0, '=', '=', '=']] |
|
|
|
rules = ['my_op([0], [0], [1, 1])', 'my_op([1], [1], [0])', 'my_op([1], [0], [0])'] |
|
|
|
|
|
|
|
|
|
|
|
print(kb.logic_forward(consist_exs), kb.logic_forward(inconsist_exs)) |
|
|
|
print(kb.consist_rule(consist_exs, rules), kb.consist_rule(consist_exs2, rules)) |
|
|
|
print() |
|
|
|
|
|
|
|
|
|
|
|
res = abd.abduce((consist_exs, None, [1] * len(consist_exs))) |
|
|
|
print(res) |
|
|
|
res = abd.abduce((inconsist_exs, None, [1] * len(consist_exs))) |
|
|
|
print(res) |
|
|
|
print() |
|
|
|
|
|
|
|
|
|
|
|
abduced_rules = abd.abduce_rules(consist_exs) |
|
|
|
print(abduced_rules) |
|
|
|
|
|
|
|
|