@@ -1,141 +0,0 @@ | |||||
from typing import Any, Tuple | |||||
from ablkit.utils import tab_data_to_tuple | |||||
from .structures.list_data import ListData | |||||
from lambdaLearn.Base.TabularMixin import TabularMixin | |||||
class DataConverter: | |||||
""" | |||||
This class provides functionality to convert LambdaLearn data to ABLkit data. | |||||
""" | |||||
def __init__(self) -> None: | |||||
pass | |||||
def convert_lambdalearn_to_tuple( | |||||
self, dataset: TabularMixin, reasoning_result: Any | |||||
) -> Tuple[Tuple, Tuple, Tuple, Tuple]: | |||||
""" | |||||
Convert a lambdalearn dataset to a tuple of tuples (label_data, train_data, valid_data, test_data), # noqa: E501 | |||||
each containing (data, label, reasoning_result). | |||||
Parameters | |||||
---------- | |||||
dataset : TabularMixin | |||||
The LambdaLearn dataset to be converted. | |||||
reasoning_result : Any | |||||
The reasoning result of the dataset. | |||||
Returns | |||||
------- | |||||
Tuple[Tuple, Tuple, Tuple, Tuple] | |||||
A tuple of (label_data, train_data, valid_data, test_data), where each element is | |||||
a tuple of (data, label, reasoning_result). | |||||
""" | |||||
if not isinstance(dataset, TabularMixin): | |||||
raise NotImplementedError( | |||||
"Only support converting the datasets that are instances of TabularMixin. " | |||||
+ "Please refer to the documentation and manually convert the dataset into a tuple." | |||||
) | |||||
label_data = tab_data_to_tuple( | |||||
dataset.labeled_X, dataset.labeled_y, reasoning_result=reasoning_result | |||||
) | |||||
train_data = tab_data_to_tuple( | |||||
dataset.unlabeled_X, dataset.unlabeled_y, reasoning_result=reasoning_result | |||||
) | |||||
valid_data = tab_data_to_tuple( | |||||
dataset.valid_X, dataset.valid_y, reasoning_result=reasoning_result | |||||
) | |||||
test_data = tab_data_to_tuple( | |||||
dataset.test_X, dataset.test_y, reasoning_result=reasoning_result | |||||
) | |||||
return label_data, train_data, valid_data, test_data | |||||
def convert_lambdalearn_to_listdata( | |||||
self, dataset: TabularMixin, reasoning_result: Any | |||||
) -> Tuple[ListData, ListData, ListData, ListData]: | |||||
""" | |||||
Convert a lambdalearn dataset to a tuple of ListData | |||||
(label_data_examples, train_data_examples, valid_data_examples, test_data_examples). | |||||
Parameters | |||||
---------- | |||||
dataset : TabularMixin | |||||
The LambdaLearn dataset to be converted. | |||||
reasoning_result : Any | |||||
The reasoning result of the dataset. | |||||
Returns | |||||
------- | |||||
Tuple[ListData, ListData, ListData, ListData] | |||||
A tuple of ListData (label_data_examples, train_data_examples, valid_data_examples, test_data_examples) # noqa: E501 | |||||
""" | |||||
if not isinstance(dataset, TabularMixin): | |||||
raise NotImplementedError( | |||||
"Only support converting the datasets that are instances of TabularMixin. " | |||||
+ "Please refer to the documentation and manually convert the dataset " | |||||
+ "into a ListData." | |||||
) | |||||
label_data, train_data, valid_data, test_data = self.convert_lambdalearn_to_tuple( | |||||
dataset, reasoning_result | |||||
) | |||||
if label_data is not None: | |||||
X, gt_pseudo_label, Y = label_data | |||||
label_data_examples = ListData(X=X, gt_pseudo_label=gt_pseudo_label, Y=Y) | |||||
if train_data is not None: | |||||
X, gt_pseudo_label, Y = train_data | |||||
train_data_examples = ListData(X=X, gt_pseudo_label=gt_pseudo_label, Y=Y) | |||||
if valid_data is not None: | |||||
X, gt_pseudo_label, Y = valid_data | |||||
valid_data_examples = ListData(X=X, gt_pseudo_label=gt_pseudo_label, Y=Y) | |||||
if test_data is not None: | |||||
X, gt_pseudo_label, Y = test_data | |||||
test_data_examples = ListData(X=X, gt_pseudo_label=gt_pseudo_label, Y=Y) | |||||
return label_data_examples, train_data_examples, valid_data_examples, test_data_examples | |||||
if __name__ == "__main__": | |||||
from lambdaLearn.Dataset.Tabular.BreastCancer import BreastCancer | |||||
breast_dataset = BreastCancer(labeled_size=0.1, stratified=True, shuffle=True) | |||||
dataconverter = DataConverter() | |||||
label_data, train_data, valid_data, test_data = dataconverter.convert_lambdalearn_to_tuple( | |||||
breast_dataset, 0 | |||||
) | |||||
print( | |||||
type(label_data).__name__, | |||||
type(train_data).__name__, | |||||
type(valid_data).__name__, | |||||
type(test_data).__name__, | |||||
) | |||||
print(len(label_data)) | |||||
print(len(label_data[0]), len(label_data[1]), len(label_data[2])) | |||||
print(label_data[0][0], label_data[1][0], label_data[2][0]) | |||||
print() | |||||
( | |||||
label_data_examples, | |||||
train_data_examples, | |||||
valid_data_examples, | |||||
test_data_examples, | |||||
) = dataconverter.convert_lambdalearn_to_listdata(breast_dataset, 0) | |||||
print( | |||||
type(label_data_examples).__name__, | |||||
type(train_data_examples).__name__, | |||||
type(valid_data_examples).__name__, | |||||
type(test_data_examples).__name__, | |||||
) | |||||
print( | |||||
len(label_data_examples.X), | |||||
len(label_data_examples.gt_pseudo_label), | |||||
len(label_data_examples.Y), | |||||
) | |||||
label_data_example = label_data_examples[0] | |||||
print(label_data_example.X, label_data_example.gt_pseudo_label, label_data_example.Y) |
@@ -1,211 +0,0 @@ | |||||
import torch | |||||
import copy | |||||
from typing import Any, Callable, List, Optional | |||||
from .abl_model import ABLModel | |||||
from .basic_nn import BasicNN | |||||
from lambdaLearn.Base.DeepModelMixin import DeepModelMixin | |||||
class ModelConverter: | |||||
""" | |||||
This class provides functionality to convert LambdaLearn models to ABLkit models. | |||||
""" | |||||
def __init__(self) -> None: | |||||
pass | |||||
def convert_lambdalearn_to_ablmodel( | |||||
self, | |||||
lambdalearn_model, | |||||
loss_fn: torch.nn.Module, | |||||
optimizer_dict: dict, | |||||
scheduler_dict: Optional[dict] = None, | |||||
device: Optional[torch.device] = None, | |||||
batch_size: int = 32, | |||||
num_epochs: int = 1, | |||||
stop_loss: Optional[float] = 0.0001, | |||||
num_workers: int = 0, | |||||
save_interval: Optional[int] = None, | |||||
save_dir: Optional[str] = None, | |||||
train_transform: Callable[..., Any] = None, | |||||
test_transform: Callable[..., Any] = None, | |||||
collate_fn: Callable[[List[Any]], Any] = None, | |||||
): | |||||
""" | |||||
Convert a lambdalearn model to an ABLModel. If the lambdalearn model is an instance of | |||||
DeepModelMixin, its network will be used as the model of BasicNN. Otherwise, the lambdalearn | |||||
model should implement ``fit`` and ``predict`` methods. | |||||
Parameters | |||||
---------- | |||||
lambdalearn_model : Union[DeepModelMixin, Any] | |||||
The LambdaLearn model to be converted. | |||||
loss_fn : torch.nn.Module | |||||
The loss function used for training. | |||||
optimizer_dict : dict | |||||
The dict contains necessary parameters to construct a optimizer used for training. | |||||
The optimizer class is specified by the ``optimizer`` key. | |||||
scheduler_dict : dict, optional | |||||
The dict contains necessary parameters to construct a learning rate scheduler used | |||||
for training, which will be called at the end of each run of the ``fit`` method. | |||||
The scheduler class is specified by the ``scheduler`` key. It should implement the | |||||
``step`` method. Defaults to None. | |||||
device : torch.device, optional | |||||
The device on which the model will be trained or used for prediction, | |||||
Defaults to torch.device("cpu"). | |||||
batch_size : int, optional | |||||
The batch size used for training. Defaults to 32. | |||||
num_epochs : int, optional | |||||
The number of epochs used for training. Defaults to 1. | |||||
stop_loss : float, optional | |||||
The loss value at which to stop training. Defaults to 0.0001. | |||||
num_workers : int | |||||
The number of workers used for loading data. Defaults to 0. | |||||
save_interval : int, optional | |||||
The model will be saved every ``save_interval`` epoch during training. Defaults to None. | |||||
save_dir : str, optional | |||||
The directory in which to save the model during training. Defaults to None. | |||||
train_transform : Callable[..., Any], optional | |||||
A function/transform that takes an object and returns a transformed version used | |||||
in the `fit` and `train_epoch` methods. Defaults to None. | |||||
test_transform : Callable[..., Any], optional | |||||
A function/transform that takes an object and returns a transformed version in the | |||||
`predict`, `predict_proba` and `score` methods. Defaults to None. | |||||
collate_fn : Callable[[List[T]], Any], optional | |||||
The function used to collate data. Defaults to None. | |||||
Returns | |||||
------- | |||||
ABLModel | |||||
The converted ABLModel instance. | |||||
""" | |||||
if isinstance(lambdalearn_model, DeepModelMixin): | |||||
base_model = self.convert_lambdalearn_to_basicnn( | |||||
lambdalearn_model, | |||||
loss_fn, | |||||
optimizer_dict, | |||||
scheduler_dict, | |||||
device, | |||||
batch_size, | |||||
num_epochs, | |||||
stop_loss, | |||||
num_workers, | |||||
save_interval, | |||||
save_dir, | |||||
train_transform, | |||||
test_transform, | |||||
collate_fn, | |||||
) | |||||
return ABLModel(base_model) | |||||
if not (hasattr(lambdalearn_model, "fit") and hasattr(lambdalearn_model, "predict")): | |||||
raise NotImplementedError( | |||||
"The lambdalearn_model should be an instance of DeepModelMixin, or implement " | |||||
+ "fit and predict methods." | |||||
) | |||||
return ABLModel(lambdalearn_model) | |||||
def convert_lambdalearn_to_basicnn( | |||||
self, | |||||
lambdalearn_model: DeepModelMixin, | |||||
loss_fn: torch.nn.Module, | |||||
optimizer_dict: dict, | |||||
scheduler_dict: Optional[dict] = None, | |||||
device: Optional[torch.device] = None, | |||||
batch_size: int = 32, | |||||
num_epochs: int = 1, | |||||
stop_loss: Optional[float] = 0.0001, | |||||
num_workers: int = 0, | |||||
save_interval: Optional[int] = None, | |||||
save_dir: Optional[str] = None, | |||||
train_transform: Callable[..., Any] = None, | |||||
test_transform: Callable[..., Any] = None, | |||||
collate_fn: Callable[[List[Any]], Any] = None, | |||||
): | |||||
""" | |||||
Convert a lambdalearn model to a BasicNN. If the lambdalearn model is an instance of | |||||
DeepModelMixin, its network will be used as the model of BasicNN. | |||||
Parameters | |||||
---------- | |||||
lambdalearn_model : Union[DeepModelMixin, Any] | |||||
The LambdaLearn model to be converted. | |||||
loss_fn : torch.nn.Module | |||||
The loss function used for training. | |||||
optimizer_dict : dict | |||||
The dict contains necessary parameters to construct a optimizer used for training. | |||||
scheduler_dict : dict, optional | |||||
The dict contains necessary parameters to construct a learning rate scheduler used | |||||
for training, which will be called at the end of each run of the ``fit`` method. | |||||
The scheduler class is specified by the ``scheduler`` key. It should implement the | |||||
``step`` method. Defaults to None. | |||||
device : torch.device, optional | |||||
The device on which the model will be trained or used for prediction, | |||||
Defaults to torch.device("cpu"). | |||||
batch_size : int, optional | |||||
The batch size used for training. Defaults to 32. | |||||
num_epochs : int, optional | |||||
The number of epochs used for training. Defaults to 1. | |||||
stop_loss : float, optional | |||||
The loss value at which to stop training. Defaults to 0.0001. | |||||
num_workers : int | |||||
The number of workers used for loading data. Defaults to 0. | |||||
save_interval : int, optional | |||||
The model will be saved every ``save_interval`` epoch during training. Defaults to None. | |||||
save_dir : str, optional | |||||
The directory in which to save the model during training. Defaults to None. | |||||
train_transform : Callable[..., Any], optional | |||||
A function/transform that takes an object and returns a transformed version used | |||||
in the `fit` and `train_epoch` methods. Defaults to None. | |||||
test_transform : Callable[..., Any], optional | |||||
A function/transform that takes an object and returns a transformed version in the | |||||
`predict`, `predict_proba` and `score` methods. Defaults to None. | |||||
collate_fn : Callable[[List[T]], Any], optional | |||||
The function used to collate data. Defaults to None. | |||||
Returns | |||||
------- | |||||
BasicNN | |||||
The converted BasicNN instance. | |||||
""" | |||||
if isinstance(lambdalearn_model, DeepModelMixin): | |||||
if not isinstance(lambdalearn_model.network, torch.nn.Module): | |||||
raise NotImplementedError( | |||||
"Expected lambdalearn_model.network to be a torch.nn.Module, " | |||||
+ f"but got {type(lambdalearn_model.network)}" | |||||
) | |||||
# Only use the network part and device of the lambdalearn model | |||||
network = copy.deepcopy(lambdalearn_model.network) | |||||
optimizer_class = optimizer_dict["optimizer"] | |||||
optimizer_dict.pop("optimizer") | |||||
optimizer = optimizer_class(network.parameters(), **optimizer_dict) | |||||
if scheduler_dict is not None: | |||||
scheduler_class = scheduler_dict["scheduler"] | |||||
scheduler_dict.pop("scheduler") | |||||
scheduler = scheduler_class(optimizer, **scheduler_dict) | |||||
else: | |||||
scheduler = None | |||||
device = lambdalearn_model.device if device is None else device | |||||
base_model = BasicNN( | |||||
model=network, | |||||
loss_fn=loss_fn, | |||||
optimizer=optimizer, | |||||
scheduler=scheduler, | |||||
device=device, | |||||
batch_size=batch_size, | |||||
num_epochs=num_epochs, | |||||
stop_loss=stop_loss, | |||||
num_workers=num_workers, | |||||
save_interval=save_interval, | |||||
save_dir=save_dir, | |||||
train_transform=train_transform, | |||||
test_transform=test_transform, | |||||
collate_fn=collate_fn, | |||||
) | |||||
return base_model | |||||
else: | |||||
raise NotImplementedError( | |||||
"The lambdalearn_model should be an instance of DeepModelMixin." | |||||
) |
@@ -1,160 +0,0 @@ | |||||
import argparse | |||||
import os.path as osp | |||||
from torch import nn | |||||
from torch.optim import RMSprop, lr_scheduler | |||||
from lambdaLearn.Algorithm.AbductiveLearning.bridge import SimpleBridge | |||||
from lambdaLearn.Algorithm.AbductiveLearning.data.evaluation import ReasoningMetric, SymbolAccuracy | |||||
from lambdaLearn.Algorithm.AbductiveLearning.learning import ABLModel | |||||
from lambdaLearn.Algorithm.AbductiveLearning.learning.model_converter import ModelConverter | |||||
from lambdaLearn.Algorithm.AbductiveLearning.reasoning import GroundKB, KBBase, PrologKB, Reasoner | |||||
from lambdaLearn.Algorithm.AbductiveLearning.utils import ABLLogger, print_log | |||||
from lambdaLearn.Algorithm.SemiSupervised.Classification.FixMatch import FixMatch | |||||
from datasets import get_dataset | |||||
from models.nn import LeNet5 | |||||
class AddKB(KBBase): | |||||
def __init__(self, pseudo_label_list=list(range(10))): | |||||
super().__init__(pseudo_label_list) | |||||
def logic_forward(self, nums): | |||||
return sum(nums) | |||||
class AddGroundKB(GroundKB): | |||||
def __init__(self, pseudo_label_list=list(range(10)), GKB_len_list=[2]): | |||||
super().__init__(pseudo_label_list, GKB_len_list) | |||||
def logic_forward(self, nums): | |||||
return sum(nums) | |||||
def main(): | |||||
parser = argparse.ArgumentParser(description="MNIST Addition example") | |||||
parser.add_argument( | |||||
"--no-cuda", action="store_true", default=False, help="disables CUDA training" | |||||
) | |||||
parser.add_argument( | |||||
"--epochs", | |||||
type=int, | |||||
default=1, | |||||
help="number of epochs in each learning loop iteration (default : 1)", | |||||
) | |||||
parser.add_argument( | |||||
"--lr", type=float, default=3e-4, help="base model learning rate (default : 0.0003)" | |||||
) | |||||
parser.add_argument("--alpha", type=float, default=0.9, help="alpha in RMSprop (default : 0.9)") | |||||
parser.add_argument( | |||||
"--batch-size", type=int, default=32, help="base model batch size (default : 32)" | |||||
) | |||||
parser.add_argument( | |||||
"--loops", type=int, default=2, help="number of loop iterations (default : 2)" | |||||
) | |||||
parser.add_argument( | |||||
"--segment_size", type=int, default=0.01, help="segment size (default : 0.01)" | |||||
) | |||||
parser.add_argument("--save_interval", type=int, default=1, help="save interval (default : 1)") | |||||
parser.add_argument( | |||||
"--max-revision", | |||||
type=int, | |||||
default=-1, | |||||
help="maximum revision in reasoner (default : -1)", | |||||
) | |||||
parser.add_argument( | |||||
"--require-more-revision", | |||||
type=int, | |||||
default=0, | |||||
help="require more revision in reasoner (default : 0)", | |||||
) | |||||
kb_type = parser.add_mutually_exclusive_group() | |||||
kb_type.add_argument( | |||||
"--prolog", action="store_true", default=False, help="use PrologKB (default: False)" | |||||
) | |||||
kb_type.add_argument( | |||||
"--ground", action="store_true", default=False, help="use GroundKB (default: False)" | |||||
) | |||||
args = parser.parse_args() | |||||
# Build logger | |||||
print_log("Abductive Learning on the MNIST Addition example.", logger="current") | |||||
# -- Working with Data ------------------------------ | |||||
print_log("Working with Data.", logger="current") | |||||
train_data = get_dataset(train=True, get_pseudo_label=True) | |||||
test_data = get_dataset(train=False, get_pseudo_label=True) | |||||
# -- Building the Learning Part --------------------- | |||||
print_log("Building the Learning Part.", logger="current") | |||||
# Build necessary components for BasicNN | |||||
model = FixMatch( | |||||
network=LeNet5(), | |||||
threshold=0.95, | |||||
lambda_u=1.0, | |||||
mu=7, | |||||
T=0.5, | |||||
epoch=1, | |||||
num_it_epoch=2**20, | |||||
num_it_total=2**20, | |||||
device="cuda", | |||||
) | |||||
loss_fn = nn.CrossEntropyLoss(label_smoothing=0.2) | |||||
optimizer_dict = dict(optimizer=RMSprop, lr=0.0003, alpha=0.9) | |||||
scheduler_dict = dict( | |||||
scheduler=lr_scheduler.OneCycleLR, max_lr=0.0003, pct_start=0.15, total_steps=200 | |||||
) | |||||
converter = ModelConverter() | |||||
base_model = converter.convert_lambdalearn_to_basicnn( | |||||
model, loss_fn=loss_fn, optimizer_dict=optimizer_dict, scheduler_dict=scheduler_dict | |||||
) | |||||
# Build ABLModel | |||||
model = ABLModel(base_model) | |||||
# -- Building the Reasoning Part -------------------- | |||||
print_log("Building the Reasoning Part.", logger="current") | |||||
# Build knowledge base | |||||
if args.prolog: | |||||
kb = PrologKB(pseudo_label_list=list(range(10)), pl_file="add.pl") | |||||
elif args.ground: | |||||
kb = AddGroundKB() | |||||
else: | |||||
kb = AddKB() | |||||
# Create reasoner | |||||
reasoner = Reasoner( | |||||
kb, max_revision=args.max_revision, require_more_revision=args.require_more_revision | |||||
) | |||||
# -- Building Evaluation Metrics -------------------- | |||||
print_log("Building Evaluation Metrics.", logger="current") | |||||
metric_list = [SymbolAccuracy(prefix="mnist_add"), ReasoningMetric(kb=kb, prefix="mnist_add")] | |||||
# -- Bridging Learning and Reasoning ---------------- | |||||
print_log("Bridge Learning and Reasoning.", logger="current") | |||||
bridge = SimpleBridge(model, reasoner, metric_list) | |||||
# Retrieve the directory of the Log file and define the directory for saving the model weights. | |||||
log_dir = ABLLogger.get_current_instance().log_dir | |||||
weights_dir = osp.join(log_dir, "weights") | |||||
# Train and Test | |||||
bridge.train( | |||||
train_data, | |||||
loops=args.loops, | |||||
segment_size=args.segment_size, | |||||
save_interval=args.save_interval, | |||||
save_dir=weights_dir, | |||||
) | |||||
bridge.test(test_data) | |||||
if __name__ == "__main__": | |||||
main() |