Browse Source

[MNT] remove lambdalearn converter

pull/7/head
troyyyyy 1 year ago
parent
commit
5d600b9ced
3 changed files with 0 additions and 512 deletions
  1. +0
    -141
      ablkit/data/data_converter.py
  2. +0
    -211
      ablkit/learning/model_converter.py
  3. +0
    -160
      examples/mnist_add/main_with_model_converter.py

+ 0
- 141
ablkit/data/data_converter.py View File

@@ -1,141 +0,0 @@
from typing import Any, Tuple

from ablkit.utils import tab_data_to_tuple
from .structures.list_data import ListData
from lambdaLearn.Base.TabularMixin import TabularMixin


class DataConverter:
"""
This class provides functionality to convert LambdaLearn data to ABLkit data.
"""

def __init__(self) -> None:
pass

def convert_lambdalearn_to_tuple(
self, dataset: TabularMixin, reasoning_result: Any
) -> Tuple[Tuple, Tuple, Tuple, Tuple]:
"""
Convert a lambdalearn dataset to a tuple of tuples (label_data, train_data, valid_data, test_data), # noqa: E501
each containing (data, label, reasoning_result).

Parameters
----------
dataset : TabularMixin
The LambdaLearn dataset to be converted.
reasoning_result : Any
The reasoning result of the dataset.
Returns
-------
Tuple[Tuple, Tuple, Tuple, Tuple]
A tuple of (label_data, train_data, valid_data, test_data), where each element is
a tuple of (data, label, reasoning_result).
"""

if not isinstance(dataset, TabularMixin):
raise NotImplementedError(
"Only support converting the datasets that are instances of TabularMixin. "
+ "Please refer to the documentation and manually convert the dataset into a tuple."
)

label_data = tab_data_to_tuple(
dataset.labeled_X, dataset.labeled_y, reasoning_result=reasoning_result
)
train_data = tab_data_to_tuple(
dataset.unlabeled_X, dataset.unlabeled_y, reasoning_result=reasoning_result
)
valid_data = tab_data_to_tuple(
dataset.valid_X, dataset.valid_y, reasoning_result=reasoning_result
)
test_data = tab_data_to_tuple(
dataset.test_X, dataset.test_y, reasoning_result=reasoning_result
)

return label_data, train_data, valid_data, test_data

def convert_lambdalearn_to_listdata(
self, dataset: TabularMixin, reasoning_result: Any
) -> Tuple[ListData, ListData, ListData, ListData]:
"""
Convert a lambdalearn dataset to a tuple of ListData
(label_data_examples, train_data_examples, valid_data_examples, test_data_examples).

Parameters
----------
dataset : TabularMixin
The LambdaLearn dataset to be converted.
reasoning_result : Any
The reasoning result of the dataset.
Returns
-------
Tuple[ListData, ListData, ListData, ListData]
A tuple of ListData (label_data_examples, train_data_examples, valid_data_examples, test_data_examples) # noqa: E501
"""

if not isinstance(dataset, TabularMixin):
raise NotImplementedError(
"Only support converting the datasets that are instances of TabularMixin. "
+ "Please refer to the documentation and manually convert the dataset "
+ "into a ListData."
)

label_data, train_data, valid_data, test_data = self.convert_lambdalearn_to_tuple(
dataset, reasoning_result
)

if label_data is not None:
X, gt_pseudo_label, Y = label_data
label_data_examples = ListData(X=X, gt_pseudo_label=gt_pseudo_label, Y=Y)
if train_data is not None:
X, gt_pseudo_label, Y = train_data
train_data_examples = ListData(X=X, gt_pseudo_label=gt_pseudo_label, Y=Y)
if valid_data is not None:
X, gt_pseudo_label, Y = valid_data
valid_data_examples = ListData(X=X, gt_pseudo_label=gt_pseudo_label, Y=Y)
if test_data is not None:
X, gt_pseudo_label, Y = test_data
test_data_examples = ListData(X=X, gt_pseudo_label=gt_pseudo_label, Y=Y)

return label_data_examples, train_data_examples, valid_data_examples, test_data_examples


if __name__ == "__main__":
from lambdaLearn.Dataset.Tabular.BreastCancer import BreastCancer

breast_dataset = BreastCancer(labeled_size=0.1, stratified=True, shuffle=True)
dataconverter = DataConverter()

label_data, train_data, valid_data, test_data = dataconverter.convert_lambdalearn_to_tuple(
breast_dataset, 0
)
print(
type(label_data).__name__,
type(train_data).__name__,
type(valid_data).__name__,
type(test_data).__name__,
)
print(len(label_data))
print(len(label_data[0]), len(label_data[1]), len(label_data[2]))
print(label_data[0][0], label_data[1][0], label_data[2][0])
print()

(
label_data_examples,
train_data_examples,
valid_data_examples,
test_data_examples,
) = dataconverter.convert_lambdalearn_to_listdata(breast_dataset, 0)
print(
type(label_data_examples).__name__,
type(train_data_examples).__name__,
type(valid_data_examples).__name__,
type(test_data_examples).__name__,
)
print(
len(label_data_examples.X),
len(label_data_examples.gt_pseudo_label),
len(label_data_examples.Y),
)
label_data_example = label_data_examples[0]
print(label_data_example.X, label_data_example.gt_pseudo_label, label_data_example.Y)

+ 0
- 211
ablkit/learning/model_converter.py View File

@@ -1,211 +0,0 @@
import torch
import copy
from typing import Any, Callable, List, Optional

from .abl_model import ABLModel
from .basic_nn import BasicNN
from lambdaLearn.Base.DeepModelMixin import DeepModelMixin


class ModelConverter:
"""
This class provides functionality to convert LambdaLearn models to ABLkit models.
"""

def __init__(self) -> None:
pass

def convert_lambdalearn_to_ablmodel(
self,
lambdalearn_model,
loss_fn: torch.nn.Module,
optimizer_dict: dict,
scheduler_dict: Optional[dict] = None,
device: Optional[torch.device] = None,
batch_size: int = 32,
num_epochs: int = 1,
stop_loss: Optional[float] = 0.0001,
num_workers: int = 0,
save_interval: Optional[int] = None,
save_dir: Optional[str] = None,
train_transform: Callable[..., Any] = None,
test_transform: Callable[..., Any] = None,
collate_fn: Callable[[List[Any]], Any] = None,
):
"""
Convert a lambdalearn model to an ABLModel. If the lambdalearn model is an instance of
DeepModelMixin, its network will be used as the model of BasicNN. Otherwise, the lambdalearn
model should implement ``fit`` and ``predict`` methods.

Parameters
----------
lambdalearn_model : Union[DeepModelMixin, Any]
The LambdaLearn model to be converted.
loss_fn : torch.nn.Module
The loss function used for training.
optimizer_dict : dict
The dict contains necessary parameters to construct a optimizer used for training.
The optimizer class is specified by the ``optimizer`` key.
scheduler_dict : dict, optional
The dict contains necessary parameters to construct a learning rate scheduler used
for training, which will be called at the end of each run of the ``fit`` method.
The scheduler class is specified by the ``scheduler`` key. It should implement the
``step`` method. Defaults to None.
device : torch.device, optional
The device on which the model will be trained or used for prediction,
Defaults to torch.device("cpu").
batch_size : int, optional
The batch size used for training. Defaults to 32.
num_epochs : int, optional
The number of epochs used for training. Defaults to 1.
stop_loss : float, optional
The loss value at which to stop training. Defaults to 0.0001.
num_workers : int
The number of workers used for loading data. Defaults to 0.
save_interval : int, optional
The model will be saved every ``save_interval`` epoch during training. Defaults to None.
save_dir : str, optional
The directory in which to save the model during training. Defaults to None.
train_transform : Callable[..., Any], optional
A function/transform that takes an object and returns a transformed version used
in the `fit` and `train_epoch` methods. Defaults to None.
test_transform : Callable[..., Any], optional
A function/transform that takes an object and returns a transformed version in the
`predict`, `predict_proba` and `score` methods. Defaults to None.
collate_fn : Callable[[List[T]], Any], optional
The function used to collate data. Defaults to None.

Returns
-------
ABLModel
The converted ABLModel instance.
"""
if isinstance(lambdalearn_model, DeepModelMixin):
base_model = self.convert_lambdalearn_to_basicnn(
lambdalearn_model,
loss_fn,
optimizer_dict,
scheduler_dict,
device,
batch_size,
num_epochs,
stop_loss,
num_workers,
save_interval,
save_dir,
train_transform,
test_transform,
collate_fn,
)
return ABLModel(base_model)

if not (hasattr(lambdalearn_model, "fit") and hasattr(lambdalearn_model, "predict")):
raise NotImplementedError(
"The lambdalearn_model should be an instance of DeepModelMixin, or implement "
+ "fit and predict methods."
)

return ABLModel(lambdalearn_model)

def convert_lambdalearn_to_basicnn(
self,
lambdalearn_model: DeepModelMixin,
loss_fn: torch.nn.Module,
optimizer_dict: dict,
scheduler_dict: Optional[dict] = None,
device: Optional[torch.device] = None,
batch_size: int = 32,
num_epochs: int = 1,
stop_loss: Optional[float] = 0.0001,
num_workers: int = 0,
save_interval: Optional[int] = None,
save_dir: Optional[str] = None,
train_transform: Callable[..., Any] = None,
test_transform: Callable[..., Any] = None,
collate_fn: Callable[[List[Any]], Any] = None,
):
"""
Convert a lambdalearn model to a BasicNN. If the lambdalearn model is an instance of
DeepModelMixin, its network will be used as the model of BasicNN.

Parameters
----------
lambdalearn_model : Union[DeepModelMixin, Any]
The LambdaLearn model to be converted.
loss_fn : torch.nn.Module
The loss function used for training.
optimizer_dict : dict
The dict contains necessary parameters to construct a optimizer used for training.
scheduler_dict : dict, optional
The dict contains necessary parameters to construct a learning rate scheduler used
for training, which will be called at the end of each run of the ``fit`` method.
The scheduler class is specified by the ``scheduler`` key. It should implement the
``step`` method. Defaults to None.
device : torch.device, optional
The device on which the model will be trained or used for prediction,
Defaults to torch.device("cpu").
batch_size : int, optional
The batch size used for training. Defaults to 32.
num_epochs : int, optional
The number of epochs used for training. Defaults to 1.
stop_loss : float, optional
The loss value at which to stop training. Defaults to 0.0001.
num_workers : int
The number of workers used for loading data. Defaults to 0.
save_interval : int, optional
The model will be saved every ``save_interval`` epoch during training. Defaults to None.
save_dir : str, optional
The directory in which to save the model during training. Defaults to None.
train_transform : Callable[..., Any], optional
A function/transform that takes an object and returns a transformed version used
in the `fit` and `train_epoch` methods. Defaults to None.
test_transform : Callable[..., Any], optional
A function/transform that takes an object and returns a transformed version in the
`predict`, `predict_proba` and `score` methods. Defaults to None.
collate_fn : Callable[[List[T]], Any], optional
The function used to collate data. Defaults to None.

Returns
-------
BasicNN
The converted BasicNN instance.
"""
if isinstance(lambdalearn_model, DeepModelMixin):
if not isinstance(lambdalearn_model.network, torch.nn.Module):
raise NotImplementedError(
"Expected lambdalearn_model.network to be a torch.nn.Module, "
+ f"but got {type(lambdalearn_model.network)}"
)
# Only use the network part and device of the lambdalearn model
network = copy.deepcopy(lambdalearn_model.network)
optimizer_class = optimizer_dict["optimizer"]
optimizer_dict.pop("optimizer")
optimizer = optimizer_class(network.parameters(), **optimizer_dict)
if scheduler_dict is not None:
scheduler_class = scheduler_dict["scheduler"]
scheduler_dict.pop("scheduler")
scheduler = scheduler_class(optimizer, **scheduler_dict)
else:
scheduler = None
device = lambdalearn_model.device if device is None else device
base_model = BasicNN(
model=network,
loss_fn=loss_fn,
optimizer=optimizer,
scheduler=scheduler,
device=device,
batch_size=batch_size,
num_epochs=num_epochs,
stop_loss=stop_loss,
num_workers=num_workers,
save_interval=save_interval,
save_dir=save_dir,
train_transform=train_transform,
test_transform=test_transform,
collate_fn=collate_fn,
)
return base_model
else:
raise NotImplementedError(
"The lambdalearn_model should be an instance of DeepModelMixin."
)

+ 0
- 160
examples/mnist_add/main_with_model_converter.py View File

@@ -1,160 +0,0 @@
import argparse
import os.path as osp

from torch import nn
from torch.optim import RMSprop, lr_scheduler

from lambdaLearn.Algorithm.AbductiveLearning.bridge import SimpleBridge
from lambdaLearn.Algorithm.AbductiveLearning.data.evaluation import ReasoningMetric, SymbolAccuracy
from lambdaLearn.Algorithm.AbductiveLearning.learning import ABLModel
from lambdaLearn.Algorithm.AbductiveLearning.learning.model_converter import ModelConverter
from lambdaLearn.Algorithm.AbductiveLearning.reasoning import GroundKB, KBBase, PrologKB, Reasoner
from lambdaLearn.Algorithm.AbductiveLearning.utils import ABLLogger, print_log
from lambdaLearn.Algorithm.SemiSupervised.Classification.FixMatch import FixMatch

from datasets import get_dataset
from models.nn import LeNet5


class AddKB(KBBase):
def __init__(self, pseudo_label_list=list(range(10))):
super().__init__(pseudo_label_list)

def logic_forward(self, nums):
return sum(nums)


class AddGroundKB(GroundKB):
def __init__(self, pseudo_label_list=list(range(10)), GKB_len_list=[2]):
super().__init__(pseudo_label_list, GKB_len_list)

def logic_forward(self, nums):
return sum(nums)


def main():
parser = argparse.ArgumentParser(description="MNIST Addition example")
parser.add_argument(
"--no-cuda", action="store_true", default=False, help="disables CUDA training"
)
parser.add_argument(
"--epochs",
type=int,
default=1,
help="number of epochs in each learning loop iteration (default : 1)",
)
parser.add_argument(
"--lr", type=float, default=3e-4, help="base model learning rate (default : 0.0003)"
)
parser.add_argument("--alpha", type=float, default=0.9, help="alpha in RMSprop (default : 0.9)")
parser.add_argument(
"--batch-size", type=int, default=32, help="base model batch size (default : 32)"
)
parser.add_argument(
"--loops", type=int, default=2, help="number of loop iterations (default : 2)"
)
parser.add_argument(
"--segment_size", type=int, default=0.01, help="segment size (default : 0.01)"
)
parser.add_argument("--save_interval", type=int, default=1, help="save interval (default : 1)")
parser.add_argument(
"--max-revision",
type=int,
default=-1,
help="maximum revision in reasoner (default : -1)",
)
parser.add_argument(
"--require-more-revision",
type=int,
default=0,
help="require more revision in reasoner (default : 0)",
)
kb_type = parser.add_mutually_exclusive_group()
kb_type.add_argument(
"--prolog", action="store_true", default=False, help="use PrologKB (default: False)"
)
kb_type.add_argument(
"--ground", action="store_true", default=False, help="use GroundKB (default: False)"
)

args = parser.parse_args()

# Build logger
print_log("Abductive Learning on the MNIST Addition example.", logger="current")

# -- Working with Data ------------------------------
print_log("Working with Data.", logger="current")
train_data = get_dataset(train=True, get_pseudo_label=True)
test_data = get_dataset(train=False, get_pseudo_label=True)

# -- Building the Learning Part ---------------------
print_log("Building the Learning Part.", logger="current")

# Build necessary components for BasicNN
model = FixMatch(
network=LeNet5(),
threshold=0.95,
lambda_u=1.0,
mu=7,
T=0.5,
epoch=1,
num_it_epoch=2**20,
num_it_total=2**20,
device="cuda",
)

loss_fn = nn.CrossEntropyLoss(label_smoothing=0.2)
optimizer_dict = dict(optimizer=RMSprop, lr=0.0003, alpha=0.9)
scheduler_dict = dict(
scheduler=lr_scheduler.OneCycleLR, max_lr=0.0003, pct_start=0.15, total_steps=200
)

converter = ModelConverter()
base_model = converter.convert_lambdalearn_to_basicnn(
model, loss_fn=loss_fn, optimizer_dict=optimizer_dict, scheduler_dict=scheduler_dict
)

# Build ABLModel
model = ABLModel(base_model)

# -- Building the Reasoning Part --------------------
print_log("Building the Reasoning Part.", logger="current")

# Build knowledge base
if args.prolog:
kb = PrologKB(pseudo_label_list=list(range(10)), pl_file="add.pl")
elif args.ground:
kb = AddGroundKB()
else:
kb = AddKB()

# Create reasoner
reasoner = Reasoner(
kb, max_revision=args.max_revision, require_more_revision=args.require_more_revision
)

# -- Building Evaluation Metrics --------------------
print_log("Building Evaluation Metrics.", logger="current")
metric_list = [SymbolAccuracy(prefix="mnist_add"), ReasoningMetric(kb=kb, prefix="mnist_add")]

# -- Bridging Learning and Reasoning ----------------
print_log("Bridge Learning and Reasoning.", logger="current")
bridge = SimpleBridge(model, reasoner, metric_list)

# Retrieve the directory of the Log file and define the directory for saving the model weights.
log_dir = ABLLogger.get_current_instance().log_dir
weights_dir = osp.join(log_dir, "weights")

# Train and Test
bridge.train(
train_data,
loops=args.loops,
segment_size=args.segment_size,
save_interval=args.save_interval,
save_dir=weights_dir,
)
bridge.test(test_data)


if __name__ == "__main__":
main()

Loading…
Cancel
Save