Browse Source

[MNT] sort import of python files

pull/1/head
Gao Enhao 1 year ago
parent
commit
322d514997
25 changed files with 63 additions and 54 deletions
  1. +1
    -1
      abl/bridge/base_bridge.py
  2. +1
    -1
      abl/bridge/simple_bridge.py
  3. +4
    -2
      abl/data/__init__.py
  4. +1
    -1
      abl/data/evaluation/base_metric.py
  5. +2
    -2
      abl/learning/__init__.py
  6. +1
    -1
      abl/learning/basic_nn.py
  7. +3
    -3
      abl/reasoning/kb.py
  8. +2
    -2
      abl/reasoning/reasoner.py
  9. +1
    -7
      abl/utils/__init__.py
  10. +2
    -0
      docs/conf.py
  11. +4
    -3
      examples/hed/bridge.py
  12. +2
    -2
      examples/hed/consistency_metric.py
  13. +1
    -2
      examples/hed/datasets/__init__.py
  14. +1
    -1
      examples/hed/datasets/get_dataset.py
  15. +6
    -5
      examples/hed/main.py
  16. +3
    -1
      examples/hed/reasoning/reasoning.py
  17. +1
    -1
      examples/hwf/datasets/get_dataset.py
  18. +6
    -5
      examples/hwf/main.py
  19. +5
    -4
      examples/mnist_add/main.py
  20. +1
    -0
      examples/zoo/get_dataset.py
  21. +3
    -1
      examples/zoo/kb.py
  22. +8
    -6
      examples/zoo/main.py
  23. +2
    -2
      tests/conftest.py
  24. +1
    -0
      tests/test_basic_nn.py
  25. +1
    -1
      tests/test_reasoning.py

+ 1
- 1
abl/bridge/base_bridge.py View File

@@ -1,9 +1,9 @@
from abc import ABCMeta, abstractmethod
from typing import Any, List, Optional, Tuple, Union

from ..data.structures import ListData
from ..learning import ABLModel
from ..reasoning import Reasoner
from ..data.structures import ListData


class BaseBridge(metaclass=ABCMeta):


+ 1
- 1
abl/bridge/simple_bridge.py View File

@@ -4,9 +4,9 @@ from typing import Any, List, Optional, Tuple, Union
from numpy import ndarray

from ..data.evaluation import BaseMetric
from ..data.structures import ListData
from ..learning import ABLModel
from ..reasoning import Reasoner
from ..data.structures import ListData
from ..utils import print_log
from .base_bridge import BaseBridge



+ 4
- 2
abl/data/__init__.py View File

@@ -1,2 +1,4 @@
from .evaluation import *
from .structures import *
from .evaluation import BaseMetric, ReasoningMetric, SymbolAccuracy
from .structures import ListData

__all__ = ["BaseMetric", "ReasoningMetric", "SymbolAccuracy", "ListData"]

+ 1
- 1
abl/data/evaluation/base_metric.py View File

@@ -2,8 +2,8 @@ import logging
from abc import ABCMeta, abstractmethod
from typing import Any, List, Optional

from ..structures import ListData
from ...utils import print_log
from ..structures import ListData


class BaseMetric(metaclass=ABCMeta):


+ 2
- 2
abl/learning/__init__.py View File

@@ -1,5 +1,5 @@
from .abl_model import ABLModel
from .basic_nn import BasicNN
from .torch_dataset import *
from .torch_dataset import ClassificationDataset, PredictionDataset, RegressionDataset

__all__ = ["ABLModel", "BasicNN"]
__all__ = ["ABLModel", "BasicNN", "ClassificationDataset", "PredictionDataset", "RegressionDataset"]

+ 1
- 1
abl/learning/basic_nn.py View File

@@ -8,8 +8,8 @@ import numpy
import torch
from torch.utils.data import DataLoader

from .torch_dataset import ClassificationDataset, PredictionDataset
from ..utils.logger import print_log
from .torch_dataset import ClassificationDataset, PredictionDataset


class BasicNN:


+ 3
- 3
abl/reasoning/kb.py View File

@@ -1,17 +1,17 @@
import bisect
import os
import inspect
import logging
import os
from abc import ABC, abstractmethod
from collections import defaultdict
from itertools import combinations, product
from multiprocessing import Pool
from typing import Callable, Any, List, Optional
from typing import Any, Callable, List, Optional

import numpy as np

from ..utils.logger import print_log
from ..utils.cache import abl_cache
from ..utils.logger import print_log
from ..utils.utils import flatten, hamming_dist, reform_list, to_hashable




+ 2
- 2
abl/reasoning/reasoner.py View File

@@ -1,11 +1,11 @@
import inspect
from typing import Callable, Any, List, Optional, Union
from typing import Any, Callable, List, Optional, Union

import numpy as np
from zoopt import Dimension, Objective, Opt, Parameter, Solution

from ..reasoning import KBBase
from ..data.structures import ListData
from ..reasoning import KBBase
from ..utils.utils import confidence_dist, hamming_dist




+ 1
- 7
abl/utils/__init__.py View File

@@ -1,12 +1,6 @@
from .cache import Cache, abl_cache
from .logger import ABLLogger, print_log
from .utils import (
confidence_dist,
flatten,
hamming_dist,
reform_list,
to_hashable,
)
from .utils import confidence_dist, flatten, hamming_dist, reform_list, to_hashable

__all__ = [
"Cache",


+ 2
- 0
docs/conf.py View File

@@ -1,9 +1,11 @@
import os
import re
import sys

from docutils import nodes
from docutils.parsers.rst import roles


def colored_text_role(role, rawtext, text, lineno, inliner, options={}, content=[]):
node = nodes.inline(rawtext, text, classes=[role])
return [node], []


+ 4
- 3
examples/hed/bridge.py View File

@@ -5,15 +5,16 @@ from typing import Any, List, Optional, Tuple, Union
import torch

from abl.bridge import SimpleBridge
from abl.learning.torch_dataset import RegressionDataset
from abl.data.evaluation import BaseMetric
from abl.data.structures import ListData
from abl.learning import ABLModel, BasicNN
from abl.learning.torch_dataset import RegressionDataset
from abl.reasoning import Reasoner
from abl.data.structures import ListData
from abl.utils import print_log

from datasets import get_pretrain_data
from utils import InfiniteSampler, gen_mappings
from models.nn import SymbolNetAutoencoder
from utils import InfiniteSampler, gen_mappings


class HedBridge(SimpleBridge):


+ 2
- 2
examples/hed/consistency_metric.py View File

@@ -1,8 +1,8 @@
from typing import Optional

from abl.reasoning import KBBase
from abl.data.structures import ListData
from abl.data.evaluation.base_metric import BaseMetric
from abl.data.structures import ListData
from abl.reasoning import KBBase


class ConsistencyMetric(BaseMetric):


+ 1
- 2
examples/hed/datasets/__init__.py View File

@@ -1,4 +1,3 @@
from .get_dataset import get_dataset, get_pretrain_data, split_equation


__all__ = ["get_dataset", "get_pretrain_data", "split_equation"]
__all__ = ["get_dataset", "get_pretrain_data", "split_equation"]

+ 1
- 1
examples/hed/datasets/get_dataset.py View File

@@ -2,11 +2,11 @@ import os
import os.path as osp
import pickle
import random
import gdown
import zipfile
from collections import defaultdict

import cv2
import gdown
import numpy as np
from torchvision.transforms import transforms



+ 6
- 5
examples/hed/main.py View File

@@ -1,16 +1,17 @@
import os.path as osp
import argparse
import os.path as osp

import torch
import torch.nn as nn

from datasets import get_dataset, split_equation
from models.nn import SymbolNet
from abl.learning import ABLModel, BasicNN
from reasoning import HedKB, HedReasoner
from consistency_metric import ConsistencyMetric
from abl.utils import ABLLogger, print_log

from bridge import HedBridge
from consistency_metric import ConsistencyMetric
from datasets import get_dataset, split_equation
from models.nn import SymbolNet
from reasoning import HedKB, HedReasoner


def main():


+ 3
- 1
examples/hed/reasoning/reasoning.py View File

@@ -1,6 +1,8 @@
import math
import os

import numpy as np
import math
from abl.reasoning import PrologKB, Reasoner
from abl.utils import reform_list



+ 1
- 1
examples/hwf/datasets/get_dataset.py View File

@@ -1,8 +1,8 @@
import json
import os
import gdown
import zipfile

import gdown
from PIL import Image
from torchvision.transforms import transforms



+ 6
- 5
examples/hwf/main.py View File

@@ -5,13 +5,14 @@ import numpy as np
import torch
from torch import nn

from datasets import get_dataset
from models.nn import SymbolNet
from abl.learning import ABLModel, BasicNN
from abl.reasoning import KBBase, GroundKB, Reasoner
from abl.bridge import SimpleBridge
from abl.data.evaluation import ReasoningMetric, SymbolAccuracy
from abl.learning import ABLModel, BasicNN
from abl.reasoning import GroundKB, KBBase, Reasoner
from abl.utils import ABLLogger, print_log
from abl.bridge import SimpleBridge

from datasets import get_dataset
from models.nn import SymbolNet


class HwfKB(KBBase):


+ 5
- 4
examples/mnist_add/main.py View File

@@ -5,13 +5,14 @@ import torch
from torch import nn
from torch.optim import RMSprop, lr_scheduler

from datasets import get_dataset
from models.nn import LeNet5
from abl.bridge import SimpleBridge
from abl.data.evaluation import ReasoningMetric, SymbolAccuracy
from abl.learning import ABLModel, BasicNN
from abl.reasoning import GroundKB, KBBase, PrologKB, Reasoner
from abl.data.evaluation import ReasoningMetric, SymbolAccuracy
from abl.utils import ABLLogger, print_log
from abl.bridge import SimpleBridge

from datasets import get_dataset
from models.nn import LeNet5


class AddKB(KBBase):


+ 1
- 0
examples/zoo/get_dataset.py View File

@@ -1,6 +1,7 @@
import numpy as np
import openml


# Function to load and preprocess the dataset
def load_and_preprocess_dataset(dataset_id):
dataset = openml.datasets.get_dataset(dataset_id, download_data=True, download_qualities=False, download_features_meta_data=False)


+ 3
- 1
examples/zoo/kb.py View File

@@ -1,7 +1,9 @@
from z3 import Solver, Int, If, Not, Implies, Sum, sat
import openml
from z3 import If, Implies, Int, Not, Solver, Sum, sat # noqa: F401

from abl.reasoning import KBBase


class ZooKB(KBBase):
def __init__(self):
super().__init__(pseudo_label_list=list(range(7)), use_cache=False)


+ 8
- 6
examples/zoo/main.py View File

@@ -1,16 +1,18 @@
import os.path as osp
import argparse
import os.path as osp

import numpy as np
from sklearn.ensemble import RandomForestClassifier

from get_dataset import load_and_preprocess_dataset, split_dataset
from abl.bridge import SimpleBridge
from abl.data.evaluation import ReasoningMetric, SymbolAccuracy
from abl.learning import ABLModel
from kb import ZooKB
from abl.reasoning import Reasoner
from abl.data.evaluation import ReasoningMetric, SymbolAccuracy
from abl.utils import ABLLogger, print_log, confidence_dist
from abl.bridge import SimpleBridge
from abl.utils import ABLLogger, confidence_dist, print_log

from get_dataset import load_and_preprocess_dataset, split_dataset
from kb import ZooKB


def transform_tab_data(X, y):
return ([[x] for x in X], [[y_item] for y_item in y], [0] * len(y))


+ 2
- 2
tests/conftest.py View File

@@ -1,12 +1,12 @@
import pytest
import numpy as np
import pytest
import torch
import torch.nn as nn
import torch.optim as optim

from abl.data.structures import ListData
from abl.learning import BasicNN
from abl.reasoning import GroundKB, KBBase, PrologKB, Reasoner
from abl.data.structures import ListData


class LeNet5(nn.Module):


+ 1
- 0
tests/test_basic_nn.py View File

@@ -5,6 +5,7 @@ import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset


class TestBasicNN(object):
@pytest.fixture
def sample_data(self):


+ 1
- 1
tests/test_reasoning.py View File

@@ -1,5 +1,5 @@
import pytest
import numpy as np
import pytest

from abl.reasoning import PrologKB, Reasoner



Loading…
Cancel
Save