From 2d27588787749272c793e862c9b132076d357751 Mon Sep 17 00:00:00 2001 From: troyyyyy Date: Tue, 5 Dec 2023 18:51:39 +0800 Subject: [PATCH] [DOC] fix typo --- docs/Overview/Abductive-Learning.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/Overview/Abductive-Learning.rst b/docs/Overview/Abductive-Learning.rst index 1ebdf8d..b0d3d5e 100644 --- a/docs/Overview/Abductive-Learning.rst +++ b/docs/Overview/Abductive-Learning.rst @@ -4,7 +4,7 @@ Abductive Learning Traditional supervised machine learning, e.g. classification, is predominantly data-driven, as shown in the below figure. Here, a set of data examples is given, including training instances -:math:`\{x_1,\dots,x_m'}` and corresponding ground-truth labels :math:`\{\text{label}(x_1),\dots,\text{label}(x_m)'}`. +:math:`\{x_1,\dots,x_m\}` and corresponding ground-truth labels :math:`\{\text{label}(x_1),\dots,\text{label}(x_m)\}`. These data are then used to train a classifier model :math:`f`, aiming to accurately predict the unseen data instances.