|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- {
- "cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import numpy as np\n",
- "import torch.nn as nn\n",
- "import torch\n",
- "\n",
- "from abl.reasoning.reasoner import ReasonerBase\n",
- "from abl.reasoning.kb import prolog_KB\n",
- "\n",
- "from abl.utils.plog import logger\n",
- "from abl.learning.basic_nn import BasicNN\n",
- "from abl.learning.abl_model import ABLModel\n",
- "from abl.utils.utils import reform_idx\n",
- "\n",
- "from models.nn import SymbolNet\n",
- "from datasets.get_hed import get_hed, split_equation\n",
- "import framework_hed"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Initialize logger\n",
- "recorder = logger()"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Logic Part"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Initialize knowledge base and abducer\n",
- "class HED_prolog_KB(prolog_KB):\n",
- " def __init__(self, pseudo_label_list, pl_file):\n",
- " super().__init__(pseudo_label_list, pl_file)\n",
- " \n",
- " def consist_rule(self, exs, rules):\n",
- " rules = str(rules).replace(\"\\'\",\"\")\n",
- " return len(list(self.prolog.query(\"eval_inst_feature(%s, %s).\" % (exs, rules)))) != 0\n",
- "\n",
- " def abduce_rules(self, pred_res):\n",
- " prolog_result = list(self.prolog.query(\"consistent_inst_feature(%s, X).\" % pred_res))\n",
- " if len(prolog_result) == 0:\n",
- " return None\n",
- " prolog_rules = prolog_result[0]['X']\n",
- " rules = [rule.value for rule in prolog_rules]\n",
- " return rules\n",
- " \n",
- " \n",
- "kb = HED_prolog_KB(pseudo_label_list=[1, 0, '+', '='], pl_file='./datasets/learn_add.pl')\n",
- "\n",
- "class HED_Abducer(ReasonerBase):\n",
- " def __init__(self, kb, dist_func='hamming'):\n",
- " super().__init__(kb, dist_func, zoopt=True)\n",
- " \n",
- " def _revise_by_idxs(self, pred_res, key, all_address_flag, idxs):\n",
- " pred = []\n",
- " k = []\n",
- " address_flag = []\n",
- " for idx in idxs:\n",
- " pred.append(pred_res[idx])\n",
- " k.append(key[idx])\n",
- " address_flag += list(all_address_flag[idx])\n",
- " address_idx = np.where(np.array(address_flag) != 0)[0] \n",
- " candidate = self.revise_by_idx(pred, k, address_idx)\n",
- " return candidate\n",
- " \n",
- " def zoopt_revision_score(self, pred_res, pseudo_label, pred_res_prob, key, sol): \n",
- " all_address_flag = reform_idx(sol.get_x(), pseudo_label)\n",
- " lefted_idxs = [i for i in range(len(pred_res))]\n",
- " candidate_size = [] \n",
- " while lefted_idxs:\n",
- " idxs = []\n",
- " idxs.append(lefted_idxs.pop(0))\n",
- " max_candidate_idxs = []\n",
- " found = False\n",
- " for idx in range(-1, len(pred_res)):\n",
- " if (not idx in idxs) and (idx >= 0):\n",
- " idxs.append(idx)\n",
- " candidate = self._revise_by_idxs(pseudo_label, key, all_address_flag, idxs)\n",
- " if len(candidate) == 0:\n",
- " if len(idxs) > 1:\n",
- " idxs.pop()\n",
- " else:\n",
- " if len(idxs) > len(max_candidate_idxs):\n",
- " found = True\n",
- " max_candidate_idxs = idxs.copy() \n",
- " removed = [i for i in lefted_idxs if i in max_candidate_idxs]\n",
- " if found:\n",
- " candidate_size.append(len(removed) + 1)\n",
- " lefted_idxs = [i for i in lefted_idxs if i not in max_candidate_idxs]\n",
- " candidate_size.sort()\n",
- " score = 0\n",
- " import math\n",
- " for i in range(0, len(candidate_size)):\n",
- " score -= math.exp(-i) * candidate_size[i]\n",
- " return score\n",
- "\n",
- " def abduce_rules(self, pred_res):\n",
- " return self.kb.abduce_rules(pred_res)\n",
- " \n",
- "abducer = HED_Abducer(kb)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Machine Learning Part"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Initialize necessary component for machine learning part\n",
- "cls = SymbolNet(\n",
- " num_classes=len(kb.pseudo_label_list),\n",
- " image_size=(28, 28, 1),\n",
- ")\n",
- "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
- "criterion = nn.CrossEntropyLoss()\n",
- "optimizer = torch.optim.RMSprop(cls.parameters(), lr=0.001, weight_decay=1e-6)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Pretrain NN classifier\n",
- "framework_hed.hed_pretrain(kb, cls, recorder)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Initialize BasicNN\n",
- "# The function of BasicNN is to wrap NN models into the form of an sklearn estimator\n",
- "base_model = BasicNN(\n",
- " cls,\n",
- " criterion,\n",
- " optimizer,\n",
- " device,\n",
- " save_interval=1,\n",
- " save_dir=recorder.save_dir,\n",
- " batch_size=32,\n",
- " num_epochs=1,\n",
- " recorder=recorder,\n",
- ")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Use ABL model to join two parts"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "model = ABLModel(base_model)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Dataset"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "total_train_data = get_hed(train=True)\n",
- "train_data, val_data = split_equation(total_train_data, 3, 1)\n",
- "test_data = get_hed(train=False)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Train and save"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [],
- "source": [
- "model, mapping = framework_hed.train_with_rule(model, abducer, train_data, val_data, select_num=10, min_len=5, max_len=8)\n",
- "framework_hed.hed_test(model, abducer, mapping, train_data, test_data, min_len=5, max_len=8)\n",
- "\n",
- "recorder.dump()"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "ABL",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.16"
- },
- "orig_nbformat": 4,
- "vscode": {
- "interpreter": {
- "hash": "fb6f4ceeabb9a733f366948eb80109f83aedf798cc984df1e68fb411adb27d58"
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|